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ABSTRACT The field of Unmanned Aerial Vehicles (UAVs) has reached a high level of maturity in the
last few years. Hence, bringing such platforms from closed labs, to day-to-day interactions with humans is
important for commercialization of UAVs. One particular human-UAV scenario of interest for this paper
is the payload handover scheme, where a UAV hands over a payload to a human upon their request.
In this scope, this paper presents a novel real-time human-UAV interaction detection approach, where Long
short-term memory (LSTM) based neural network is developed to detect state profiles resulting from human
interaction dynamics. A novel data pre-processing technique is presented; this technique leverages estimated
process parameters of training and testing UAVs to build dynamics invariant testing data. The proposed
detection algorithm is lightweight and thus can be deployed in real-time using off the shelf UAV platforms;
in addition, it depends solely on inertial and position measurements present on any classical UAV platform.
The proposed approach is demonstrated on a payload handover task between multirotor UAVs and humans.
Training and testing data were collected using real-time experiments. The detection approach has achieved
an accuracy of 96%, giving no false positives even in the presence of external wind disturbances, and when
deployed and tested on two different UAVs.

INDEX TERMS Deep learning, LSTM, physical human–robot interaction, self-calibration.

I. INTRODUCTION
Over the past few years, multirotor unmanned aerial vehicles
(UAVs) have been used in abundance in a wide range of civil-
ian and military applications, particularly to perform tasks
that are burdensome for humans, such as exploration, aerial
photography, and search and rescue [1]. Recent research
efforts, on the other hand, have been directed towards devel-
oping robots that can work closely with humans, in a
variety of fields like manufacturing, healthcare, and enter-
tainment [2], [3]. Very recently, new applications emerged
focusing on a direct interaction between a human and UAV.
For example, the authors in [4] present a system where a
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human is physically connected to a UAV, and where the
UAV physically pulls the human towards a desired position,
unknown to the human. Similarly, the authors in [5] present a
framework to safely operate an aerial manipulator interacting
with a human. [5] is part of the flying coworker project,1 aim-
ing to achieve a safe and reliable human-UAV collaboration.
To that end, there is an imperative need for reliable human-
robot interaction algorithms in pursuit of the successful
deployment of robots in close proximity to humans. Robots
need to acquire a set of skills, by means of classical or
learning approaches, that facilitate interactions with humans
without jeopardizing their safety in their common workplace.
For instance, object handover is a very critical skill that robots

1https://anr.fr/Project-ANR-18-CE33-0001
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need to get hold of to effectively carry out collaborative
tasks with humans [6], [7], [8]. Although this skill has been
widely researched for robotic arms, major efforts are yet
required to further develop and advance handover algorithms
for aerial mobile robots, the mobility of which makes them
ideal for such applications. Nevertheless, UAVs suffer from
limitations in size, weight, and power, which raise the need
for lightweight algorithms that require no additional sensors
onboard the vehicle.

For humans to effectively perform collaborative tasks with
UAVs, it is crucial to establish a channel of communica-
tion between them. From the human’s side, observing the
behaviour, speed and orientation of the UAV might be suffi-
cient if the UAV is trained to convey its actions adequately to
the user [9], [10]. On the other hand, UAVs need to be explic-
itly trained to detect cues specific to the humans’ intention to
interact. Upon physically interacting with the UAV, humans
exert a certain force, which we conjecture to exhibit unique
profiles. Such profiles, if accurately detected and identified,
may serve as indicators of how the UAV should move forward
with its ongoing task. Therefore, this paper presents a novel
learning-based interaction states profile (ISP) detection tech-
nique to identify human interactions on UAVs. The approach
is demonstrated in an object handover scenario, yet is appli-
cable to any other human-UAV interaction application.

A long-short-term memory (LSTM) network is developed
and trained to detect arbitrary dynamics and interaction pro-
files perceived by the UAV upon physical contact with a
human. The proposed approach is designed to be platform-
agnostic while relying solely on measurements obtained from
the proprioceptive sensors onboard the UAV, i.e. IMU and
position sensors. After training and deploying on a physical
UAV, the proposed ISP detection algorithm resulted in a
successful demonstration of a payload handover to humans
through physical interaction.

Experimental results have proven the reliability of the
proposed ISP detection approach across a wide range of
varying profile complexities, where a success rate of 96%
was achieved. The approach was also shown to be robust
against random interactions, external wind, and changes in
UAV dynamics. In addition, the proposed approach was
demonstrated to successfully work on different platforms.
Particularly, the ISP detector was trained on a quadrotor and
was tested on a vastly different hexarotor. This is attributed to
the fact that input to the proposed algorithm is preprocessed
to take into account the UAV dynamics and hence resulting
in better generalization across different platforms.

A. RELATED WORK
Detecting an interaction between humans is trivial because
a human can obtain information about an interaction both
proactively, through vision and audition, and reactively
through tactile interactions. Humans also utilize prior expe-
rience through their cognitive capabilities to achieve fluid
interactions by adequately anticipating and reacting to events
and stimuli [11]. When attempting to involve a robotic agent

for physical human-robot interaction, a new set of challenges
needs to be addressed, due to the inherent limitations in
onboard sensors, the unreliable knowledge of the interaction
model, and the difficulty to predict humans’ actions [12]
and movements [13]. Relevant work in the literature can
be broadly categorized based on the platform used in the
study. Most work on object handover and physical human
interaction is done on a robotic arm. In this paper, however,
the focus will be devoted to object handover by a UAV.

1) ROBOTIC ARM
Object handover and interaction detection with robotic arms
can be classified into proactive and reactive methods. Proac-
tive interaction detection methods get information about the
receiver before the actual interaction occurs. These methods
make use of vision sensors or motion capture of the human.
For example, in [14] a glove fitted with tactile sensor patches,
motion capture markers, and force/torque sensors is worn by
the user during the handover. The glove is used for position
and force estimation of the human during the handover. The
glove is used for experiments in human-human handover to
obtain insights into trajectories and forces humans use to hand
objects over. Using these insights, a robot-to-human handover
algorithm is proposed aimed at fluid handovers. This algo-
rithm is also able to reduce the internal forces that act on
the object to protect it from damage during handover. Since
this method requires the human to be wearing a specialized
precalibrated sensor, it is difficult to generalize to different
platforms.

Reactive interaction detection methods make use of sen-
sor data after the interaction has begun. This may include
sensors such as force/torque sensors, tactile sensors, etc.
In [15] and [16], tactile sensors are used to find when the
receiver is ready to accept the payload. With the help of the
above mentioned sensors, the robot was able to reject external
perturbations and release the object only when the human
interacts in a particular direction. This approach, however,
has the drawback that it requires specialized sensors. In some
reactive methods, there is no need for specialized sensors.
If good knowledge of the robotic arm is available, then the
external force acting on the object can be estimated. Such a
method was adopted in [17], where an extended Kalman filter
is used to estimate the external forces acting on the robotic
arm and implement a force controller for various tasks. Note
that in this method, the robot parameters are considered to
be known prior to the experiment. On the other hand, the
method in [18] employs a recurrent neural network (RNN)
trained to identify the dynamics of a two-link robotic arm,
where the network estimates the torques generated by the arm
from the knowledge of the joint’s angles and their derivatives.
TheRNN is validated against themeasurements from a torque
sensor.

2) UAV PLATFORM
Interaction with UAVs introduces new challenges that need
to be accounted for as compared to a robotic arm; (1) a UAV
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platform is inherently unstable, hence the stability of the UAV
during interaction has to be taken into account. (2) the size,
weight and power of a UAV are limited as compared to fixed
manipulators.

In [19], an onboard force/torque six-degree sensor is used
to measure external forces acting on a UAV. A passivity
based controller is then used to guarantee the stability of
the platform following an external interaction. This approach
was demonstrated on a tethered multirotor UAV which does
not require an onboard battery. In [20], an array of force
sensors is used along with a disturbance observer to detect
human interaction on a UAV platform. The measured force
and direction are then used to design an admittance controller.
Additional onboard sensors on aUAVwill increase theweight
of the UAV and thus decrease its performance. Due to the
additional cost and weight added by the above sensors, in this
work, we will focus solely on sensors available on off-the-
shelf UAVs.

In [21], a sensorless force estimation is done using an
unscented Kalman filter with a quaternion-based controller
for a UAV to estimate the force and torque acting on the
UAV. The authors show that this method can estimate the
force and torque profiles in real-time. However, it cannot dif-
ferentiate between types of forces acting on the UAV. These
force estimation methods also require good prior knowledge
of the UAV being used which hinders the transferability
to different platforms. In [22], external wrench applied on
a UAV platform is estimated based on the proprioceptive
sensors onboard the UAV. The estimated external wrench is
used to design an admittance and impedance controller for
interactions.

The majority of the surveyed research focuses on robotic
arms used for payload handover. Interactions with UAVs
mandate considering some aspects that are not critical for
robotic arms, such as weight. For example, using additional
sensors onboard the UAV is not preferable, given its payload
constraints. On the other hand, there exist force estimation
methods that do not require additional sensors, but they
mostly rely on the knowledge of the UAV model, and hence,
can only be used for particular platforms.

To the best of the authors’ knowledge, none of the methods
proposed in the literature makes use of the profile of states
on a UAV for the purpose of differentiating between interac-
tions, which can then be used to encode the communication
between a human and a UAV during a collaborative task.

B. CONTRIBUTION
Based on the surveyed literature, we propose a LSTM-based
learning approach for detecting and identifying the profile of
the states during a human interaction on a UAV. The proposed
approach has a major advantage over existing methods in that
the training data and inference of the LSTM are independent
of the platform dynamics. Hence, a single model can be used
for ISP detection on multiple UAV platforms, and model
training can be done using data collected from any UAV

platform. In summary, the contributions of this paper are as
follows:
• A novel LSTM-based interaction states profile (ISP)
detection approach is proposed to discern human inter-
actions with UAVs, through proprioceptive measure-
ments like IMU and position sensor measurements.

• A novel data pre-processing technique is developed to
make the proposed ISP detection approach invariant to
UAV dynamics and hence achieve generality across var-
ious platforms without fine-tuning of the trained model.
Specifically, the estimated ISP is transformed to a new
domain, which we refer to as the training and inference
domain (TID), before being processed by the ISP detec-
tion approach. The transformation is based on the UAV
dynamic parameters identified using the DNN-MRFT
approach proposed in [23].

• The validity of the proposed ISP detection approach,
and its applicability to different UAVs is demonstrated
experimentally for different human-UAV interaction
scenarios. The detection accuracy on the experimental
test set was more than 96% with no false positives even
in the presence of challenging wind conditions, and
unwanted random pushes from nearby users. A video
summary of the experimental results can be found at [24]
(https://youtu.be/WcXa1H558UA).

It is worth noting that the proposed dynamics invariant
interaction detection approach is not specific to LSTM. Other
time-series detection algorithms could be used in the TID
so that dynamics independence properties are retained. The
motivation behind the selection of LSTM for the Human-
UAV interaction application is discussed in Section IV.

C. PAPER STRUCTURE
This paper is structured as follows. Section II summarizes the
nonlinear modelling of UAV dynamics, the linear decoupled
approximations, and the identification of the UAV model
parameters. In Section III, the pre-processing of the data by a
transformation to the TID based on the identified UAVmodel
parameters is presented. In Section IV, the design and training
of the LSTM-based neural network, which operates in the
TID is presented. The proposed ISP detection is experimen-
tally verified and an application of this method as payload
handover between a robot and a human is demonstrated in
real experiments in Section V. Finally, Section VI concludes
the paper.

II. MODELING, CONTROL AND IDENTIFICATION
In this section, the nonlinear model of the quadrotor will
be presented, considering the propulsion dynamics and time
delays. Then, a linear model that can be used for system
identification will be described. This modelling method can
be easily extended to any multirotor UAV [25], however,
in what follows it is derived for a coplanar/collinear plat-
form since a classical quadrotor and a classical hexaro-
tor will be used to demonstrate and verify the proposed
approach.
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FIGURE 1. Schematic showing the different constituents of the proposed detection approach.

A. REFERENCE FRAMES AND COORDINATE SYSTEM
First, two right-handed reference frames are defined;
(1) an Inertial Earth-fixed frame FI with axes {ix, iy, iz}, and
(2) a body-fixed frameFB with axes {bx, by, bz}. The axis iz is
chosen to point upwards opposite to gravity, and bz parallel
to the direction in which actuators exert thrust. The center
of the body-fixed frame is at the center of gravity of the
UAV platform and the rotations around the inertial axes are
given by Euler angles η = [φ θ ψ] which represent roll,
pitch and yaw. For convenience, in what follows a vector
may be expressed in a particular reference frame by indexing
its components using the frame’s symbol. For example, the
position vector Ip is defined with reference to the inertial
frame and has the components [Ipx Ipy Ipz]T . In addition,
we use the notion of v̄ to represent a 2D vector obtained
from the projection of a 3D vector v onto the x-y defined
plane.

B. NON-LINEAR MULTIROTOR MODEL
Based on the frames of reference defined above, the non-
linear model of the UAVwill be derived based on the Newton-
Euler equations. First let us denote by n ∈ N as the total
number of propellers, where n = 4 for a quadrotor, and
n = 6 for a hexarotor. The total thrust force fT , pitching
and rolling moments τφ,θ , and yawingmoments τψ generated
by the corresponding propellers, and expressed in FB are
related to the rotation speed � of each propeller and are
described by:

fT =
n∑
i=1

fi =
n∑
i=1

kf�2
i (1)

τφ,θ =

n∑
i=1

kf lφ,θ�2
i

[
sin(γi)
cos(γi)

]
(2)

τψ =

n∑
i=1

(−1)i+1kτ�2
i (3)

where fi is the thrust produced by the corresponding propeller
about its z-axis, kf and kτ are the thrust and drag coefficient
of each propeller, lθ,φ is the moment arm connecting the
platform’s center of mass to the each propeller’s center of
mass, and γi is the angle between bx and the arm connecting
the platform to the corresponding propeller.

The UAV is assumed to be symmetric about bx and by,
with its center of gravity coinciding with the origin of FB.
With these assumptions, the product of inertia of the UAV is
zero, and therefore, the inertia matrix is J = diag(Jx , Jy, Jz).
As such, the Newton-Euler equations for the multirotor UAV
are given by:[

mI3×3 03×3
03×3 J

] [
V̇
ω̇

]
=

[BF
Bτ

]
(4)

BF = fT bz − B
I Rmgiz − α (5)

Bτ =

τφτθ
τψ

− λ (6)

where m is the mass of the UAV, V̇ is the acceleration of the
UAV, and ω̇ is the angular acceleration of the UAV. α, and
λ are arbitrary constants that depend on the translational and
rotational drag on the UAV, and captures motion inflow and
blade flapping drags on the propellers. If the cross-coupling,
observed in (4), (5) and (6) is neglected, the model can be

116048 VOLUME 10, 2022



A. Peringal et al.: Design of Dynamics Invariant LSTM for Touch Based Human–UAV Interaction Detection

simplified as follows.

I p̈x =
1
m

(
(cψ sθcφ + sψ sφ)fT − αx(I ṗx , η,�)

)
,

I p̈y =
1
m

(
(sψ sθcφ − cψ sφ)fT − αy(I ṗy, η,�)

)
,

I p̈z =
1
m

(
cφcθ fT−g− αz(I ṗz, η,�)

)
,

φ̈ =
1
Jx

(
τφ − λφ(ω,�)

)
,

θ̈ =
1
Jy
(τθ − λθ (ω,�)) ,

ψ̈ =
1
Jz

(
τψ − λψ (ω,�)

)
. (7)

A brushless DCmotor (BLDC) is used for propulsion, con-
trolled with an electronic speed controller (ESC). Each ESC
receives the desired propeller rotational speed �i, and con-
trols the BLDC to achieve the desired command ui, assumed
to be proportional to�2

i . The relationship between the desired
command applied by the ESC and the produced thrust or
torque by the corresponding BLDC is approximated by a
first-order plus time delay model [26], and is given by:

ḟi(t)Tp + fi(t) = Kpui(t − τp) (8)

where Tp is the propulsion time constant,Kp is the propulsion
dynamics gain, τp is the propulsion dynamics delay and t is
the time variable. From bench tests on the propulsion system,
we can assume Tp is constant in the operating range.

C. LINEARIZED INNER LOOP DYNAMICS
The inner loop dynamics of a multirotor UAV consists of the
altitude dynamics, the attitude (i.e. roll and pitch) dynamics,
and the yaw dynamics. Both altitude and attitude dynamics
of a multirotor UAV have the same model structure, yet the
model parameters differ for each. For example, the model for
the pitch loop is given by:

T1θ̈ (t)+ θ̇ (t) = Kτu (9)

where T1 represents drag time constant, and K represents
the loop gain. The pitch state variable θ might be simply
substituted by the state variables φ, and Ipz to obtain the other
models. Yet, it is required to substitute the input torque τu in
(9) with the propulsion dynamics presented in (8). The full
pitch dynamics are given by

T1Tp
...
θ (t)+ (T1 + Tp)θ̈ (t)+ θ̇ (t) = Kequθ (t − τθ ) (10)

Here, τθ includes the total loop delay, i.e. due to propulsion,
communication, sensors, and digital circuits. Communication
delay is inevitable and needs to be handled properly in the
identification and contol phases [27], [28]. System parame-
ters are considered constant throughout a flight test.

a: Note on the validity of the linearized model
UAV dynamics can be considered nonlinear in normal opera-
tion due to the existence of aerodynamic drag and trigonomet-
ric nonlinearities. During the interaction between a human

and a UAV, the UAV is expected to operate at low speed
and low tilt angles to ensure human safety. In such operating
conditions, the effect of aerodynamic drag is negligible as
compared to the human dynamics and the feedback con-
troller dynamics. Under these conditions, as aerodynamic and
trigonometric nonlinearities are negligible, the UAV model
can be reasonably assumed linear.

The yaw dynamics has a different model structure com-
pared to the other inner loop dynamics of a multirotor UAV
and can be modelled as a second-order system [23]:

Tpψ̈(t)+ ψ̇(t) = Kequψ (t − τψ ) (11)

Note that the propulsion dynamics are shared among all
inner loops. Also, the drag time constant T1 and the equivalent
gain Keq would be different for every inner loop.

D. MODEL PARAMETERS IDENTIFICATION
The unknown altitude and attitude models parameters can be
identified in real-time using the recently developed approach
of DNN-MRFT [29]. This method required decoupling of the
UAV dynamics into SISO systems, as done in the previous
section. Let the vector d = [Keq T1 Tp τ ] ∈ D represent the
model parameters of a given altitude or attitude loop. The
model parameters’ bounds provided inD are chosen such that
all UAV designs of interest fall within. The DNN provides a
map between a test signal produced experimentally, and the
unknown parameters vector d . The modified relay feedback
test (MRFT) [30] is used to produce the system response,
which is given by:

uM (t)

=

{
h : e(t) ≥ b1 ∨ (e(t) > −b2 ∧ uM (t−) = h)
−h : e(t) ≤ −b2 ∨ (e(t) < b1 ∧ uM (t−) = −h)

(12)

where b1 = −βemin and b2 = βemax . emax and emin are
the maximum and minimum error signal values when the
system undergoes stable oscillations. β is a tunable param-
eter which determines the phase of the excited oscillations
as, ϕ = arcsinβ. In this paper, β is chosen as the global
optimal β that minimizes ISE error for a step test as described
in [31] and [32]. The MRFT always produces stable oscilla-
tions for the case of inner loops of multirotor UAVs as was
shown in [23].

A classification DNN would provide more advantages
compared to a regression DNN. First, the discretization of
DNN output increases the efficiency of training of the DNN
with a custom loss function that depends on optimal control
parameters [29]. Second, a classification DNN would allow
us to obtain optimal controllers of the UAV in real-time based
on d ∈ D̄, where D̄ represents a discretization of D and |D̄|
is the number of the output classes of the DNN. Based on
the simulated MRFT responses of all systems in D̄, the DNN
would select an element from D̄ that best describes the system
under test.
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For a process Gi(s) with model parameters d i, there exists
an optimal controller Ci(s) which minimizes a particular
cost functional. D̄ is discretized in such a way that the per-
centage change in the integrated square error (ISE) when
the controller Ci(s) is used with an adjacent process Gj is
less than some predefined value J∗ (in this paper we chose
J∗ < 10% as in [29]). This can be formulated using the
relative sensitivity function, which indicates the robustness
of the system to the changes in process parameters and is
governed by the following equation [33]:

Jij =
Q(Ci,Gj)− Q(Cj,Gj)

Q(Cj,Gj)
× 100% (13)

where Jij represents the degradation in performance due to
applying controller Ci, which is the optimal controller for the
process Gi and a sub-optimal controller for the process Gj.
Q denotes the integral square error (ISE) of the step response
of the closed loop system:

Q(G(s),C(s)) =
1
Ts

∫ Ts

0
e(G,C)2dt (14)

III. DESIGN OF TRAINING AND INFERENCE DOMAIN
To address the shortcoming of platform specific learning,
we introduce the concept of a physical domain at which the
UAV dynamics are characterized, and a TID at which the AI
model is trained and the real-time inference occurs. For this
to be achievable, the AI-model in TID has to be invariant to
the specific UAV dynamics. Fig. 1 shows how a human-UAV
ISP can be transformed from the physical domain to the TID
using the DNN-MRFT identified model parameters. In this
work, we have designed three different types of human-UAV
interactions to be detected by three different LSTM models.
These interactions are:

1) Single downward pull (SDP) of the UAV.
2) Consecutive double downward pulls (CDDP) of the

UAV.
3) Single yawing twist (SYT) of the UAV.
4) Compound sequential interaction (CSI). Consists of

multiple pull/push and yaw twists. The purpose of
CSI is to highlight the applicability of the proposed
approach to deal with more complex interactions.

A spring-mass damper system, depicted in Fig.2, can be used
as an analogy for the analysis of the human-UAV interaction.
In this analogy, the mass corresponds to the UAV, the first
set of spring-damper corresponds to the closed loop UAV
system, and the second set of spring-damper corresponds to
the dynamics of the human arm. Human dynamics have been
modelled as a spring-mass damper system in the literature [4].
The force exerted by the human is Fh. The spring mass
damper system is described by:

mẍ = F1 − F2 (15)

F1 = −K1(x)− b1ẋ (16)

F2 = K2(x − xh)+ b2(ẋ − ẋh) (17)

FIGURE 2. Spring mass damper analogy of the interaction.

Comparing this system to the real human-UAV interaction
system, the stiffness K2 and damping b2 terms of the human
arm cannot be identified. Similarly, while the position x and
acceleration ẍ of the UAV are measured, while the position of
the human arm xh is not. The proposed learning-basedmethod
should implicitly estimate the force of the human hand Fh
given the measurable parameters. As the human dynamics
are unobservable, the LSTM should be robust enough that
differences in K2 and b2 between different humans do not
affect its output. This is done by including training data
obtained from tests with different humans. This makes human
dynamics part of the TID and hence, the LSTM effort is
devoted to learning the human-invariant interaction behavior.

It should be noted that using the spring-damper analogy,
the LSTM would overfit the dynamics characterized by K1,
and b1. To overcome this limitation, we assume that the
human exerted force profile is the same regardless of the
UAV in use. To verify this assumption, we have conducted an
experimental test where we have asked seven human subjects
to detach a payload carried by a UAV. To make the handover
maneuver as natural as possible, we used a cup of water
as a payload and the subjects were not provided with any
instructions apart from asking them to receive the payload
by pulling it downwards. We recorded the estimated Fh of
the first downward pull of the seven human subjects, and it
was seen that the peak force differs only by 10% between
all the subjects. As such, if Fh is assumed to be similar in
all platforms, a relation between the responses of different
springmass damper UAV systems can be obtained. Under this
assumption, consider two new spring-mass damper systems
representing UAV (a) and UAV (b), with the same applied
Fh, as in Fig.3. The response to an external force Fh is
modelled by:

maẍa = −K1axa − b1aẋa + Fh
mbẍb = −K1bxa − b1bẋb + Fh (18)

equating the two forces gives the relation (written in the
Laplace domain for convenience):

Xa(s)
Xb(s)

=
mbs2 + b1bs+ k1b
mas2 + b1as+ K1a

(19)
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FIGURE 3. Two spring mass damper systems to compare the response to
the same input force.

FIGURE 4. Experimentally obtained position, velocity and acceleration
during a single downward pull interaction.

so if xa is selected as a feature for LSTM training and all
training happens based on the UAV platform (a), (19) can
be used to transform data collected from UAV platform (b).
In this case, the UAV platform (a) resides in the TID, and
its dynamics are referred to as the base dynamics. UAV plat-
form (b) resides in the physical domain, which might contain
an arbitrary number of different UAV dynamics. In the rest of
this section, we discuss the aspects of the selection of features
for the considered interactions, i.e. SDP, CDDP, and SYT,
and we derive transfer functions for the transformation of the
proposed features from the physical domain to the TID.

A. FEATURE SELECTION
To avoid the installation of additional sensors onboard a
multirotor UAV, the interaction detection LSTMmust depend
on observable states measured by the UAV avionics. These
selected states are called features of the ISP, from which the
human-UAV interaction is detectable by the LSTM. Obvi-
ously, the features that are selected will depend on the type
of interaction that needs to be detected. The states that can
be estimated from a UAV platform fitted with IMU and a
position and heading sensors is tabulated in Table 1. Note that
Table 1 assumes the use of a motion capture (Mocap) system,
which can be replaced by other positioning and heading
measurement sources.

We have performed initial testing for the SDP, CDDP, and
SYT interactions to select suitable states that would define the
ISP for each. The features selected for the SDP, and CDDP
interactions are shown in Table 2. The selected features for
the SYT interaction detection LSTM are the following states:
pitch θ , roll φ, yaw ψ , body accelerations [Bax Bay Baz]T ,
and controller output of the yaw loop. For CSI we have con-
catenated the states used for SDP and SYT LSTM training.

TABLE 1. The state measurements that can be obtained for low-cost
UAVs. In outdoor settings, the Mocap can be replaced by a combination of
GPS, barometer, and magnetometer.

TABLE 2. LSTM features selected to represent the ISP for SDP and CDDP
interactions. The state η represents the tilt angle of bz with respect to iz .

B. DYNAMICS TRANSFORMATION TO THE TRAINING
AND INFERENCE DOMAIN
The UAV specific dynamics are required to define the trans-
formation to the TID. The UAV inner loop dynamic param-
eters are assumed to be available through DNN-MRFT as
described in Section II-D.

For the I ez feature, the altitude loop dynamics have to be
considered, with the assumption that bz and iz are almost
aligned (note that it is unsafe to interact with the drone
otherwise). By proceeding with the assumption that Fh act-
ing on two different UAVs are the same as stated in (18),
we can write the following relation between the errors on
two different UAVs differentiated by the indices 1 and 2.
During experimentation, UAV 1 will be the one where the
FTP detection system is trained and UAV 2 will be the new
UAV where we test the dynamic transformation:

I ez1
(Kc1 + sKd1)Kp1 + m1s2(Tp1s+ 1)

Tp1s+ 1

=
I ez2

(Kc2 + sKd2)Kp2 + m2s2(Tp2s+ 1)
Tp2s+ 1

where Kc represents the proportional controller gain, Kd
represents the derivative controller gain, Kp and Tp are the
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propulsion system parameters from (8). Note that we assumed
that the drag force and the delay in propulsion to be negligible
during the interaction (i.e. T1 = 0). The above relation can be
rearranged in a transfer function form to give, (20), as shown
at the bottom of the page.

When fully defined, the transfer function in (20) provides
a transformation of the I ez1 of UAV 2 in the physical domain,
to the base dynamics in the TID. But realizing (20) requires
two considerations. First, the states usually available on com-
mercial multirotor UAVs do not include estimates for Ip(3)z
and Ip(4)z . We assume the ratio of these higher order terms
is close to unity, and hence we rewrite (20) to obtain the
simplified transformation:

I ez1 (s)
I ez2 (s)

=
Kc2Kp2 + Kp2 (Tp1Kc2 + Kd2 )s+ (Tp1Kd2Kp2 + m2)s2

Kc1Kp1 + Kp1 (Tp2Kc1 + Kd1 )s+ (Tp2Kd1Kp1 + m1)s2

(21)

which is easy to realize due to the presence of I ṗz and I p̈z
estimates (refer to Table 1). The denominator in (21) acts
as a filter for the noisy I p̈z measurements, which provides
advantages for practical real-time realizations. The trans-
formation of the feature I ṗz can be obtained by neglecting
the polynomial terms corresponding to position form (21),
and similarly, a transformation for the acceleration feature
Iaz ≡ I p̈z can be obtained. Note that for the feature ‖Ia‖
in Table 2 the same transformation as of Iaz is assumed,
which is a valid choice due to the UAV underactuated
nature.

The second consideration for the practical realization of
(21) is the availability of all the transformation parameters.
The DNN-MRFT identifies the time parameter Tp and the
equivalent loop gain Keq as defined in (10), where Keq =
Kp/m, and also provides controller parameters Kc and Kd .
But (21) requires the knowledge of both parameters Kp and
m, so that one of these must be found prior to the interaction
through lab tests. Obtaining the static gain parameters Kp and
m using lab experiments is straightforward and is much easier
compared to the other dynamic parameters present in (21)
which are obtained through the DNN-MRFT. Thus, the DNN-
MRFT provides an important automated step in the design of
these dynamic transformations.

A similar transformation applied to altitude can be
obtained for the angular dynamics. From Table 2, we have
selected the tilt angle η as a feature which we assume to have
the same dynamics as the pitch angle presented in (10). This
assumption is valid for symmetric multirotor UAVs. Thus,
in analogy to the altitude dynamics, the transformation for

η dynamics is given by:

I eη1 (s)
I eη2 (s)

=
Kc2Kp2 + Kp2 (Tp1Kc2+ Kd2 )s+ (Tp1Kd2Kp2 + Iy2/ly2 )s

2

Kc1Kp1 + Kp1 (Tp2Kc1+ Kd1 )s+ (Tp2Kd1Kp1 + Iy1/ly1 )s2

(22)

where Ixy corresponds to the rotational inertia of the tilt
dynamics, and lxy is the equivalent motor to center distance
projected on bx × by which is assumed to be constant due to
multirotor UAV symmetric design. Unlike the altitude case,
a measurement for angular acceleration is not available. Thus,
we truncate the transformation in (22) to be a first order
transformation:

I eη1 (s)
I eη2 (s)

=
Kc2Kp2 + Kp2 (Tp1Kc2 + Kd2 )s
Kc1Kp1 + Kp1 (Tp2Kc1 + Kd1 )s

(23)

which is independent of Ixy and lxy.
Another point to consider when transferring ISPs from the

physical domain to the TID is the difference in the sampling
rate used in both domains. The sampling rate is adjusted
appropriately, either through downsampling, or by upsam-
pling with linear interpolation. The LSTM is trained based on
the sampling rate of the TID, which was chosen to be 1 kHz.

IV. LSTM DESIGN
A. ARCHITECTURE
Long short-term memory (LSTM) neural network is a spe-
cial type of recurrent neural network (RNN) that is used in
various applications with time-series data such as anomaly
detection [34] and trajectory prediction [35]. They have the
ability to store the previous data input in an internal state of
the memory unit. The use of LSTM for interaction detection
has advantages over other learning method such as RNNs
or DNNs. LSTM mitigates the vanishing gradient problem
faced by RNNs when training on long sequences of data,
which is suitable for the detection of interaction sequences
like in the CDDP case. Also, LSTMs have an advantage over
DNNs and other memoryless approaches since LSTM do
not require the selection of a time window. Thus LSTM is
deemed suitable for the considered application. It is important
to emphasize that dynamics invariance is independent of the
learning method used in the TID, and could be extended to
different learning methods.

The memory unit in the network keeps an internal state
using the gating mechanism [36]. The gating mechanism
for an LSTM cell consists of three gates: (1) Forget gate
(2) Input gate (3) Output gate. A forget gate is a sigmoid
activated network that decides which parts of the memory
state is important, and which should be forgotten. The input

I ez1 (s)
I ez2 (s)

=
Kc2Kp2 + Kp2 (Tp1Kc2 + Kd2 )s+ (Tp1Kd2Kp2 + m2)s2 + m2(Tp1 + Tp2 )s

3
+ m2Tp1Tp2s

4

Kc1Kp1 + Kp1 (Tp2Kc1 + Kd1 )s+ (Tp2Kd1Kp1 + m1)s2 + m1(Tp2 + Tp1 )s3 + m1Tp2Tp1s4
(20)
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gate determines what new information should be added to the
memory state and finally, the output gate determines which
part of thememory state should be propagated to the next time
step. In this paper, two layers of LSTM cells are adopted. This
is referred to as a stacked LSTM model.

To determine the optimal neural network architecture for
the problem at hand, an automated hyperparameter space
searching technique was used. The search space included
networks of varying depth, width, activation functions, and
combinations of the features in Table 2, and was trained
using two different optimizers, as listed in Table 3. A total
of 55 different neural network structures were evaluated and
the best-performing structure, depicted in Fig.5, was selected
based on the prediction accuracy, where it achieved 98.3%
accuracy on the testing dataset.

The adopted neural network structure consists of two
LSTM layers with 200 and 100 units respectively. The LSTM
layers implicitly estimate the force exerted by the human,
as mentioned in Section III, by modelling (15, 16, 17). It is
followed by a dense layer whose neurons are activated using
the rectified linear unit (ReLU). This layer is applied at every
time step bymeans of the timedistributed wrapper. The output
layer consists of a single neuron activated using sigmoid
function in order to perform binary classification. A classifi-
cation threshold of 0.5 is used on the output neuron which is
represented by a round-off function in Fig. 5. Dropout is used
between the hidden layers to regularize the neural network
and to avoid overfitting [37].

TABLE 3. Search space for the trained LSTM model.

FIGURE 5. Proposed neural network architecture.

B. DATA GENERATION AND TRAINING
The training data for the neural network is generated from
real experiments that are conducted on a UAV. This approach
exposes the neural network to training data that closely
resemble real-life scenarios. For further generalization, the
training data is augmented by introducing noise. A bias of

0.05 and Gaussian noise with zero mean and a standard
deviation of 0.0025 is introduced and appended to the original
data. This provides a larger data set for training.

The neural network is required to identify human inter-
action and reject other disturbances that it might encounter
during regular operation, such as wind or collisions. Hence,
the training dataset included samples of Human-UAV inter-
actions under wind disturbances and samples of random col-
lisions with the UAV.

Collected training data is divided into sequences, the
length of which is selected based on the ISP of interest. For
instance, the profile resulting from a single pull, and hence
the sequence length, is shorter than the profile resulting from
a double pull. This will ensure that the desired profile lies
within the input sequence to the neural network which will
guarantee correct prediction. The order of measurements in
the sequence will remain unchanged to maintain the charac-
teristic of the profile over time. A total of 14652 sequences
were collected, 50% of which were used for training, 25%
for validation, and 25% for testing. Prediction accuracy on
the testing set will be used for model evaluation.

C. REAL-TIME INFERENCE
During Real-time inference stage, a stateful LSTM, which
gives us the ability to reset the internal states according to
our requirement, is used. The internal states of the LSTM are
reset when the UAV has taken off and is hovering, awaiting
human interaction.

We employ a two-stage discriminator for the neural net-
work. Firstly, the output of the LSTM is a probability distri-
bution P ∈ [0, 1]. We chose an output P > 0.5 to represent
a positive detection. Secondly, the LSTM model provides a
detection result for every time step, however, outlier positive
detections are rejected by accepting positive signals that are
sustained for a predefined number of time steps, chosen to
be 50 ms. This conservative approach is preferred due to
the nature of the application at hand, where it is preferred
not to release the payload unless a receptor human is ready
to receive it. To measure the accuracy of the system, a true
positive is defined when at least one positive output is present
during the interaction, and a false positive when there is a
positive output without an interaction.

V. EXPERIMENTAL RESULTS
The proposed LSTM-based ISP detection approach was
extensively tested in experimentation using different UAV
platforms across multiple scenarios. More specifically, the
trained ISP detection model was tested on a quadcopter and a
hexacopter while hovering, while moving, under wind dis-
turbance, and using different human force signatures. This
section provides, in detail, a description of the experimental
setup and an analysis of the obtained results.

A. EXPERIMENTAL SETUP
Two different UAVs are used to verify the applicability of the
proposed approach and to demonstrate its generality across

VOLUME 10, 2022 116053



A. Peringal et al.: Design of Dynamics Invariant LSTM for Touch Based Human–UAV Interaction Detection

FIGURE 6. Qdrone.

FIGURE 7. Detection of a single downward pull exerted on the base UAV.

various platforms. A quadcopter, which we refer to as the
base UAV, was used for collecting training data and for initial
verification, and a hexacopter, which we refer to as the testing
UAV, was used for verifying the generality of the proposed
approach. The specifications of the base and testing UAVs
are provided below.
• Base UAV: The base UAV is a Quanser Qdrone quad-
copter, that comes with ducted propellers (Fig. 6) which
makes it suitable for physical Human-UAV interaction.
The Qdrone is a small, 1000g, quadrotor, equipped with
an Intel Aero board and a BMI160 onboard IMU. A pro-
prietary Matlab/Simulink interface is used to communi-
cate with the drone. A motion capture system is used to
measure the position of the UAV at 120Hz.

• Testing UAV: The DJI F550 Hexarotor UAV is used to
test all the neural networks that were trained on the base
UAV. The testing UAV is a 2260g hexarotor that uses the
NAVIO2 flight controller hat with a Raspberry pi3B+,
where a custom flight control software is run. Xsens
610 is used as an onboard IMU. The LSTM network
runs on an onboard intel NUC, since running it on the
same RPi3B+ caused major delays in the system. The
robot operating system (ROS) is used for communica-
tion among the flight controller, the LSTM network, and
the motion capture system.

The experimentation for this research is set up as fol-
lows: firstly, experiments are conducted to show that the

TABLE 4. Identification of the base and test UAVs in the altitude loop.

TABLE 5. confusion matrix for base UAV.

FIGURE 8. Detection of a single downward pull exerted on the base UAV
under wind disturbance (at 5m/s).

FIGURE 9. Detection of a single downward pull exerted on the base UAV
while moving at 10cm/s.

LSTM network can reliably detect a human interaction on
the base UAV it was trained on. Then the generalization of
the trained LSTM to different UAVs is demonstrated with the
testing UAV. Finally, an application for the system in the form
of payload delivery is then demonstrated.

System identification of the two platforms is performed
as mentioned in II-D; the resulting parameters are shown in
Table. 4. Knowledge of the model for both platforms is nec-
essary when using the ISP detection on a different platform
as indicated in (20) and (22). The parameters of the altitude
channel is tabulated in Table 4.
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FIGURE 10. Detection of a consecutive downward double pull exerted on the base UAV (left plot), and the test UAV (right plot) using the same LSTM. The
single pull was not detected in both cases, as expected.

B. SINGLE DOWN PULL EXPERIMENTS
In this experiment, we test the ability of our method to detect
an SDP trained and tested on the base UAV. To validate our
method, we perform 10 tests where the human intends to
interact with the UAV (positive tests) and 40 tests where the
forces are applied on the UAVwithout the intention to interact
(negative tests). During the negative tests, random forces,
with varying application time are applied on the UAV in
random directions. The confusion matrix of the above tests is
shown in Table. 5, with an accuracy of 96%. Fig. 7 shows one
example SDP experiment. This figure shows the modification
in altitude of the platform I ez, the platform acceleration norm
||
Ia||, yaw η, and the ISP detection flag.

C. ISP DETECTION UNDER WIND DISTURBANCE
AND UAV MOTION
Once the ISP detection is validated on the base UAV, exper-
iments are conducted to check the robustness of the trained
detector to externally injected disturbances. A disturbance
that is normally faced by UAVs is wind. To test the robustness
of our approach to wind disturbances, we test the trained
detector in the presence of lab generated wind, with speeds
reaching 5m/s. These experiments concluded that the pro-
posed approach is able to distinguish wind disturbances
from human interactions. Fig. 8 shows the deployment of
our detector in the presence of wind, and demonstrates that
the detector positively identifies the human interaction only
despite the wind disturbance.

In order to assess the detector’s performance while the
platform is in motion, an experiment is conducted where the
UAV is commanded to move in the y direction at a speed of
10cm/s; the speed was intentionally chosen small enough for
the human to be able to interact with the platform in a safe
manner. The detection of ISP while the UAV is moving is
plotted in Fig. 9, showing the effectiveness of our detector in
spite of the UAV motion.

D. DETECTING DIFFERENT ISPs
To show that our detector learns to find force profiles instead
of simple force thresholding, an experiment is designed

where two consecutive pulls must be detected and lone pulls
should be rejected, even though the direction of the pull is the
same in both profiles.

In this experiment, our detector is trained to detect two
consecutive pulls, and is tested on single and double pulls.
Fig. 10 (left) shows the results of this experiment. In this
figure we can see the detector clearly identifying the double
pull, while rejecting the single pull.

Finally, the results of the more complex CSI detection
profile are shown in Fig. 11. This figure shows the positive
detection of the CSI interaction profile twice. This figure
also shows that the LSTM-network trained to detect the CSI
profile is robust against the detection of the SDP interaction
profile.

Similar results were observed for the SYT ISP detection.
We omitted the results of these experiments from this paper
for brevity, however, these experiments are shown in the
accompanying video [24].

E. DYNAMICS TRANSFERABILITY
As the CDDP ISP is the most complex between the three
tested ISPs, we test the dynamic transformation between two
different UAVs while detecting this ISP. The testing UAV
is only used to validate the dynamic transformation from
the physical domain to the TID using the parameters from
Table. 4.
The results of this experiment are shown in Fig. 10(right).

From this figure, we can see that the human interaction
is reliably detected on the testing UAV after the necessary
dynamic scaling of the features.

It is worth noting that the same experiment was conducted
with the testing UAV without any dynamic transformation.
As expected, during this experiment, the testing UAVwas not
capable of detecting the human interaction.

F. PAYLOAD DELIVERY
As an application to the ISP detection, we propose payload
handover from a UAV to a human. The interaction detection
system itself can be extended to other applications, however,
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FIGURE 11. Detection of a Compound sequential interaction (CSI)
consisting of the following sequence: push-and-hold the drone upwards,
then double positive yaw twists, followed by a single negative yaw twist,
and finally a single downward pull. This figure shows the detection of the
considered CSI twice, and shows that the same network does not detect
the simple SDP.

FIGURE 12. Interaction with the Test UAV in a safe and controlled setting.

FIGURE 13. showing the designed girpper’s orperation. The gripper is
closed when no interaction is detected. When the human interacts with
the UAV, the gripper opens to release the payload.

this application is required in real-world payload delivery
problems such as the ones in [38] and [39], and can be used
to validate our ISP detection method without any additional
sensors or actuators that modify the platform’s dynamics.

To offer a smooth user experience, once the UAV detects
a human interaction, it should stop resisting the human
and release it in a smooth manner. When an interaction is
detected, the UAV is commanded to hold position for a set
amount of time. This is done by changing the position refer-
ence to the estimated position at the start of the interaction.

We designed a gripper based on the iris gripper [40], that
holds and releases the payload as required by the correspond-
ing interaction. The gripper is built using lightweight 3D
printed material to allow maximum payload capacity, and
is controlled with a servo motor(Dynamixel Ax-12a). The
gripper is firmly attached under the UAV and it can smoothly
close and firmly grip the desired payload, and then, once an
interaction is detected, it is commanded to open and release
the payload. The gripper and the described operation is shown
in Fig. 13

VI. CONCLUSION
In this paper, a novel method for interaction detection
between a human and a UAV is proposed. The presented
method detects a state signature, referred to as the interaction
states profile (ISP), exerted by the human on the UAV. The
presented detection scheme is then demonstrated in a pay-
load handover scenario, where following the ISP detection,
the UAV releases the object for the human. The presented
method is trained on a base UAV, with an LSTM-based
neural network. The method is then transferred to other UAVs
through a dynamics based transformation between the base
UAV and the testing UAV, rendering the method agnostic to
the training platform. The dynamics of the base and testing
UAVs are exposed using the DNN-MRFT method [29]. The
presented approach is validated through an extensive experi-
mental campaign, showing the detection of different ISPs at
high success rate, the robustness of the presented method to
wind disturbance, and the transferability between different
platforms.

In the future, this work could be extended in different direc-
tions. For example, a bidirectional human-robot handover
system can be developed to consider the case where a human
hands an object over to a robot. In addition, the proposed
approach can be extended to distinguish between multiple
classes of force signatures simultaneously. Finally, while our
method requires physical interaction between the human and
the UAV to detect the interaction, the intention of the human
to interact prior to the contact could be added to the handover
scenario as was done in [41] and [42].

In addition, the dynamics-based learning transfer method
presented in this paper could be extended to new applica-
tions. While the method was demonstrated in this paper for a
human-UAV interaction task, its applications are much wider,
and we hope to expand this method into applications in UAV
interaction with the surrounding environment like interaction
with soil [43] and other similar mediums.
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