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ABSTRACT Compared with traditional knowledge distillation, which relies on a large amount of data,
few-shot knowledge distillation can distill student networks with good performance using only a small
number of samples. Some recent studies treat the network as a combination of a series of network blocks,
adopt a progressive graft strategy, and use the output of the teacher network to distill the student network.
However, this strategy ignores the importance of the local feature information generated by the teacher block,
which indicates what features should be learned by the corresponding student block. In this paper, we argue
that using the features output from the teacher block can guide the student block to further learn more
useful information from the teacher block. Therefore, we propose a joint learning framework for few-shot
knowledge distillation that exploits both the output of the teacher network and the local features generated
by the teacher block to optimize the student network. The local features will guide the student block to learn
the output of the teacher block, and the output of the teacher network will allow the student network to take
its learned local features to better contribute to the classification. In addition, further model compression was
carried out to design a series of student networks with fewer number of parameters by reducing the number
of network channels. Finally, extensive experiments using the model on CIFAR10 and CIFAR100 datasets
show that our method outperforms SOTA, and our method has considerable advantages even with a very
small number of parameters in further model compression experiments.

INDEX TERMS Knowledge distillation, few-shot learning, model compression, features embedding.

I. INTRODUCTION
DEEP neural networks are widely used in various computer
vision tasks [1], [2], [3], [4] and have achieved remarkable
results [5], [6]. However, the current state-of-the-art deep
models suffer from huge energy consumption, high operating
and storage costs, which greatly hinder their deployment
in resource-efficient situations [7], [8], [9]. To solve this
problem, a lot of works have been proposed to compress
neural networks for obtaining more lightweight neural net-
work models. These works are mainly divided into two tech-
nologies: network pruning [10], [11], [12] and knowledge
distillation [13], [14].
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Network pruning is usually performed on the trained net-
work to remove unimportant channels or weights, and then
the pruned network is retrained to restore the performance
of the original network [15], [16]. These pruning methods
usually require a large amount of labeled data, and the train-
ing process is very time-consuming [9], [17]. The knowledge
distillation method transfers knowledge from the pre-trained
teacher network to the student network, and trains the student
network by making students imitate the output of the teacher
network, so as to achieve the performance of the teacher
network [18], [19], [20]. However, since the student network
is usually set to be randomly initialized, it needs to rely on a
large amount of data for knowledge transfer to train a model
with good performance [9], [21]. Therefore, it is difficult for
the existing methods to recover the lost accuracy with few
training samples.
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In order to solve the above problems, several few-shot
knowledge distillation methods have been proposed to trans-
fer knowledge from teacher to student. To reduce data and
time costs, Li et al. [7] proposed a few-shot method to extract
knowledge from unlabeled minority samples, combining net-
work pruning and block distillation to compress the teacher
model. Bai et al. [8] designed the cross-distillation model
to reduce layer-wise accumulated errors in the setting of
few-shot and realize the student networkwith stronger robust-
ness and better performance. Zhou et al. [22] introduced a
progressive training strategy to achieve knowledge transfer
between student network and teacher network by matching
the feature distribution between them. Shen et al. [9] proposed
a progressive network grafting method, which trains the stu-
dent network through block grafting and network grafting,
reduces its parameter space, and enhances the robustness of
knowledge distillation. However, these methods rarely take
into account both the feature information of the teacher net-
work and the classification result information to optimize
the student network simultaneously. Since the structure of
the student network is different from that of the teacher
network, it is difficult for the student network to completely
imitate the teacher’s output when only the local features
information is considered. Meanwhile, due to the scarcity of
samples in the few-shot scenario, it is difficult to optimize the
student network only by using the output from the teacher
network. Naturally, the use of teacher feature information
and classification result information at the same time can
make up for their respective shortcomings and better optimize
the student network in few-shot scenarios. Therefore, this
paper proposes a progressive grafting network for the fusion
of local features and classification results from the teacher
network for few-shot knowledge distillation, so that the two
can enhance each other in a complementary way, so that
the teacher network can optimize the student network in
terms of local features and global classification information.
In addition, we make full use of local features information
from the teacher block and output from the teacher network to
optimize the knowledge transfer process of teacher network
and student network. Moreover, this paper designs a student
network with fewer parameters through a series of channel
reduction settings to explore the effectiveness of our method.

The main contributions of this paper are concentrated in
the following three parts.

(1) A progressive grafting network for the fusion of local
features and output from student network for few-shot knowl-
edge distillation is proposed. In the few-shot scenario, the
method makes full use of the local features information of the
teacher network and the classification result information from
teacher network to optimize and improve the performance
of the student network in a complementary manner. Among
them, The local features will guide the student block to
learn the useful local features of the teacher block, and the
output of the teacher network will allow the student network
to take its learned local features to better contribute to the
classification.

(2) We further design a relatively lightweight network
model to achieve model compression by reducing the num-
ber of student network channels. Thus, a series of student
networks with fewer parameters can be obtained to achieve
the few shot classification.

(3) Extensive experiments on CIFAR10 and CIFAR100
datasets show that our method outperforms SOTA. Notably,
the designed lightweight network model has considerable
advantages even with a very small number of parameters,
which can effectively validate the effectiveness of the pro-
posed method based on the learning strategy of knowledge
distillation and model compression.

The rest of this paper is constructed as follows: Section II
recalls some related knowledge of few-shot knowledge
distillation. In Section III, the loss function of local fea-
ture distribution and global classification results distillation
is developed. Then, a novel hybrid distillation method for
feature distribution and classification results is designed.
Section IV shows the experimental results. Finally, Section V
summarizes the study and discusses future work.

II. RELATED WORK
Most of the previous studies on knowledge distillation rely
on abundant labeled data to transfer the knowledge of teacher
network to Student network. However, in real world, there
may not be a large amount of data for model training,
so knowledge distillation and Few-Shot Learning can be
combined.

In order to make full use of existing training data, some
existing works apply knowledge distillation by layer-wisely
minimizing Euclidean distance [23], [24], [25], [26]. Layer-
by-layer training is generally efficient because each layer of
the student network is optimized separately, while requiring
fewer parameters to optimize compared to back-propagation
training for the entire student [14]. Aside from layer-wisely
distillation of the model, data from different but related
domains can assist pruning of the target domain [27]. In addi-
tion to labeled Few-Shot Learning, new methods to extract
knowledge from a small number of unlabeled samples have
also been investigated to improve data efficiency and train-
ing/processing efficiency [7]. Also based on the idea of
unlabeled data, the Self-supervised Knowledge Distillation
method for Few-shot Learning is proposed to learn the
real output classification manifold through self-supervised
learning. Once this structure is learned, the method trains
a student model that preserves the original output manifold
structure while collectively maximizing the discriminabil-
ity of the learned representations [28]. Some studies have
also improved layer-wisely distillation and proposed cross-
distillation, which can effectively reduce the estimation error
of layer-wisely distillation by cross-training the hidden layer
network of teachers and students [8]. Besides the cross-
distillation model, a principled dual-stage distillation scheme
based on small samples has also been proposed, in which
the student modules are grafted into the teacher network
for training, then the trained student modules are spliced
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FIGURE 1. The dual-stage knowledge distillation strategy in our work for few-shot knowledge distillation. Firstly, student network S is
decomposed into several blocks:

{
bl

}L
l=1, each of which is grafted onto teacher as Tl (x) and then optimized by LF l and LCl . Especially,

the LF l represents the feature distribution loss, while LCl represents the classification loss. Secondly, trained block b∗l in the first stage
are sequentially composed into the trained student network T ∗l (x) and optimized by LF∗l and LC∗l . Finally, the T ∗L (x) is the trained S
that we want.

together and grafted into the teacher network, and finally
the teacher network is replaced [9]. In some of the above
methods, some will add additional convolutional layers to
the compressed network during training, which increases the
complexity of the network structure. Therefore, a progressive
feature distribution distillation method without modifying the
network structure is proposed, which can effectively match
the feature distribution of the compressed network and the
original network [22].Existing methods generally only focus
on classification result alignment or feature distribution align-
ment to train student networks, and do not combine the two
parts.

III. THE PROPOSED METHOD
Our goal is to distill the teacher network through a series of
knowledge to obtain a compact student network with fewer
parameters. In this paper, teacher network is denoted by T ,
and teacher network can be regarded as T (x) = BL ◦ · · ·Bl ◦
· · ·B1(x). Bl represents the l-th teacher block. Denoting the
student network by S, the student network can be viewed as
S(x) = bL ◦ · · · bl ◦ · · · b1(x). bl denotes the l-th student
block. By simulating the feature distribution and classifica-
tion results of the teacher block, the students gradually learn
and master the knowledge in the teacher block.

In order to achieve the above goals, this paper proposes
a feature distribution and logits hybrid distillation strategy,
as shown in Figure 1. In the first stage, each student block is
grafted and the corresponding teacher block is replaced, and
the knowledge of the teacher block is learned by imitating the
feature distribution of the corresponding teacher block and

the classification result of the whole teacher network. In the
second stage, all the trained student blocks are grafted into
the teacher network, and the number of grafted student blocks
is gradually increased to learn the feature distribution of the
corresponding position of the teacher block sequence and the
classification output information of the teacher network, and
gradually replace the entire teacher network.

A. BLOCK GRAFTING AND NETWORK GRAFTING
Following the block grafting and network grafting strategies
in paper [9], we divided the student network into a series of
blocks with fewer parameters, and grafted each student block
separately into the teacher network to learn the knowledge
corresponding to the teacher block. The number of student
blocks should be equal to the number of teacher blocks. The
grafted teacher network can be expressed as:

Tl(x) = BL ◦ · · ·Bl+1 ◦ bl ◦ Bl−1 ◦ · · ·B1(x) (1)

Among them, the l-th student block bl replaces the teacher
blockBL . To train and graft teacher network T1, only optimize
the parameters of student block bl .

Since there is a difference in the number of channels
between the student block and the teacher block, an adap-
tive module is introduced in this paper to align the channel
size differences between the block and network grafting.
This module can be divided into two categories, namely, the
self-adaptive module from teacher block to student block
at→s
l−1 (x

l−1) and the self-adaptive module from student block
to teacher block as→t

l−1 (x
l). Given the adaptive module, the
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FIGURE 2. Comparison of effects before and after adding feature distribution loss. (a) Before adding the feature distribution loss LF (∗)
l ,

although we have the classification loss LC(∗)
l to help us learn the overall effect of the teacher network Tl (x)(∗), the distribution of the

student block b(∗)
l are still different from the teacher block Bl . (b) After adding the LF (∗)

l , each b(∗)
l is aligned with the Bl from the

feature level, which pushes the b(∗)
l to learn more details.

wrapped b∗l (x
l−1) can be expressed as:

b∗l
(
x l−1

)
= as→t

l ◦ bl ◦ at→s
l−1

(
x l−1

)
(2)

Combined with Eq1 and Eq2, the final grafted teacher
network can be expressed as:

Tl(x) = BL ◦ · · ·Bl+1 ◦ b∗l ◦ Bl−1 ◦ · · ·B1(x) (3)

Each student block is trained separately through the strat-
egy of block grafting. In order to realize the mutual coop-
eration of student blocks, the student blocks grafted into the
teacher network are gradually increased, and the dependence
on the original teacher is reduced. On the basis of T1(x) =
BL ◦ · · ·B2 ◦ b∗1(x), training blocks b∗2(x), b

∗

3(x), . . . ,b
∗
l (x)

is grafted to teacher network T in turn, as shown in Fig-
ure 1. The grafted teacher network in network grafting can
be expressed as:

T ∗l (x) = BL ◦ · · ·Bl+1 ◦ b∗l ◦ b
∗

l−1 ◦ · · · b
∗

1(x) (4)

In the process of network grafting, a series of models
are optimized:

{
T ∗l (x)

}L
l=1. Finally, all student blocks are

connected and the complete network T ∗L is formed. However,
T ∗L is still different from the original student networkS(x).S∗L
consists of a series of b∗l , and S(x) consists of bl . Compared
to bl , b∗l contains additional adaptive modules as→t

l or at→s
l−1

which means that T ∗L (x) has more parameters than S(x).
Since the adaptive module is linear, the module can be incor-
porated into the next convolution layer without adding any
parameters. For b∗l+1◦b

∗
l = as→t

l+1 ◦bl+1◦a
t→s
l ◦a

s→t
l ◦bl◦a

t→s
l−1 ,

(at→s
l ◦a

s→t
l ) can bemerged into bl+1.We express it as Eq.(5).

Then, T ∗L (x) can be converted to the following form:

b̂l+1 = bl+1 ◦ at→s
l ◦ as→t

l (5)

T ∗L (x) = b̂L ◦ · · · b̂l+1 ◦ b̂l ◦ b̂l−1 ◦ · · · b̂1(x) (6)

In other words, we realize knowledge transfer from teacher
network T to student network S.

B. LOGITS DISTILLATION
Logits from different network architectures may vary greatly,
which may lead to optimization difficulties. Therefore, in this
paper, the l2 loss function on the normalized logits of knowl-
edge transfer between teacher block Bl and student block bl
is proposed to let the student block simulate and recover the
output of the original teacher block. The calculation formula
is as follows:

LCl(x) =
1
N
||T̃l (x)− T̃ (x) ||22 (7)

where T̃l(x) and T̃ (x) both express the normalized value.
In block grafting optimization, only the encapsulated student
block is learnable, and the parameters of the migrated student
block are updated with a gradient. For network grafting,
a similar distillation method is adopted, and the specific
calculation formula is as follows.

LC∗l (x) =
1
N
||T̃ ∗l (x)− T̃ (x) ||22 (8)

The difference between network grafting and block graft-
ing is that network grafting needs to optimize a sequence of
wrapped student blocks rather than a single student block.

C. FEATURE DISTRIBUTION DISTILLATION
In this paper, we consider the feature distribution information
and believe that it is beneficial to direct the student network
to a configuration similar to the distribution of the teacher
network( [22]). To model these patterns among students,
we use the minimum squared error MSE loss as a measure
of knowledge distillation, referred to as characteristic distri-
bution distillation.

Assuming thatHl(x) denotes the feature distillation of the
l-th original teacher block, expressed by Eq.(7). hl(x) denotes
the feature distillation of the l-th student block after the l-th
student block is replaced to the teacher network, expressed
by Eq.(8).Then the feature distribution loss between student
block and teacher block is calculated as follows:

Hl (x) = Bl ◦ Bl−1 ◦ · · ·B1(x) (9)
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hl (x) = b∗l ◦ Bl−1 ◦ · · ·B1(x) (10)

LFl(x) =
1
N
||̃hl (x)− H̃l (x) ||22 (11)

where h̃l(x) and H̃l(x) both express the normalized value.
In network grafting, it is no longer the feature distribution

between the individual student block and teacher block, but
the gradually accumulated student block and teacher block
of the same length. The feature distribution loss of the two is
calculated as follows:

h∗l (x) = b∗l ◦ b
∗

l−1 ◦ · · · b
∗

1(x) (12)

LF∗l (x) = ||̃h
∗
l (x)− H̃l (x) ||22 (13)

where h̃∗l (x) represents the feature distillation of the sequence
of student blocks grafted to the teacher network.

Algorithm 1 Progressive Network With Fusion of Feature
and Logits for Few-Shot Knowledge Distillation
Input: Trained teacher model T ;Few unlabeled training data

D = {xi}N ·Ki=1
Output: The compact student model S
1: Stage1: train every student block
2: for l = 1→ L do
3: Pack bl in as→t

l and at→s
l−1 to get b∗l by Eq.2;

4: Graft b∗l to get Tl by Eq.3;
5: for training times do
6: Compute Ll(x) by Eq.14;
7: Update the parameters of b∗l ;
8: end for
9: end for
10: Stage2: train student network
11: Initialize T ∗1 = T1
12: for l = 2→ L do
13: Pack T ∗1−1 and b

∗
l to get T

∗

1 by Eq.4;
14: for training times do
15: Compute L∗l (x) by Eq.15;
16: Update the parameters of

{
b∗j
}l
j=1

;

17: end for
18: end for
19: Merge and get student network S

D. OPTIMIZATION
In this paper, we believe that there is a certain degree of
complementarity between the feature distribution and the
classification output. Aligning the feature distribution of the
student block and the teacher block is beneficial to reduce
the l2 loss value of logits, while optimizing the logits loss
can reduce the difference between the feature distribution
of the student block and the teacher block. Therefore, this
paper designs two loss functions in block grafting and net-
work grafting respectively, and uses parameters to connect
the feature distribution loss and logits loss. The formula for
calculating the loss function in block grafting is as follows.

Ll(x) = λLCl(x)+ LFl(x) (14)

Because of the large difference between logits loss and
feature distillation loss, the former is about 1000 times larger
than the latter. Therefore, in block grafting, λ is set to 10−6

to achieve knowledge transfer between teacher block and
student block by complementation of feature distribution and
classification output. The calculation formula of loss function
in network grafting is as follows.

L∗l (x) = LC∗l (x)+ βLF
∗
l (x) (15)

In the above formula, β is set to 10−3. In the network
grafting, the parameters of the student block sequence are
optimized by the above loss function, so that the teacher
network can realize the supervision of the student network
from the feature level and the classification result level. Our
proposed method can be summarized as Algorithm 1.

IV. EXPERIMENTS
A. EXPERIMENTAL SETTINGS
Datasets and models. In this paper, comparative experiments
were conducted on CIFAR10 and CIFAR100 datasets to
verify the effectiveness of the proposed hybrid distillation
method. Both CIFAR 10 and CIFAR 100 are Consists of
60,000 color images of 32×32 size. The specific information
of the datasets is shown in Table 1.

TABLE 1. Desciption of the datasets.

In few-shot setting, K samples are randomly selected from
each class of the CIFAR dataset as the training set, where the
value of K is taken as 1,5,10. The training set is enhanced by
random clipping and random horizontal flip, while the test set
remains unchanged. In reference to the setting of paper [9],
modified VGG16 Li et al. is adopted as the teacher model,
and VGG16-half is used as the student model.

Experimental Details. The method presented in this arti-
cle is implemented on a Nvidia TITANX Pascal 12GB
GPU using PyTorch. Adam algorithm is used for network
optimization in all experiments. When batch-size is 64, the
following learning rate is effective; when batch-size is other
values, the learning rate is scaled according to Batch-size/64
[9]. The learning rates of CIFAR10 dataset in block migration
and network migration are set to 2.5*10−4, 10−4, respec-
tively. The learning rates of CIFAR100 dataset are respec-
tively set as 2.5*10−4, 10−4. Following [29], the weight
decay is set to 0, the gradient and its square operating average
are set to 0.9 and 0.999, respectively, and Kaiming initializa-
tion is used [30].

B. EXPERIMENTAL RESULTS
Intuitively, knowledge between homogeneous network struc-
tures tends to have clearer correlations than knowledge
between heterogeneous networks, especially in the case of
piecewise distillation. Therefore, in this section, we study
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TABLE 2. The performance of few-shot distillation on CIFAR dataset.

knowledge extraction between homogeneous networks to
verify the effectiveness of the proposed method. Table 2 illus-
trates our experimental results, where we use vgg16-half to
reduce the channels of the vgg16 corresponding layer.
• FSKD [26] improves upon KD [13] and FitNet [14].
• Cross Distillation can effectively reduce the estimation

error of layer by layer distillation by cross training the hidden
layer networks of teachers and students, but the performance
of teacher networks may be reduced when students and teach-
ers abandon each other.
• Netgraft does not consider the characteristic distribution

information of teacher networks and student networks.
Therefore, as can be seen from the table, our proposed

method generally outperforms the current research methods.
And as we can seen, Netgraft is the best of the abovemethods.
At 10-shot, our method outperforms Netgraft 0.69%,1.06%
on the CIFAR10 and CIFAR100, At 5-shot, our method
outperforms Netgraft 0.04%,0.35% on the CIFAR10 and
CIFAR100, At 10-shot, our method outperforms Netgraft
0.16% on the CIFAR100.The above methods are all limited
to aligning local features distribution from the teacher block
or output from the teacher network, and do not consider
the complementarity of the two parts. Because the structure
of the student network is different from that of the teacher
network, it is difficult for the student network to completely
imitate the output of the teacher block when only local fea-
ture information is considered. At the same time, because
of the scarcity of samples in the scene with few-shot distil-
lation, it is difficult to optimize the student network using
only the output of the teacher network. The improvement
of our method is that it considers both the local features
information from the teacher network and the output from
the fully connected layer of the teacher network, which opti-
mize and improve the performance of the student network
in a complementary manner. In addition, this paper designs
a student network with fewer parameters through a series

FIGURE 3. Learning with different numbers of samples.

of channel reduction settings to explore the effectiveness of
our method.

1) LEARNING WITH DIFFERENT NUMBERS OF SAMPLES
To further investigate the effect of the number of training
samples on the model distillation effect, we conduct a series
of few-shot distillation experiments using our method and
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TABLE 3. Learning with different number of samples on CIFAR10 dataset.

TABLE 4. Learning with different number of samples on CIFAR100 dataset.

TABLE 5. The performance of various channels on CIFAR100 dataset.

TABLE 6. The performance of various channels on CIFAR10 dataset.

NetGraft in the 1-shot to 10-shot situations, all experiments
are implemented on the CIFAR10 and CIFAR100 datasets.
As shown in the Table 3 and Table 4, the experimental results
of our method are better than NetGraft in most cases. To bet-
ter see the effect of shot number variation on experimental
results, we plot the table as a graph. As shown in Figure 2,
as the number of shots increases, the experimental results of
our method and NetGraft also improve. At the same time,
in most cases, the results of our method are higher than
NetGraft, because we use the local feature information of
the teacher block which is not used in NetGraft, which can
greatly improve the experimental effect when the number
of samples is small. In addition, under the 1-shot of the
CIFAR10 dataset, our method is slightly worse thanNetGraft,
because in this case only 10 images can be used to train the
model and it is difficult for the student network to learn the
local features distribution from the teacher network, which
may lead to underfitting of the model, and then the experi-
mental results are lower thanNetGraft, But under other exper-
iments on the CIFAR10 dataset, our method outperforms
NetGraft.

2) LEARNING WITH DIFFERENT NUMBERS OF CHANNELS
For further model compression, we reduce the number of
channels in the vgg16-half network to obtain a student net-
work with fewer parameters. Specifically, by setting the
number of channels of vgg16-half to 128, 64, 32, 16, the
corresponding networks are named vgg16-128, vgg16-64,
vgg16-32, vgg16-16. Based on these four student networks,
we do 4 sets of experiments on NetGraft and our method
respectively, all experiments are implemented on CIFAR10
and CIFAR100 datasets. As shown in the Table 5 and Table 6,
our method outperforms NetGraft in most experiments in
most cases of various student networks with fewer param-
eters. Moreover, as shown in Figure 3, as the number of
channels decreases, both our method and NetGraft show a
drop in the experimental results, but our method is still better
than NetGraft. Especially in the 1-shot case, the results of
our method outperform NetGraft by a large margin, because
we make full use of the local feature information of the
teacher block, making the student network easier to optimize.
As the number of samples increases, our method is closer to
NetGraft, because after the number of samples increases, the
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FIGURE 4. Learning with different numbers of channels.

information contained in it only uses the output of the teacher
network, which is enough to optimize the student network.

3) ABLATION STUDY
In this section, we show an ablative analysis to study the
contribution of two main components of the learning frame-
work, local features (LF) and network output (NO) on the
dataset CIFAR10. The results are shown in Figure 6. From
the results, we can obtain that the classification performances
of local features are lower than that of the network output.
By revealing the close relationship between local features
and network output, the proposed method achieves the best
performance in all 3-shot, 4-shot and 5-shot situations.

4) ANALYSIS OF λ AND β

To balance the logits loss and feature distillation loss used in
two training stages of our method, we introduced two super-
parameters: λ and β. And to determine these parameters,
we performed a number of experiments in the 10-shot on the
CIFAR10 and CIFAR100 datasets and used the grid search
method to select the superparameters. In Figure 5, we can
see that the choice of superparameter has only a slight effect

FIGURE 5. Analysis of λ and β. All experiments are under the 10-shot
setting.

FIGURE 6. The ablative analysis of local features (LF), network output
(NO) and our method on the CIFAR10 dataset in 3-shot, 4-shot and 5-shot
situations.

on the experimental results in the 10-shot of CIFAR10 and
CIFAR100 datasets, in other words, the superparameters we
introduce are not sensitive to the performance of the experi-
mental results. Lastly, to better show the effectiveness of our
method, in all the other experiments in this paper, we only
selected superparameter values with moderate performance
in the grid search experiments: λ was set to 10−6 and β was
set to 10−3.
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V. CONCLUSION
We propose a progressive network grafting with local fea-
tures embedding for few-shot knowledge distillation, which
grafts student blocks one by one to the corresponding trained
teacher blocks for training. Using feature distillation can
align the feature distribution of student network and teacher
network, and using logits distillation can align the student
network with the final prediction result of teacher network.
The advantage of this method is that it not only considers the
influence of the feature distribution of middle-level network
on the output results, but also the influence of the output
results on the feature distribution. By combining the two
parts, the performance of student network can be improved.
Several experimental results show that the proposed method
achieves state-of-the-art performance.
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