
Received 5 September 2022, accepted 29 October 2022, date of publication 1 November 2022, date of current version 8 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3218774

DynNetSLAM: Dynamic Visual SLAM
Network Offloading
PETER SOSSALLA 1, JOHANNES HOFER 1, JUSTUS RISCHKE 1,2, CHRISTIAN VIELHAUS1,
GIANG T. NGUYEN 1,3, MARTIN REISSLEIN 4, (Fellow, IEEE),
AND FRANK H. P. FITZEK 1,3, (Senior Member, IEEE)
1Deutsche Telekom Chair, 5G Laboratory Germany, Technische Universität Dresden, 01062 Dresden, Germany
2Dr. Ing. h.c. F. Porsche AG, 70435 Stuttgart, Germany
3Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, 01062 Dresden, Germany
4School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA

Corresponding author: Martin Reisslein (reisslein@asu.edu)

This work was supported in part by the Audi AG, German Federal Ministry of Education and Research (BMBF), through the Project 5G
Insel under Grant 16KIS0956K; in part by the Software Campus R-SLAM under Grant 01IS17044; in part by the German Research
Foundation (DFG) through Germany’s Excellence Strategy EXC 2050/1 – Project ID390696704 – Cluster of Excellence Centre for
Tactile Internet with Human-in-the-Loop (CeTI) of Technical University of Dresden.

ABSTRACT Existing Visual Simultaneous Localization And Mapping (vSLAM) approaches that offload
the complex self-localization computations from mobile robots over a wireless network to edge computing
are limited to static offloading, i.e., the offloaded computation tasks are offloaded permanently. However,
wireless networks are inherently dynamic and may excessively delay the transmissions between a mobile
device and the edge during periods of poor wireless network quality, e.g., from fading or temporary
obstructions. We propose and evaluate Dynamic Visual SLAM Network Offloading (DynNetSLAM) to
dynamically adapt the vSLAM computation offloading according to the measured wireless network latency.
As groundwork towards developing DynNetSLAM, we first enhance the existing state-of-the-art vSLAM
approaches through judicious parameter settings and parallel map updates to enable the tracking of common
fast vSLAM data sets. We introduce an offloading latency threshold along with a safe zone and a hysteresis
around the threshold to control the dynamic offloading. Our extensive evaluations with public vSLAM data
sets indicate that DynNetSLAM with the hysteresis substantially reduces the probability of track loss events
compared to the state-of-the-art ORB-SLAM2 approach for processing statically on the mobile device and
the enhanced static Edge SLAM. Also, DynNetSLAM nearly attains the low absolute position error and only
slightly increases the CPU utilization compared to the enhanced static Edge SLAM.

INDEX TERMS Accuracy, edge computing, latency, offloading, reliability, visual simultaneous localization
and mapping (vSLAM), wireless network.

I. INTRODUCTION
Reliable and flexible localization is essential for autonomous
systems, such as robots and self-driving vehicles [2], [3],
[4], [5], [6]. An increasingly popular localization method is
Simultaneous Localization andMapping (SLAM) [7]. SLAM
extracts properties of the environment from different data
sources and compares with previous recordings to perform
localization. Visual Simultaneous Localization AndMapping

The associate editor coordinating the review of this manuscript and

approving it for publication was Christos Anagnostopoulos .

(vSLAM) [8], [9], [10], [11] uses images from an optical
camera. The visual image data can also be acquired together
with depth data, e.g., with RGB-D (red, green, and blue color
with depth sensing) cameras [12], [13].

The vSLAM computations are complex and the need for
real-time localization leads to high hardware requirements.
In self-driving vehicles, as well as in mobile robots, powerful
processors and graphics cards are used to provide the nec-
essary computing power. This extra hardware and the result-
ing added weight on the mobile device increase the energy
consumption. Since mobile systems are often powered by

116014 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0003-1605-7581
https://orcid.org/0000-0002-5573-9625
https://orcid.org/0000-0001-9247-8156
https://orcid.org/0000-0001-7008-1537
https://orcid.org/0000-0003-1606-233X
https://orcid.org/0000-0001-8469-9573
https://orcid.org/0000-0003-1517-6757


P. Sossalla et al.: DynNetSLAM: Dynamic Visual SLAM Network Offloading

batteries, higher energy consumption leads to a shorter
range.

A. MOTIVATION FOR SLAM NETWORK OFFLOADING
In recent years, the offloading of computationally intensive
processes from mobile devices to cloud systems has become
an important research topic [14], [15]. Particularly the trend
of edge cloud computing [16], [17], [18], [19], [20], [21] to
perform computation as close as possible to the end user,
i.e., at the edge of the network, has enabled the offloading
of latency-critical applications, such as SLAM. With the
upcoming usage of private 5G networks [22], virtualized
robot control [23] with edge computing has gained traction.
The study [24] demonstrated that the increased computing
power supplied by edge computing speeds up the SLAM
processing and reduces the computing load on the mobile end
device. Recent studies [25], [26], [27] have demonstrated that
components of the SLAMmethod can be reliably offloaded to
the network. However, little reference is made to a main char-
acteristic of wireless networks: a fluctuating quality of the
communication channel. This fluctuation affects the through-
put and latency of the network connection between themobile
device and the computing resource. Increasing latency has
an impact on the responsiveness of the system. A high net-
work latency can make offloading unreliable and even negate
the offloading benefits such that an offloading system with
high network latency performs worse than a system without
offloading.

B. CONTRIBUTIONS AND STRUCTURE
Since the conditions in wireless networks change over
time, it is reasonable to design the offloading dynamically.
Therefore, we introduce Dynamic Visual SLAM Network
Offloading (DynNetSLAM) to dynamically offload SLAM
components depending on the network latency. For this
purpose, the current wireless network latency is monitored
and according to the measured network latency, compute-
intensive SLAM processes are offloaded to the edge or exe-
cuted on the mobile device.

We first provide background on vSLAM for generalist
readers and review the existing static vSLAM edge offload-
ing approaches in Section II. In Section III, we model the
delays of the static Edge SLAM [25] offloading and define
the SLAM performance metrics. As groundwork towards the
development of DynNetSLAM, we then enhance the exist-
ing state-of-the-art static Edge SLAM system by judiciously
setting key parameters and by parallelizing the map update
processing in Section III-B. Also, we examine the impact
of the mobile device-edge Round Trip Time (RTT) latency
on the reliability of the enhanced static Edge SLAM in
Section III-C.
Based on this groundwork, we present in Section IV

the novel DynNetSLAM system that dynamically offloads
SLAM computations to the edge depending on the current
communication latency. The RTT latency of the connection
is measured in real time and used to decide whether the

computation should be performed on the mobile device or on
the edge. DynNetSLAMcan operate with different offloading
strategies. Specifically, we evaluate four different offloading
strategies that operate with or without a safe zone or hystere-
sis around an offloading latency threshold.

The evaluations in Section V employ two different
sequences of the publicly available data set [28], which is
commonly used for vSLAM benchmarking. We evaluated the
reliability of the localization, i.e., the probability of track loss
events that bring the localization to a halt, the localization
accuracy, as well as the CPU usage on the mobile device.
Results demonstrate that dynamic offloading can overcome
the reliability loss of Edge SLAM in the case of fluctuat-
ing wireless network latency. This allows DynNetSLAM to
provide higher reliability than running solely on the mobile
device or constantly offloading the compute-intensive func-
tions to edge computing. We then summarize the results and
outline future work directions in Section VI.

II. BACKGROUND & RELATED WORK
A. BACKGROUND ON SLAM
The goal of Simultaneous Localization and Mapping
(SLAM) [7], [29] is the autonomous localization of a mobile
robot in space. SLAM is especially interesting for indoor
environments [6], where satellite-based radio navigation,
such as Global Positioning System (GPS) [30], do not work
due to the blocked signals from the satellites. The robot
uses properties of the environment, i.e., corners or edges,
to orientate itself and to simultaneously create a map. This
allows the robot to estimate its position even without prior
information about its environment.

To capture the properties of the environment, called fea-
tures, various sensors can be used. Typical examples for
sensors are Light detection and ranging (Lidar), monocular
cameras, or RGB-D camera. Depending on the sensor type,
a distinction can be made between Laser SLAM [31] and
vSLAM [10]. While Laser SLAM is based on planar data
from a laser range finder, vSLAM uses data from optical
cameras. In vSLAM, these can also be refined with depth
images [32], which leads to highly accurate 3D maps. Due
to the higher number of sensor data types, more information
can inherently be captured by 3D visual cameras than by
2D laser scanners. In addition, 3D visual cameras, such as
Stereo and RGB-D cameras, have become more affordable
in recent years and are therefore increasingly used in mobile
robots [13]. The additional information and the increased
usage of 3D cameras motivates us to focus on vSLAM.

1) VISUAL SLAM (vSLAM)
When a color or depth image arrives at the vSLAM sys-
tem, features are searched for in the image. A frame, which
describes the detected features in the image, is shown at the
left in Figure 1a. The size and position of the features are com-
pared with previous frames. Based on the detected changes,
the SLAM system then attempts to estimate a change in
location and orientation referred to as a pose. The process

VOLUME 10, 2022 116015



P. Sossalla et al.: DynNetSLAM: Dynamic Visual SLAM Network Offloading

FIGURE 1. (a) Frame with feature matches and (b) created map of
sequence freiburg3_long_office_household_2 of dataset [28].

of detecting the pose from corresponding frames is referred
to as visual odometry [33]. The process of feature extraction
and matching as well as the visual odometry is referred to as
Tracking.

Using the estimated position change, the frame with fea-
tures is then used to insert new map points into the 3D map,
referred to as Mapping. The created map can be represented
in different variants [34]. A typical variant is the storage in
a graph [35], [36], where the pose is stored together with
the identified features. Figure 1b shows a map with all cre-
ated map points and frame poses. In addition, a covisibility
graph is created that contains information about which frames
observe similar map points. The map is then used in the
further process to estimate the position. Clearly, errors can
already occur with the estimation of the position change. Dur-
ing the subsequent SLAMprocessing, the error can propagate
and lead to a drift. One possibility to prevent this drift is the
so-called Loop Closing. Loop closing checks whether one
has already visited the respective place. If so, the map previ-
ously created as a graph is searched again and subsequently
improved.

Over the last few years, many systems have been proposed
for vSLAM [10]. The graph-based ORB-SLAM [37] and
RTAB-Map [38] vSLAM approaches are widely accepted.
We have adopted ORB-SLAM for this study, because it is
widely used and has high accuracy and stability [39].

2) ORB-SLAM
ORB-SLAM [37] can operate in real-time, in outdoor and
indoor environments and originally used monocular cameras
as image sources. ORB-SLAM2 [40] was introduced with
the support of stereo and RGB-D images. Our proposed sys-
tem for offloading SLAM is based on ORB-SLAM2. There-
fore, we briefly describe the relevant ORB-SLAM2modules:
Tracking, Local Mapping (LM), and Loop Closing (LC).

• Tracking: In the Tracking Module, features are
extracted and then matched to perform an initial pose
estimation [41]. For feature extraction, the eponymous
Oriented FAST and rotated BRIEF (ORB) [42] is
used, which is based on the keypoint detector Features

FIGURE 2. Average computing delay of the three ORB-SLAM 2 modules as
a function of the number of CPU cores. The total computing delay was
reduced by 48 % by increasing the number of cores from one to eight.

from Accelerated Segment Test (FAST) and the visual
descriptor Binary Robust Independent Elementary Fea-
tures (BRIEF). After the initial pose estimation, a deci-
sion is made whether to declare the current frame a
so-called keyframe. Deciding whether a keyframe con-
tains enough new information to be considered suit-
able for insertion into the map is based on several
criteria [40]. If a new keyframe is detected, it will be
forwarded to the local mapping module.

• LocalMapping (LM): In the LMmodule, the keyframe
and its corresponding estimated pose are saved in graph-
based structures. The found features within the keyframe
are inserted as map points with their corresponding
estimated coordinates. After additional optimization,
unnecessary keyframes and map points are detected and
deleted.

• Loop Closing (LC): In parallel to the LM, the LC
module is executed. Its function can be divided into two
parts: Loop Detection and Loop Correction. The loop
detection checks for each keyframe whether the mobile
device has already visited this location. Loop correction
includes the optimization of already existingmap points.

B. OFFLOADING SLAM COMPUTING
The processing of SLAM is computationally and memory
intensive [24], especially LM and LC. To further illustrate
the influence of the computing power on the SLAM pro-
cessing, we plot the average measured processing times of
the ORB-SLAM2 modules as a function of the number of
available CPU cores in a Virtual Machine (VM) in Figure 2.
We immediately observe that the total processing time for all
the modules together decreases substantially with an increas-
ing number of CPU cores. This can be attributed to the
implementation of themodules inmultiple threads, whereby a
parallel execution of some processes in several CPU cores can
be exploited effectively. Since the different modules partly
access shared data structures, they can block each other.
By reducing the execution times, the shared data structures
are blocked for a shorter period of time, further reducing the
execution time. Semenova et al. [43] present a quantitative

116016 VOLUME 10, 2022



P. Sossalla et al.: DynNetSLAM: Dynamic Visual SLAM Network Offloading

analysis of the system challenges of ORB-SLAM2. They
analysed the calculation times of the different ORB-SLAM2
modules on two computers with different processing powers.
Semenova et al. [44] motivate the modular implementation
of Edge SLAM. They demonstrated that a lower comput-
ing power leads to a lower keyframe creation rate. A low
keyframe rate has a negative impact on the reliability of
the vSLAM system, since, for example, not enough matches
can be established between the frames during rotational
movements.

This motivates us to offload the processing to a compu-
tationally more powerful instance. Additionally, we observe
from Figure 2 that the tracking module has the lowest com-
putation delay in comparison to the LM and LC modules.
Hence, we infer that offloading the LM and LC modules can
substantially reduce the computing times. Also, the transmis-
sion of raw camera data prior to the execution of the tracking
module would require a large bandwidth in the communica-
tion channel [45], while the transmission of detected ORB
features requires less bandwidth.

C. RELATED WORK ON CLOUD AND EDGE ROBOTICS
Moving tasks from mobile robots to cloud systems is a
widespread topic in research and industry [14], [15], [46],
[47], [48]. A disadvantage of the computation of conventional
cloud systems is the network latency between the cloud and
the robot. This latency encompasses the network interface
or switch processing, queuing, transmission, and propagation
latencies for the wireless connection as well as for the wired
connection to the cloud computing center. If centralized cloud
computing services are used, the latency depends on the
distance and forwarding in the public network. Therefore,
it would be desirable to at least reduce the latency between
the wireless network and the control system.

Edge Computing [20] is based on the concept of bringing
the resources as close as possible to the user, i.e., to the
edge of the network. This can reduce the latency caused by
passing through corporate or public networks. In addition,
fluctuations in latency outside the user’s own control can be
mitigated. This makes the use of edge computing interesting
for robotics or autonomous driving and thus attracts the inter-
est of academia [49], [50], [51].

Most studies on offloading tasks of mobile robots relate
to object recognition and navigation functions. For object
recognition, Fan et al. [52] exploit edge computing for the col-
laboration between a robot arm and a mobile robot, whereby
the calculation necessary for navigation is performed on the
edge. Fan et al. demonstrate that static offloading can reduce
the computation time for the object recognition. Dynamic
offloading for object tracking was studied in [53]. The
offloading decision depends on the current computing load
produced by the corresponding number of features that have
to be tracked. In [53], the tracking of objects was offloaded.
The computation is offloaded when the workload on the
device increases to a level in which the quality of the tracking
drops. Spatharakis et al. [54] present offloading strategies for

navigation functions of mobile robots that aim to maximize
the utilization of the computing resources in the edge.

Another advantage of using edge computing for mobile
robots is the use of a global map for multiple robots, which
improves navigation. This global map can be collaboratively
created and updated by multiple robots [55]. The global map
can then be shared and updated depending on the current
task and environment of the individual robots. Especially
for 3D maps, which are characterized by large memory
and computation requirements, a sophisticated management
of the maps is useful, as proposed in EdgeSharing [56]
by Liu et al.

The use of edge computing was also extended for
drones [57], [58], which can be considered as flying robots.
Since drones usually have very limited resources on the
device, due to strict constraints on weight and power supply,
they benefit greatly by offloading tasks. Hayat et al. [57]
demonstrate the advantages of offloading feature detection
and tracking for trajectory planning for drones. They com-
pare operation with full, partial, or no offloading. For their
setup, full offloading achieves the shortest processing times
under the assumption that the necessary network bandwidth
is available. Ahmad et al. [58] demonstrate a system to recon-
struct 3D models based on Lidar on the edge. The Lidar
data is first compressed and then uploaded for processing.
The study [58] highlights the potential of offloading com-
putationally intensive processes from computationally weak
devices to a more powerful edge cloud. The majority of the
study [58] is focused on tracking, i.e., feature detection and
extraction. The outsourcing of further SLAM elements has
been investigated in the studies reviewed in the following
subsection.

D. RELATED WORK ON OFFLOADING SLAM
We have illustrated in Figure 2 that increased computing
resources greatly accelerate the processing of the compu-
tationally intensive vSLAM tasks. This demonstrates the
potential benefits of outsourcing SLAM to an edge cloud.
Huang et al. [59], [60] introduce an algorithm to offload
2D Laser SLAM, whereby the GMapping 2D SLAM sys-
tem [61], [62] is utilized. They demonstrate that they can
speed up processing and create joint maps on the edge by
using the data of different robots. Kamburugamuve et al. [63]
also build on GMapping to speed up SLAM by parallelizing
the processing on multiple machines. Fukui et al. [64] offload
GMapping of multiple robots to a central cloud system.
Sarker et al. [65] present a layer-based architecture to offload
2D laser SLAM to a cloud or edge cloud. They demonstrate
a working prototype and compare the energy consumption
of two offload setups. Dey et al. [66] describe an offloading
framework to optimize the energy consumption and process-
ing time for feature matching for 2D Laser SLAM. Gouveia
et al. [67] introduce the idea to offload the SLAM computing
workload to multiple robots. Gouveia et al. show that sharing
the data with more robots or computing the data by multiple
robots in a more powerful central instance can reduce the

VOLUME 10, 2022 116017



P. Sossalla et al.: DynNetSLAM: Dynamic Visual SLAM Network Offloading

FIGURE 3. Simplified system structure of Edge SLAM with important modules, adapted from [25].

computing times. Algorithms have been proposed to manage
the different Quality of Service (QoS) requirements when
offloading 2D SLAM in a wireless network, see e.g. [68]
and [69]. Another interesting application is the offloading
approach for an acoustic SLAM with reflectors [70].

The C2TAM study [71] provides an experimental setup
to offload RGB-D SLAM based on the PTAM [72] map
management framework into the cloud, whereby the focus is
on consumed bandwidth and mapping frame rate. Benavidez
et al. [73] propose saving features used by vSLAM in a cloud
database. For this purpose, a cloud framework is presented
and the feasibility is demonstrated with a proof-of-concept.

Ben Ali et al. introduced Edge SLAM [25], wherein the
LM and LC modules from ORB-SLAM2 are offloaded to
the edge. They demonstrated that Edge SLAM can offload
vSLAM without loosing accuracy in comparison to the orig-
inal ORB-SLAM2 on a mobile device. In their work, they
also show the potential to reduce the memory and CPU con-
sumption on the mobile device. Wright et al. [27] present an
implementation of computing SLAM on the edge in an auto-
motive context. They offload the loop closure and leave the
tracking as well as the mapping on the device. Xu et al. [26]
introduce edgeSLAM in which the LM and LC modules are
offloaded, similar to [25]. The edgeSLAM study [26] focuses
on the detection of temporal objects, such as pedestrians,
in images. Here an offloading strategy is proposed, which
defines an upper and lower limit of frames fromwhen or until
when a keyframe should be selected. These limits are defined
by five different states. The states are selected based on the
network latency and the bandwidth. Specifically, the compu-
tationally intensive modules are not dynamically offloaded,
but the decision thresholds for the keyframes are dynamically
adjusted. Xu et al. [74] also present a framework for col-
laborative vSLAM, in order to reduce the resource overhead
and scheduling issues between multiple agents and the edge.
To synchronize the maps of the different entities, each mobile
device tracks system operations that modify, delete, or add
map data. These system operations are transmitted to the
edge, which applies all collected system operations to its own
global map and additionally compresses them.

Cui et al. [75] propose a system to create semantic maps
based on ORB-SLAM2. The system is based on edge com-

puting and YOLOv3 feature extraction [76]. Tang et al. [77]
introduce a coordinator to schedule the task offloading
between a vehicle and an edge cloud. They use their
proprietary SLAM system to offload the feature extrac-
tion and matching and speech recognition based on Deep
Learning (DL). The optimization goal is to minimize the
power consumption. For evaluation, the utilization on the
mobile device and the edge cloud for the tasks was mea-
sured. Spatharakis et. al [78] present offloading strategies
for localization and path planning of mobile robots. The
offloading decisions depend on the expected pose estimation
accuracy, path planning difficulty, and the available edge
resources.

A variety of approaches for offloading SLAM have been
proposed. Advantages in processing speed have been shown,
but little emphasis has been placed on comparing reliabil-
ity. Most of the existing SLAM offloading studies focus on
offloading 2D laser SLAM. Offloading studies on vSLAM
demonstrate the advantages of offloading to computation-
ally more powerful systems. We consider [25], [26] to be
the candidates with the greatest potential, since an offload-
ing without the mapping module [27] would leave a large
computing load on the mobile device. In [25] and [26], the
impact of latency on reliability was not examined. However,
results from [27] indicate a strong negative effect of high
networking latencies on the SLAM reliability and accuracy.
Solutions introduce systems to dynamically offload the com-
putation depending on available bandwidth [54], or avail-
able resources on the edge [78], or mobile devices [67].
An offloading depending on the network latency, a parameter
that directly influences the quality of the SLAM process, has
not yet been presented. Therefore, in this work we present
our system to dynamically offload depending on the network
latency.

III. ENHANCING STATIC EDGE SLAM
A. MODELLING STATIC EDGE SLAM
Before we introduce dynamic offloading depending on
latency, we model the static offloading of Edge SLAM, intro-
duce enhancements, and evaluate the network latency impact.
The main idea of Edge SLAM is to offload the computa-
tionally intensive tasks of SLAM to a resource which has

116018 VOLUME 10, 2022



P. Sossalla et al.: DynNetSLAM: Dynamic Visual SLAM Network Offloading

FIGURE 4. Workflow of Edge SLAM with corresponding delays.

higher computing power. These task are typically the LM and
LC modules since they require high computing and memory
resources. Figure 3 shows a schematic system overview of
Edge SLAM with the three modules (tracking, LM and LC)
and relevant processes running in these modules.

1) MODEL OF PROCESSING DELAYS
The tracking, LM, and LC modules use complex algorithms
that add a computing delay to the overall process. Figure 4
illustrates the interactions between the mobile device and
the edge. Delay TTotal denotes the time interval between the
capturing of a frame on the mobile device and the time when
the local map update is processed. The total delay

TTotal = TMobile + TEdge + TNW

is composed of computing on the edge TEdge and mobile
device TMobile as well as network delays TNW between the
two entities. Whereby TNW encompasses the delays incurred
for processing (in the network cards and switches), queuing,
transmission, and propagation, i.e., for the entire two-way
(round-trip) network transport.

The computing delay

TMobile = TTrack + TMU

consists of the tracking delay TTrack and the integration of
the local map update in the local map TMU. Upon captur-
ing a frame, the feature tracking module is called. TTrack
encompasses the time for detecting the features in the frame,
creating a first pose estimate, deciding if the frame has
enough information to be declared a keyframe, and if so,
serializing the data structures for further routing to the edge.
After processing in the edge, the mobile device receives back
a part of the global map, which is then integrated into its local
map to complete a so-called local map update. The delay TMU
is caused by the integration of the local map update.

Receiving the keyframe TRKF, the local mapping TLM and
the preparation of the local map update TPLMU add up to the

FIGURE 5. Illustration of local map gap.

edge processing delay

TEdge = TRKF + TLM + TPLMU.

When receiving a keyframe, first the data needs to be dese-
rialized. The extracted keyframe is evaluated according to
conditions outlined in [25] in order to determine whether the
keyframe gives enough new information and should therefore
be inserted into the global map. Furthermore, it is checked if
the LM module is currently busy and these steps take time
TRKF. Afterwards, the LM process starts, which requires time
TLM. TLM includes running Bundle Adjustment (BA) and
keyframe culling, which are described in detail in [37]. After
the LM process, the update is prepared for the mobile device,
which causes the delay TPLMU.

The exchange of data between the edge and the mobile
device adds the round-trip network delay TNW

TNW = TM→E + TE→M.

TM→E denotes the delay for sending the keyframes from the
mobile device to the edge. TE→M represents the delay for
the transmission of the local map update from the edge to
the mobile device. For a wired connection, the network delay
mainly depends on the propagation delay, which increases
with distance, and the delay added by the switches on the
transmission path. Queuing delay may also be incurred,
for example in case of congestion of a connection. How-
ever, queueing rarely occurs for over-provisioned bandwidth.
Inwireless networks, however, packet losses due to low signal
quality can trigger retransmissions which in turn can cause
increasing or fluctuating latency.

2) KEY PERFORMANCE METRICS
a: RELIABILITY
For mobile systems, a reliable localization is essential. In
SLAM systems, however, localization can be interrupted.
An interruption occurs if the mobile system can no longer
estimate its position. Especially with regard to autonomous
driving or in a factory environment with employees, an
interruption can have fatal consequences. Therefore, the
occurrence of the so-called track loss event [79] should be

VOLUME 10, 2022 116019



P. Sossalla et al.: DynNetSLAM: Dynamic Visual SLAM Network Offloading

FIGURE 6. Feature matches in a turn from 23 s to 25 s of sequence
office of dataset [28].

prevented. One reason for a track loss is the processing of
the frames with a low rate by the SLAM system. During
fast movements or in a curve, it is possible that not enough
common features are found in two successive keyframes to
estimate the position change. Particularly rotational move-
ments, as illustrated in Figure 6, can quickly lead to situations
where not enough feature matches are found. ORB-SLAM2
has a built-in relocalization function, which is based on the
assumption that, similar to loop closing, a location has been
visited before. Since in mapping usually the same locations
are not passed through more than once, no relocalization can
be performed in mapping scenarios [79]. Even if a previously
recorded area is visited again and a relocalization can be
performed, the map is not updated between the track loss
event and the relocalization.

Figure 5 illustrates a so-called Local Map Gap. Such a
Local Map Gap arises on the mobile device when accepting
a local map update. As described in Section III-A1, TTotal
describes the time between the last keyframe sent to the edge
and the acceptance of the corresponding local map update
on the mobile device, see Figure 4. The keyframes that are
used in the tracking module on the mobile device within
TTotal, are not taken into account for the new local map, since
receiving a local map update will delete the existing local map
of the mobile device. For this reason, after a local map update,
there can be a significant gap between the newest information
within the local map and the new incoming frames. This
can reduce the number of data points that are available for
tracking new frames. If too much relevant map information
is lost, track losses can occur. The low frame processing
rate due to low computational power on the mobile device
motivates the offloading to computationally powerful edge
systems. The negative impact of network latency, on the
other hand, motivates the dynamic offloading depending on
network latency.

We measure the occurrence of track losses empirically
by repeating sequence runs 100 times with the same initial
conditions. We present the occurrence of track losses in two
ways. The first way is to measure the cumulative number of
occurrences of track loss events over time. The second way
is the track loss ratio, which is the relative proportion of the
number of runs in which a track loss occurred to the total
number (100) of sequence runs.

b: ACCURACY
The main goal of the SLAM algorithm is to estimate the posi-
tion of amobile system in space. Accordingly, one of themost
important SLAM performance metrics is the accuracy of the

localization. To evaluate the SLAM accuracy, the estimated
position is compared with the real position, called ground
truth. The difference in space (x, y, and z coordinates) is spec-
ified with the Absolute Trajectory Error (ATE). We use the
Root Mean Square Error (RMSE) of the x, y, and z values of
the ATE for our measurements. For accuracy measurements,
we only evaluate successful runs of the test sequence in which
no track loss events occurred.

c: CPU AND MEMORY UTILIZATION
Mobile devices are often powered by batteries and thus
have a limited energy supply. Therefore, the goal is to keep
the energy consumption low. Since SLAM requires a high
computing power, one possibility would be to equip the
mobile devices with powerful hardware. This has several
disadvantages: (i) The resulting higher energy consumption
reduces the battery life. For a mobile robot, the higher energy
consumption shortens the range and operating time. (ii) The
extra weight also causes a shorter range, since more energy
is needed for acceleration. (iii) Higher required computing
power also increases costs to provide each mobile system
with additional hardware. Due to the limited capacity of the
mobile system, smaller computing systems are often used,
such as a Raspberry Pi. These systems are often based on
processors with limited single-core performance and limited
memory. Another factor is the main memory on mobile sys-
tems. This is in the single-digit gigabyte range for space
and cost reasons. As shown in [25], the memory required to
save the map grows continuously and may thereby exceed
available memory.

As illustrated in Figure 2, higher computational power
reduces the computational time of the individual modules.
Thus, with a higher computational power, the time between
the keyframes can be reduced and thus the reliability can be
increased.

3) EVALUATION SETUP
a: TESTBED
To investigate SLAM offloading, we use a testbed with
two different systems. A Raspberry Pi 4 with an eight-core
processor and 4GB RAM is chosen as a realistic mobile
device since these systems are often used in mobile robotics.
A Fujitsu K102-A100 with an Intel i7-6700T CPU and 16 GB
of RAM was selected as the edge device. Although the
Raspberry Pi 4 also has multiple cores, the Fujitsu PC that
acts as an edge has higher processing power. Both systems
are directly connected with each other via Ethernet in our
testbed. An average RTT of 0.25ms was measured with
ping. To emulate different latencies, we use the Linux NetEm
tool [80] to delay packets by a prescribed delay. Both systems
use the Ubuntu 18.04. LTS operating system.

b: DATA SETS
In order to ensure reproducability and comparability of
the SLAM system evaluations, we utilized the common

116020 VOLUME 10, 2022



P. Sossalla et al.: DynNetSLAM: Dynamic Visual SLAM Network Offloading

TUM RGB-D dataset [28]. We use the test sequences
freiburg3_long_office_household_2 (abbrevi-
ated as office) and freiburg_desk (abbreviated as
desk). The sequences office and desk have a duration of
87 s and 99 s, respectively. To ensure comparability, we trun-
cated the desk sequence at 87 s. The sequence frames are
played back using the Robot Operating System (ROS) [81].
ROS is a framework for robots that provides a variety of soft-
ware libraries for operating a wide range of robot types. For
the replaying of the benchmark datasets we use the so-called
rosbag module. The benchmarking datasets were truncated
from the original 30 Frames per Second (FPS) to 10 FPS.
This was necessary to make sure that the Raspberry Pi 4 can
replay the sequences in realtime via the ROS interface.

B. JUDICIOUS PARAMETER SETTINGS AND PARALLEL
LOCAL MAP UPDATE FOR STATIC EDGE SLAM
1) ENHANCEMENTS
During the test of the Edge SLAM system [25], we noticed
that it could not run sequences of the TUM RGB-D bench-
mark dataset [28] without track losses in the majority of the
runs. In conventional Edge SLAM [25], a self-recorded data
set was used, in which a robotmoves at a average translational
velocity of 0.085m/s. On the other hand, the commonly used
office sequence [28] has an average translational velocity
of 0.249m/s, i.e., almost three times faster than the data set
in [25].

In order to enable the use of the faster public datasets,
we first optimized Edge SLAM. We have identified two
parameters that strongly influence the performance of Edge
SLAM. One of them sets the maximum number of features
nORB that are extracted per frame. The other is the number
of keyframes nKF that are bundled and sent as a local map
update from the edge to the mobile device. The bundling
of keyframes was introduced to reduce the required network
bandwidth between the mobile device and the edge. Addi-
tionally, we found that the execution time of the local map
update procedure on the mobile device could be reduced with
parallelization. We reduced the number nKF of keyframes
used for local map updates from the conventional 6 to 1. In the
original Edge SLAM [25], the old map was serially deleted
with each update, a new map was created and filled with the
new data. This caused an unnecessary delay, which we have
eliminated with our process parallelization.

2) PERFORMANCE IMPLICATIONS
a: RELIABILITY & ACCURACY
Figure 7 shows the track loss ratio of ORB-SLAM2 with-
out offloading and enhanced Edge SLAM as a function of
the maximum number nORB of features per extracted frame.
In ORB-SLAM2, the main reason for track loss is frame
dropping due to a blocked tracking module. Because of the
high computational load of the mobile device, it can happen
that the processing of individual frames in the tracking mod-
ule takes longer, which means that new incoming frames are

FIGURE 7. Track loss ratio as a function of maximum number nORB of
extracted features per frame for conventional ORB-SLAM2 (without (WO)
Offloading) on the mobile device, and enhanced Edge SLAM (nKF = 1,
parallel local map update).

TABLE 1. Computing times [ms] of the different SLAM components, track
loss ratio, and accuracy as ATE RMSE for conventional Edge SLAM
(nKF = 6, nORB = 1000, serial local map update) and enhanced Edge
SLAM (nKF = 1, nORB = 750, parallel local map update).

not accepted. Figure 7 indicates that decreasing nORB does
decrease the ORB-SLAM2 track loss ratio, since a lower
nORB decreases the processing times.
In Edge SLAM, the processing time is already reduced by

offloading modules. However, local map gaps lead to track
losses. With increasing nORB, TTotal increases, which leads to
increased local map gaps and track losses. However, setting
nORB too low can mean that not enough features are taken
into account for matching. The default value in Edge SLAM
as well as ORB-SLAM2 is nORB = 1000. We can see in
Figure 7 that for nORB = 750, no track losses occur in Edge
SLAM. The adapted nORB = 750 and nKF = 1 as well as
the introduced parallelization lead to significant reliability
improvements, which are due to the reduction of TTotal.

Table 1 shows the average processing delays and corre-
sponding standard deviations of the individual TTotal com-
ponents for the conventional static Edge SLAM and the
enhanced static Edge SLAM. We can see that all delays,
except for tracking, are greatly reduced. The improvements
have the largest relative influence on TPLMU, i.e., the process-
ing time of the local map update preparation, with a reduction
of 77%. In total, we can reduce the average computation
delay TTotal by 52%. Table 1 also indicates that the ATE
RMSE accuracy (which was only considered from runs with-
out track loss, for a fair evaluation) is nearly unchanged by
enhanced static Edge SLAM. Therefore, we infer that with

VOLUME 10, 2022 116021



P. Sossalla et al.: DynNetSLAM: Dynamic Visual SLAM Network Offloading

FIGURE 8. Mobile device (Raspberry Pi 4) CPU utilization as a function of
time in sequence office [28] for conventional ORB-SLAM2 without
offloading and for static enhanced Edge SLAM; 0 ms RTT latency for
enhanced static Edge SLAM. The spike of the without offloading curve
around 80 s is from the ORB-SLAM2 loop closing module.

substantially fewer track losses (track loss ratio is reduced
from 78% to 0%) and nearly the same ATE RMSE, the
enhanced static Edge SLAM system is more stable.

b: CPU UTILIZATION
Figure 8 compares the mobile device (Raspberry Pi) CPU
utilization levels of conventional ORB-SLAM2 vs. enhanced
Edge SLAM. The average CPU utilization over a full run of
the office test-sequence when running all ORB-SLAM2
modules on the mobile device is 58.5%. If LM and LC are
offloaded to the edge, the average CPU utilization on the
mobile device drops to 30.6%.Mobile device CPU utilization
is relevant for two reasons. On the one hand, less mobile
device CPU load provides more resources for the calculation
of other important functions, such as route calculation or
security functions. On the other hand, a higher CPU load
leads generally to a higher power consumption [82], which
lowers the range of the mobile device.

C. INFLUENCE OF LATENCY
Aswe observed in Figure 2, more computing power can speed
up the SLAM processes. In the case of high network delays
TM→E and TE→M caused by increased network latencies,
we investigate the trade-off between an increased network
latency and the advantage of more computing power at the
edge. We assume symmetric links, i.e., we apply an egress
latency on the mobile and on the edge device. We always
specify the latency as the RTT, i.e., twice the respective
added (one-way) egress delay. We measure the reliability,
i.e., the occurrences of track loss events. Figure 9 shows the
cumulative distribution of the number of track loss events
over time from 100 runs. The track loss ratio of the SLAM
system depends on the sequence, the computing capacities,
and for Edge SLAM also on the network latency. We use this
type of plot of track losses over time, to better observe the
reasons of track loss. As described in Section III-A2.a, the

FIGURE 9. Cumulative number of track losses over 100 office sequence
runs as a function of time for conventional ORB-SLAM2 on mobile device
without (WO) offloading and for enhanced static Edge SLAM (Tracking on
mobile device; LM and LC on edge) for different round-trip RTT network
latencies (0 ms, 20 ms,. . ., 80 ms).

TABLE 2. Track loss ratio (cumulative number of track loss events at the
end of the sequence for 100 runs) as a function of the network RTT for
conventional and for enhanced static edge SLAM.

reasons can be movements in the sequence or a high TTotal
that result in local map gaps.

In Figure 9, we can see that the track loss occurrences
start to increase at about 22 seconds into the sequence in the
case of running ORB-SLAM2 on the mobile device. This
is due to an increased angular velocity at 22 s in the test
sequence, as described in Section III-A2.a. The computa-
tion power on the mobile device is too low for keeping the
processing rate high enough to establish sufficient matches
between the keyframes for the increased angular velocity. The
improved Edge SLAM without artificially added network
latency (0ms) can survive the increased angular velocity
without track losses due to higher processing rate, which is
due to higher computing power.

Table 2 shows the track loss ratio for the conventional
Edge SLAM and for the enhanced Edge SLAM for different
network RTT latencies. The enhancements help to gain more
resilience for an increasing network latency, but the advan-
tage of Edge SLAM still decreases for increasing network
RTT latencies due to increasing local map gaps. In particular,
we observe from Table 2 that the occurrence of track loss
events starts to increase substantially at 40ms, a typical RTT
latency in 4G networks [83].

This demonstrates that first we can achieve a higher relia-
bility by lowering the TTotal by offloading to a more powerful
edge system. Second, we can see that the reliability gains
diminish with rising network latency. Therefore, we propose
to dynamically offload the SLAM computations depending
on the current latency in the network. In the following sec-
tions, the enhanced version of Edge SLAM is referred to as
Static Edge SLAM.

116022 VOLUME 10, 2022



P. Sossalla et al.: DynNetSLAM: Dynamic Visual SLAM Network Offloading

IV. PROPOSED DynNetSLAM APPROACH
As demonstrated in the preceding section, the offloading of
SLAM processing has benefits in terms of reliability, accu-
racy, memory and energy consumption. However, we also
discovered the negative influence of latency on the reliability
and accuracy. This can be an issue, if the latency is high
and fluctuates. In reality, the latency can rise and fluctuate
depending on the channel conditions. Typical reasons can
be interference, fading, and absorption. As a result, packet
losses occur and retransmissions become necessary, which
add delays to the network transmission. To cope with these
dynamics, we propose an adaptive system that dynamically
offloads the corresponding SLAM processes depending on
the current network condition.

A. DynNetSLAM OVERVIEW
The underlying idea of Dynamic Visual SLAM Network
Offloading (DynNetSLAM) is to monitor the current network
state and adjust the offloading decision accordingly. We dis-
covered two issues in Section III:

• Increased processing power can reduce the process-
ing delay and thus increase reliability. Therefore,
moving the computationally-intensive processes to the
better-equipped edge is beneficial. The modules identi-
fied as most computationally intensive are LM and LC.

• A higher delay in the connection leads to a pronounced
decrease in reliability. Hence, offloading is not benefi-
cial if the transmission to the edge increases the delay
substantially.

This leads to a classic trade-off scenario. Since we may
experience increased latency in a wireless transmission,
adding dynamic adaptation to the decision process is prefer-
able. Therefore, we introduce DynNetSLAM, the dynamic
offloading of the LM and LC modules depending on the
network latency. Figure 10 shows the DynNetSLAM concept.
Depending on the RTT, DynNetSLAM decides whether the
LM and LCmodules are executed in the edge or on themobile
device.

B. DESIGN GOALS & CONSIDERATIONS
A goal is to reduce the computing load on the mobile devices.
Our main objective is to increase the SLAM reliability and
accuracy by exploiting more powerful computing in the edge.
We want to detect and recognize autonomously when the LM
and LC modules should be offloaded to the edge. We aim to
prevent that the advantage of the high computing power at the
edge gets lost due to the influence of the RTT latency of the
network.

To deal with these trade-offs, we design the DynNetSLAM
system according to the following principles:

1) The network latencies TM→E and TE→M negatively
affect the reliability of static Edge SLAM. Therefore,
the latency should be constantly monitored.

2) A reasonable latency decision threshold should be
determined: For latency values below the latency

threshold, the offloading of the LM and LC modules to
the edge leads to a higher reliability. Therefore, we take
the latency as the criterion for the offloading decision.

3) The transition between the two system states, namely
computing the modules on the edge or on the mobile
device, should run smoothly so that there are no pro-
cessing downtimes.

C. DynNetSLAM DESIGN
To meet the defined goals, we design a system that enables
dynamic offloading of the LM and LC modules depending
on the network latencies between the edge and mobile device
TE→M and vice versa TM→E.

1) DECISION THRESHOLD & STATES
As shown in Figure 9, an increasing latency degrades the
Edge SLAM performance by increasing the track loss ratio.
To perform dynamic offloading reliably, we set the decision
threshold depending on the latency. We define a static deci-
sion threshold LOL as Offloading Latency Threshold.
Initially, we define two states that are illustrated in

Figure 10a: In the Mobile Execution State (MES), all SLAM
modules are computed on the mobile device. In the Offload-
ing State (OS), the LM and LC modules are offloaded to
the edge. The system switches between the states depending
on LOL. If the measured latency, i.e., RTT, is higher than
LOL, then DynNetSLAM switches the state to mobile exe-
cution (MES). If the measured RTT is lower than LOL, then
DynNetSLAM switches to offloading (OS).

2) SAFE ZONE STATE
The synchronization of the mobile device’s map and the edge
occurs at a fixed periodicity, e.g., every 5 seconds. Due to
fast mobile device movements, which can be detected by
observing the keyframe creation rate, the mobile device can
decline local map updates in order to prevent track losses
caused by large local map gaps. However, the map on the
mobile device becomes less accurate as time passes without
local map updates. If LOL is exceeded during a phase of fast
mobile device movement, the inaccurate local map on the
mobile devicemust be used as the basis in the followingMES.
This can result in inaccurate pose estimations. To prevent the
inaccurate calculation based on an outdated map, we intro-
duce a so-called Safe Zone (SZ).
The idea behind the SZ is that when the latency is close

to the decision threshold, then the mobile device should
start to optimize its own map in order to minimize inaccu-
racies that can arise from local map update rejections due
to fast movements. Therefore, we introduce a third state,
namely the SZ state, and a corresponding latency threshold
LSZ, with LSZ < LOL, as illustrated in Figure 10b. If the
measured latency had previously been low enough that the
edge was used to calculate the LM and LC modules, but
there is now an increase in latency, then the SZ is entered
at LSZ. In the SZ, the LM and LC modules are started on
the mobile device, to proactively prepare for the case that

VOLUME 10, 2022 116023



P. Sossalla et al.: DynNetSLAM: Dynamic Visual SLAM Network Offloading

FIGURE 10. Illustration of DynNetSLAM without and with Safe Zone (SZ): Depending on the measured RTT network latency, the state changes between
Offloading State (OS), Mobile Execution State (MES), and SZ. Depending on the current state, the Tracking (Tr), LM, and LC modules are executed on the
mobile device or the edge. In the SZ, the local map update from the edge is still accepted on the mobile device.

no local map updates are accepted due to fast movements
and thus no edge-supported map optimization can take place.
If no fast movements occur, then the local map updates are
accepted normally as in the OS, discarding the mobile device
optimizations. The SZ has the advantage that a more accurate
map is available on the mobile device in the case of fast
movements due to the earlier start of the mobile device map
optimizations.

3) HYSTERESIS CONTROL
A fixed state transition decision threshold, however, can
be problematic if the measured latency fluctuates around
the decision threshold. These fluctuations can lead to many
state transitions despite only small changes of the measured
variable. A typical example is a heating system, where the fur-
nace starts up at a prescribed temperature decision threshold.
Each furnace start-up leads to increased fuel consumption as
well as wear-and-tear. If the temperature fluctuates around the
threshold, it would lead to a excessively frequent switching on
and off of the furnace.

A common solution is to use a hysteresis as a control func-
tion. The hysteresis introduces an offset in both directions
of the temperature decision threshold to prevent excessively
frequent state transitions. We intend to prevent unnecessary

state transitions in our dynamic offloading of SLAMmodules
as well. Despite the previously introduced SZ, the excessively
frequent transitions would likely increase the track loss ratio.
Therefore, we introduce a hysteresis control with width B,
as illustrated in Figure 11c.

As described in Section IV-C, the SZ is intended to provide
a smooth transition between the computation of the LM and
LC modules on the mobile device and on the edge.

The hysteresis strategy prevents unnecessary state transi-
tions during fluctuating latencies. Nevertheless, as described
in Section IV-C2, situations can occur in which an outdated
map is used on the mobile device. Therefore, we also intro-
duce the strategy of a hysteresis with a SZ, as detailed in
Algorithm 1. This leads to four different strategies as a func-
tion of the RTT, see Figure 11:

1) Without hysteresis and without Safe Zone
(WO-H/WO-SZ)

2) Without hysteresis and with Safe Zone (WO-H/W-SZ)
3) With hysteresis and without Safe Zone (W-H/WO-SZ)
4) With hysteresis and with Safe Zone (W-H/W-SZ)

D. LATENCY MONITORING
Latency measurements can be performed in an active or
passive manner. An active latency measurement, e.g., with
ping, would mean that the edge sends packets to which the

116024 VOLUME 10, 2022



P. Sossalla et al.: DynNetSLAM: Dynamic Visual SLAM Network Offloading

FIGURE 11. Illustration of the state dependency on the measured RTT for the four different strategies of DynNetSLAM.

Algorithm 1Hysteresis Offloading DecisionWith Safe Zone
(W-H/W-SZ)
1: procedure OffloadingDecision (prevState, LOL, LSZ, B)
2: while NewKeyFramesReceived do
3: RTT = receiveRTTFromSocket()
4: if prevState == SZ then
5: if RTT < LSZ − B/2 then
6: MoveToEdge()
7: prevState = OS
8: end if
9: if RTT > LOL then
10: MoveToMobile()
11: prevState = MES
12: end if
13: end if
14: if prevState == MES then
15: if RTT < LSZ then
16: MoveToSafeZone()
17: prevState = SZ
18: end if
19: end if
20: if prevState == OS then
21: if RTT > LSZ then
22: MoveToSafeZone()
23: prevState = SZ
24: end if
25: end if
26: end while
27: end procedure

mobile device then responds to. The latency, specifically, the
RTT, can then be determined from the difference between
sending a packet and receiving the response. An active latency
measurement method would create overhead in the imple-
mentation of the SLAM system. This could lead to unwanted
delays in processing. The active method would also generate
additional network traffic.

Since we work with TCP sockets in our implemen-
tation for the local map updates, we decided to use a
passive monitoring approach. We consider the response
time of the TCP acknowledgments for the latency mea-
surement. We get this information from the sockets used
for communication between the edge and mobile device.

In particular, the RTT estimation tcpi_rtt [84] value is
retrieved from the socket. The RTT estimation of TCP is
updated continuously and hence delivers a timely estimation
of the connection latency.

V. DynNetSLAM: PERFORMANCE EVALUATION
We now evaluate the novel DynNetSLAM approach of
dynamically offloading the computationally intensive SLAM
modules. First, we describe the used testbed and latency pro-
files. We then evaluate the influences of the dynamic offload-
ing and the introduced SZ by comparing DynNetSLAM with
static Edge SLAM.

A. TESTBED & BENCHMARK SEQUENCES
We use the data sets and sequences that are described in
Section III-A3.a. To test the four strategies, introduced in
Section IV-C3, we emulate two latency profiles. In the first
latency profile, the artificially added latency increases lin-
early to 85ms and decreases after 43 s again to 0ms added
latency. As already described in Section IV-C, we expect
a lower reliability if strong latency fluctuations cause fre-
quent state changes. To investigate these frequent transitions,
we superimpose a fluctuating latency curve on a sine wave in
the second latency profile. The base sine wave has a period
of 43 s and oscillates between 10ms and 70ms. The super-
imposed wave has a period of 4 s and an amplitude of 20ms.
The artificial latencies are created by NetEm [80] to emulate
the delays added by the wireless connection. For each test
run, the sequence is played 100 times with the corresponding
latency profiles.

B. DYNAMIC OFFLOADING & SAFE ZONE
We begin by investigating the dynamic offloading described
in Section V-A for the linear latency curve. The decision
threshold LOL for the offloading is set to 40ms. We choose
this threshold because, as shown in Figure 9, the track loss
ratio increases sharply thereafter. In practice, this means that
when the decision threshold LOL is exceeded, we switch
to MES, i.e., all SLAM computations are again performed
on the mobile device. If the latency drops below the LOL
threshold, then the LM and LC computations are moved back
to the edge. We compare dynamic offloading with (WO-
H/W-SZ) and without safe zone (WO-H/WO-SZ) compared
to static Edge SLAM and to running ORB-SLAM2 on the

VOLUME 10, 2022 116025



P. Sossalla et al.: DynNetSLAM: Dynamic Visual SLAM Network Offloading

FIGURE 12. Cumulative number of track losses of 100 sequence runs over
time of DynNetSLAM without (WO-H/WO-SZ) and with safe zone
(WO-H/W-SZ) in comparison with static Edge SLAM and running
ORB-SLAM2 on the mobile device (WO Offloading).

mobile device. Figure 12 shows the track loss events over
time running the sequence office together with the RTT =
TNW = TE→M + TM→E latency profile, whereby LOL =
40ms is marked in the latency profile (dashed) as well as
the threshold for the safe zone LSZ = LOL − B/2 = 35ms
(dotted).

We observe from Figure 12 that the cumulative number
of track loss occurrences of the static offloading with Edge
SLAM increases strongly after 22 s runtime. Similarly, with
ORB-SLAM2 on the mobile device, the track loss occur-
rences increase at 22 s runtime. The rotational movement
described in Section III-A2.a and shown in Figure 6 leads to
a strong increase of track loss occurrences for running ORB-
SLAM2 on the mobile device (WO Offoading) and static
Edge SLAM. A stronger increase can be observed with static
Edge SLAM, with a track loss ratio of 75%. This is due to the
combination of high network latency and fast mobile device
movement, resulting in large local map gaps. DynNetSLAM
substantially reduces the occurrence of track losses. Strategy
WO-H/WO-SZ results in three track losses for 100 sequence
runs. We can see that the three WO-H/WO-SZ track losses
occur at 22 s, which is the moment of rotational movement
as well of switching the computation to the mobile device.
With strategy WO-H/W-SZ, the computing starts earlier on
the mobile device due to the safe zone. We can recognize that
in the moment of the rotational movement, no track losses
occur. The higher reliability of WO-H/W-SZ motivates us to
use the SZ for the DynNetSLAM.

C. HYSTERESIS CONTROL
As explained in Section IV-C, latency fluctuations can lead
to unnecessary switching between the states. To prevent this,
we introduced hysteresis as a control function. To evaluate
the performance of all strategies, we evaluate them with the
superimposed sine wave, described in Section V-A, as the
latency profile. The four variants described in Section IV-C

TABLE 3. Number of track losses for 100 replications of sequences
office and desk for three different decision thresholds LOL with
sinusoidal latency profile.

are evaluated in comparison with the static Edge SLAM and
ORB-SLAM2 performed on the mobile device. The decision
threshold was again set to LOL = 40ms. For the width of
the hysteresis B = 10ms was chosen. Figure 13 shows the
occurrence of track loss events.

All four dynamic offloading variants achieve a lower track
loss ratio compared to static Edge SLAM and ORB-SLAM2
on the mobile device for both tested sequences. For the office
sequence in Figure 13a, we observe that static Edge SLAM
has a track loss ratio of 36 %, considerably higher than
the dynamic variants with 9% for WO-H/WO-SF, 20% for
WO-H/W-SZ, 3% forW-H/WO-SZ and 11% forW-H/W-SZ.
This indicates that the hysteresis control can cope with the
dynamic latencies in the network by lowering the track loss
ratio from 36% to 3%. For the desk sequence in Figure 13b,
similar robust results are achieved by introducing DynNet-
SLAM with hysteresis control (W-H/WO-SZ) with 4% track
loss ratio in comparison to static Edge SLAM with 27%.
Surprisingly, the SZ has a detrimental effect and increases
the track loss ratio for the latency profile of the superim-
posed sine wave. The track loss ratio increases from 3%
(W-H/WO-SZ) to 11% (W-H/W-SZ) for the office
sequence. We furthermore observe a pronounced detrimental
effect of the safe zone for the desk sequence, where the
track loss ratio increases from 4% (W-H/WO-SZ) to 40%
(W-H/W-SZ). We expect that this detrimental effect of the
SZ is due to the additional computational load of running the
LM and LC module on the mobile device. Therefore, TMobile
is increased and as a result the occurrence of track losses due
to local map gaps.

In order to investigate the influence of the LOL threshold,
we conducted evaluations for LOL = 30, 40, and 50 ms.
Table 3 compares the track loss ratio for all tested decision
thresholds LOL and sequences in comparison with static Edge
SLAM and ORB-SLAM on the mobile device. We can see
that the higher decision threshold leads to an increase of track
loss occurrences caused by increased local map gaps in the
offloading state. The lower decision threshold does not lead
to consistently decreasing track losses as one could assume.
This is due to the lower reliability of the computation on the
weaker mobile device. From these results we can see that we
are in a trade-off scenario between the reliability gain from

116026 VOLUME 10, 2022



P. Sossalla et al.: DynNetSLAM: Dynamic Visual SLAM Network Offloading

FIGURE 13. Cumulative number of track losses of 100 sequence runs over time within the two test sequences at sinusoidal superposition changing
network latency. As decision threshold, LOL = 40 ms was selected.

TABLE 4. ATE RMSE mean [cm] of successful sequence runs without track
loss.

higher computing power and an increased track loss ratio due
to increased network latency.

Table 4 lists the accuracy as RMSE of the ATE for the
successful runs, i.e., the runs without a track loss event.
This means that only values are considered if the complete
sequence run could be completed without track loss. We can
see that for Edge SLAM, dynamic as well as static, the
accuracy is higher than when running ORB-SLAM2 on the
mobile device. The dynamic and static Edge SLAM variants
have similar accuracy. This indicates that besides the higher
reliability with less track loss events due to the dynamic
offloading, the accuracy remains similar when dynamically
offloading SLAM computational modules.

D. CPU UTILIZATION
As we bring computing back to the mobile device with
our dynamic offloading, we naturally expect an increase in
CPU utilization on the mobile device, which can increase
the energy consumption [82]. We compare the average CPU
utilization for the sine wave latency profile. Table 5 shows
the average CPU utilization on the mobile device for the
two different sequences. Our DynNetSLAM strategies are
compared with running ORB-SLAM2 on the mobile device
as well as with static Edge SLAM.We observe that the overall
CPU utilization drops from 48.6 % to 34.3 % for static Edge

TABLE 5. CPU utilization of different offloading strategies on the mobile
device.

SLAM offloading for the office sequence. The dynamic
offloading leads to a relatively small CPU utilization increase.
The strategy W-H/WO-SZ with LOL = 40ms exhibited the
lowest track loss ratio and incurs a CPU utilization increase to
37.1% for sequence office and 38.6% for desk. In gen-
eral, we can observe that a higher threshold LOL leads to a
lower CPU utilization for all strategies. This is due to the fact
that the computation on the mobile device is started earlier
with a lower LOL.

VI. CONCLUSION AND FUTURE WORK
We designed, implemented, and evaluated DynNetSLAM,
a system to offload vSLAM processing that adapts dynam-
ically to changing network conditions in terms of latency.
DynNetSLAM shifts compute-intensive functions from the
mobile device to the edge or vice versa, depending on the
latency measured in the network. We have proposed various
dynamic offloading strategies, such as a hysteresis-based
control system. We evaluated these strategies with publicly
available sequences for SLAM performance benchmarking
and applied two different latency profiles.

We found that higher computational power leads to higher
reliability of SLAM, which motivates the offloading of
processing to the edge for computationally weak and
power-constrained devices. After the implementation of the

VOLUME 10, 2022 116027



P. Sossalla et al.: DynNetSLAM: Dynamic Visual SLAM Network Offloading

state-of-the-art approach, we first noticed that it could be
further optimized to ensure higher reliability. We also found
that Edge SLAM provides higher reliability than the use of
native SLAM (ORB-SLAM2) on a typical mobile computing
device. After that, the negative impact of latency on perfor-
mance was evaluated. Even at a network latency of 40ms,
a typical latency for 4G networks [83], the track loss ratio
increases to 10%. At a latency of 60ms, the track loss ratio
is already 48% and at 80ms it increases to 73%.

Therefore, offloading depending on the latency becomes
imperative. To reliably detect high network latency, a mon-
itoring function was implemented based on RTT estimation
of TCP sockets. In Section IV, we presented DynNetSLAM
with its four different strategies for dynamic offloading.
We demonstrated that DynNetSLAM reduces the negative
influence of network latency on Edge SLAM. DynNetSLAM
allows to reduce the track loss ratio down to 3% in compar-
ison to 36% without offloading while maintaining accuracy
for a fluctuating latency profile. The hysteresis-based strategy
(W-H/WO-SZ) reduces the influence of latency fluctuations
and provides the lowest track loss ratio. Despite the dynamic
relocation of the LM and LC modules back to the mobile
device, a significantly lower CPU utilization on the mobile
device could still be achieved compared to running the com-
plete SLAM system on the mobile device.

DynNetSLAMcan provide the basis formore sophisticated
offloading strategies to be developed in future research. These
can be integrated into more complex scenarios. One possi-
bility is to scale up by using multiple robots in conjunction
with multiple edge computing instances, as proposed in edge
cloud computing. In particular, it will be interesting to inte-
grate the dynamic offloading into collaborative multi-robot
environments [85], [86], [87], [88] in future research.

ACKNOWLEDGMENT
A preliminary version of the enhancements of static edge
SLAM in Sections III-B and III-C of this article appears
in [1].

REFERENCES
[1] P. Sossalla, J. Hofer, J. Rischke, J. Busch, G. T. Nguyen, M. Reisslein, and

H. P. F. Fitzek, ‘‘Optimizing Edge SLAM: Judicious parameter settings
and parallelized map updates,’’ in Proc. IEEE Globecom, Dec. 2022,
pp. 1–6.

[2] D. Esparza andG. Flores, ‘‘The STDyn-SLAM:A stereo vision and seman-
tic segmentation approach forVSLAM in dynamic outdoor environments,’’
IEEE Access, vol. 10, pp. 18201–18209, 2022.

[3] K. Lv, Y. Zhang, Y. Yu, Z. Wang, and J. Min, ‘‘SIIS-SLAM: A vision
SLAM based on sequential image instance segmentation,’’ IEEE Access,
early access, Jun. 30, 2022, doi: 10.1109/ACCESS.2022.3187541.

[4] J. Pak, J. Kim, Y. Park, and H. I. Son, ‘‘Field evaluation of path-planning
algorithms for autonomous mobile robot in smart farms,’’ IEEE Access,
vol. 10, pp. 60253–60266, 2022.

[5] T. G. R. Reid, S. E. Houts, R. Cammarata, G. Mills, S. Agarwal, A. Vora,
andG. Pandey, ‘‘Localization requirements for autonomous vehicles,’’ SAE
Int. J. Connected Automated Vehicles, vol. 2, no. 3, pp. 173–190, Sep. 2019.

[6] S. Yang, C. Zhao, Z. Wu, Y. Wang, G. Wang, and D. Li, ‘‘Visual SLAM
based on semantic segmentation and geometric constraints for dynamic
indoor environments,’’ IEEE Access, vol. 10, pp. 69636–69649, 2022.

[7] H. Durrant-Whyte and T. Bailey, ‘‘Simultaneous localization andmapping:
Part I,’’ IEEE Robot. Autom. Mag., vol. 13, no. 2, pp. 99–110, Jun. 2006.

[8] M. R. Gkeka, A. Patras, N. Tavoularis, S. Piperakis, E. Hourdakis,
P. Trahanias, C. D. Antonopoulos, S. Lalis, and N. Bellas, ‘‘FPGA acceler-
ators for robust visual SLAM on humanoid robots,’’ in Proc. ACM/SIGDA
Int. Symp. Field-Program. Gate Arrays, Feb. 2022, p. 51.

[9] A. M. Barros, M. Michel, Y. Moline, G. Corre, and F. Carrel, ‘‘A compre-
hensive survey of visual SLAM algorithms,’’ Robotics, vol. 11, no. 1, p. 24,
Feb. 2022.

[10] T. Taketomi, H. Uchiyama, and S. Ikeda, ‘‘Visual SLAM algorithms:
A survey from 2010 to 2016,’’ IPSJ Trans. Comput. Vis. Appl., vol. 9, no. 1,
pp. 1–11, Dec. 2017.

[11] M. Wasala, H. Szolc, and T. Kryjak, ‘‘An efficient real-time FPGA-based
ORB feature extraction for an UHD video stream for embedded visual
SLAM,’’ Electronics, vol. 11, no. 14, Jul. 2022, Art. no. 2259.

[12] S. Song, H. Lim, S. Jung, and H. Myung, ‘‘G2P-SLAM: Generalized
RGB-D SLAM framework for mobile robots in low-dynamic environ-
ments,’’ IEEE Access, vol. 10, pp. 21370–21383, 2022.

[13] S. Zhang, L. Zheng, and W. Tao, ‘‘Survey and evaluation of RGB-D
SLAM,’’ IEEE Access, vol. 9, pp. 21367–21387, 2021.

[14] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, ‘‘A survey of research on
cloud robotics and automation,’’ IEEE Trans. Autom. Sci. Eng., vol. 12,
no. 2, pp. 398–409, Apr. 2015.

[15] H. Zhang and L. Zhang, ‘‘Cloud robotics architecture: Trends and chal-
lenges,’’ in Proc. IEEE Int. Conf. Service-Oriented Syst. Eng. (SOSE),
Apr. 2019, pp. 1–6.

[16] T. V. Doan, G. T. Nguyen, M. Reisslein, and F. H. P. Fitzek, ‘‘FAST:
Flexible and low-latency state transfer in mobile edge computing,’’ IEEE
Access, vol. 9, pp. 115315–115334, 2021.

[17] T. V. Doan, G. T. Nguyen, M. Reisslein, and F. H. P. Fitzek, ‘‘SAP:
Subchain-aware NFV service placement in mobile edge cloud,’’ IEEE
Trans. Netw. Service Manage., early access, Aug. 24, 2022, doi:
10.1109/TNSM.2022.3201388.

[18] F. H. Fitzek, S.-C. Li, S. Speidel, T. Strufe, M. Simsek, and M. Reisslein,
Tactile Internet: With Human-in-the-Loop. London, U.K.: Academic,
2021.

[19] H. Jin, M. A. Gregory, and S. Li, ‘‘A review of intelligent computa-
tion offloading in multiaccess edge computing,’’ IEEE Access, vol. 10,
pp. 71481–71495, 2022.

[20] W. Shi and S. Dustdar, ‘‘The promise of edge computing,’’ Computer,
vol. 49, no. 5, pp. 78–81, 2016.

[21] R. F. Vieira, D. D. S. Souza,M. S. D. Silva, and D. L. Cardoso, ‘‘A heuristic
for load distribution on data center hierarchy: A MEC approach,’’ IEEE
Access, vol. 10, pp. 69462–69471, 2022.

[22] J. Rischke, P. Sossalla, S. Itting, F. H. P. Fitzek, and M. Reisslein, ‘‘5G
campus networks: A first measurement study,’’ IEEE Access, vol. 9,
pp. 121786–121803, 2021.

[23] P. Sossalla, J. Rischke, G. T. Nguyen, and F. H. P. Fitzek, ‘‘Offloading robot
control with 5G,’’ inProc. IEEE 19th Annu. Consum. Commun. Netw. Conf.
(CCNC), Jan. 2022, pp. 461–464.

[24] P. Sossalla, J. Rischke, J. Hofer, and F. H. P. Fitzek, ‘‘Evaluating the
advantages of remote SLAM on an edge cloud,’’ in Proc. 26th IEEE Int.
Conf. Emerg. Technol. Factory Autom. (ETFA), Sep. 2021, pp. 1–4.

[25] A. J. Ben Ali, Z. S. Hashemifar, and K. Dantu, ‘‘Edge-SLAM: Edge-
assisted visual simultaneous localization and mapping,’’ in Proc. 18th Int.
Conf. Mobile Syst., Appl., Services, Jun. 2020, pp. 325–337.

[26] J. Xu, H. Cao, D. Li, K. Huang, C. Qian, L. Shangguan, and Z. Yang, ‘‘Edge
assisted mobile semantic visual SLAM,’’ in Proc. IEEE Conf. Comput.
Commun., Jul. 2020, pp. 1828–1837.

[27] K.-L. Wright, A. Sivakumar, P. Steenkiste, B. Yu, and F. Bai, ‘‘Cloud-
SLAM: Edge offloading of stateful vehicular applications,’’ in Proc.
IEEE/ACM Symp. Edge Comput. (SEC), Nov. 2020, pp. 139–151.

[28] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, ‘‘A bench-
mark for the evaluation of RGB-D SLAM systems,’’ inProc. IEEE/RSJ Int.
Conf. Intell. Robots Syst., Oct. 2012, pp. 573–580.

[29] T. Bailey and H. Durrant-Whyte, ‘‘Simultaneous localization and mapping
(SLAM): Part II,’’ IEEE Robot. Autom. Mag., vol. 13, no. 3, pp. 108–117,
Sep. 2006.

[30] R. Bajaj, S. L. Ranaweera, and D. P. Agrawal, ‘‘GPS: Location-tracking
technology,’’ Computer, vol. 35, no. 4, pp. 92–94, Apr. 2002.

[31] D. M. Cole and P. M. Newman, ‘‘Using laser range data for 3D SLAM in
outdoor environments,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
May 2006, pp. 1556–1563.

[32] C. Kerl, J. Sturm, and D. Cremers, ‘‘Dense visual SLAM for RGB-D
cameras,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Nov. 2013,
pp. 2100–2106.

116028 VOLUME 10, 2022

http://dx.doi.org/10.1109/ACCESS.2022.3187541
http://dx.doi.org/10.1109/TNSM.2022.3201388


P. Sossalla et al.: DynNetSLAM: Dynamic Visual SLAM Network Offloading

[33] D. Nistér, O. Naroditsky, and J. Bergen, ‘‘Visual odometry,’’ in Proc.
IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 1,
Jun./Jul. 2004, pp. 1–8.

[34] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard, ‘‘Past, present, and future of simultaneous
localization andmapping: Toward the robust-perception age,’’ IEEE Trans.
Robot., vol. 32, no. 6, pp. 1309–1332, Dec. 2016.

[35] F. Lu and E. Milios, ‘‘Globally consistent range scan alignment for envi-
ronment mapping,’’ Auto. Robots, vol. 4, no. 4, pp. 333–349, Dec. 1997.

[36] G. Grisetti, R. Kummerle, C. Stachniss, and W. Burgard, ‘‘A tutorial
on graph-based SLAM,’’ IEEE Intell. Transp. Syst. Mag., vol. 2, no. 4,
pp. 31–43, Nov. 2010.

[37] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós, ‘‘ORB-SLAM:
A versatile and accurate monocular SLAM system,’’ IEEE Trans. Robot.,
vol. 31, no. 5, pp. 1147–1163, Oct. 2015.

[38] M. Labbé and F. Michaud, ‘‘RTAB-Map as an open-source LiDAR and
visual simultaneous localization and mapping library for large-scale and
long-term online operation,’’ J. Field Robot., vol. 36, no. 2, pp. 416–446,
2019.

[39] N. Ragot, R. Khemmar, A. Pokala, R. Rossi, and J.-Y. Ertaud, ‘‘Benchmark
of visual SLAM algorithms: ORB-SLAM2 vs RTAB-Map,’’ in Proc. 8th
Int. Conf. Emerg. Secur. Technol. (EST), Jul. 2019, pp. 1–6.

[40] R. Mur-Artal and J. D. Tardós, ‘‘ORB-SLAM2: An open-source SLAM
system for monocular, stereo, and RGB-D cameras,’’ IEEE Trans. Robot.,
vol. 33, no. 5, pp. 1255–1262, Oct. 2017.

[41] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, ‘‘Bundle
adjustment—Amodern synthesis,’’ in Proc. Int. Workshop Vis. Algorithms,
1999, pp. 298–372.

[42] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, ‘‘ORB: An efficient
alternative to SIFT or SURF,’’ in Proc. Int. Conf. Comput. Vis., Nov. 2011,
pp. 2564–2571.

[43] S. Semenova, S. Y. Ko, Y. D. Liu, L. Ziarek, and K. Dantu, ‘‘A quantitative
analysis of system bottlenecks in visual SLAM,’’ in Proc. 23rd Annu. Int.
Workshop Mobile Comput. Syst. Appl., Mar. 2022, pp. 74–80.

[44] S. Semenova, P. Meshram, T. Chase, S. Y. Ko, Y. D. Liu, L. Ziarek, and
K. Dantu, ‘‘A modular, extensible framework for modern visual SLAM
systems,’’ in Proc. 20th Annu. Int. Conf. Mobile Syst., Appl. Services,
Jun. 2022, pp. 579–580.

[45] A. Grunnet-Jepsen, P. Winer, A. Takagi, J. Sweetser, K. Zhao, T. Khuong,
D. Nie, and J. Woodfill. (2018). Using the Intelr RealSenseTM Depth
Cameras D4xx in Multi-Camera Configurations. Accessed: Sep. 2, 2022.
[Online]. Available: https://www.dev.intelrealsense.com/docs/multiple-
depth-cameras-configuration

[46] C. Asavasirikulkij, C. Mathong, T. Sinthumongkolchai, R. Chancharoen,
and W. Asdomwised, ‘‘Low latency peer to peer robot wireless commu-
nication with edge computing,’’ in Proc. IEEE 11th Int. Conf. Syst. Eng.
Technol. (ICSET), Nov. 2021, pp. 100–105.

[47] A. W. Malik, A. U. Rahman, M. Ali, and M. M. Santos, ‘‘Symbiotic
robotics network for efficient task offloading in smart industry,’’ IEEE
Trans. Ind. Informat., vol. 17, no. 7, pp. 4594–4601, Jul. 2021.

[48] S. Chinchali, A. Sharma, J. Harrison, A. Elhafsi, D. Kang, E. Pergament,
E. Cidon, S. Katti, and M. Pavone, ‘‘Network offloading policies for
cloud robotics: A learning-based approach,’’ Auto. Robots, vol. 45, no. 7,
pp. 997–1012, Oct. 2021.

[49] M. Groshev, G. Baldoni, L. Cominardi, A. D. L. Oliva, and R. Gazda,
‘‘Edge robotics: Are we ready? An experimental evaluation of current
vision and future directions,’’ Digit. Commun. Netw., vol. 2022, pp. 1–14,
May 2022.

[50] S. Liu, L. Liu, J. Tang, B. Yu, and W. Shi, ‘‘Edge computing for
autonomous driving: Opportunities and challenges,’’ Proc. IEEE, vol. 107,
no. 8, pp. 1697–1716, Jun. 2019.

[51] Y. Wang, W. Wang, D. Liu, X. Jin, J. Jiang, and K. Chen, ‘‘Enabling
edge-cloud video analytics for robotics applications,’’ in Proc. IEEE Conf.
Comput. Commun., May 2021, pp. 1–10.

[52] Z. Fan, W. Chen, G. Zhu, Y. You, F. Deng, Y. Hou, W. Liang, R. Fu, J. Xin,
J. Chen, andH.Wang, ‘‘Collaborative robot transport system based on edge
computing,’’ in Proc. IEEE 9th Annu. Int. Conf. CYBER Technol. Autom.,
Control, Intell. Syst. (CYBER), Jul. 2019, pp. 1320–1326.

[53] C.-H. Lu and K.-T. Lai, ‘‘Dynamic offloading on a hybrid edge–cloud
architecture for multiobject tracking,’’ IEEE Syst. J., early access,
Apr. 27, 2022, doi: 10.1109/JSYST.2022.3165571.

[54] D. Spatharakis, M. Avgeris, N. Athanasopoulos, D. Dechouniotis, and
S. Papavassiliou, ‘‘Resource-aware estimation and control for edge
robotics: A set-based approach,’’ IEEE Internet Things J., early access,
Jan. 7, 2022, doi: 10.1109/JIOT.2022.3141266.

[55] Q. Liu, Y. Zhang, and H. Wang, ‘‘EdgeMap: CrowdSourcing high defini-
tion map in automotive edge computing,’’ 2022, arXiv:2201.07973.

[56] L. Liu and M. Gruteser, ‘‘EdgeSharing: Edge assisted real-time localiza-
tion and object sharing in urban streets,’’ in Proc. IEEE Conf. Comput.
Commun., May 2021, pp. 1–10.

[57] S. Hayat, R. Jung, H. Hellwagner, C. Bettstetter, D. Emini, and
D. Schnieders, ‘‘Edge computing in 5G for drone navigation: What
to offload?’’ IEEE Robot. Autom. Lett., vol. 6, no. 2, pp. 2571–2578,
Apr. 2021.

[58] F. Ahmad, C. Shin, E. Chai, K. Sundaresan, and R. Govindan, ‘‘ARES:
Accurate, autonomous, near real-time 3D reconstruction using drones,’’
2021, arXiv:2104.08634.

[59] P. Huang, L. Zeng, K. Luo, J. Guo, Z. Zhou, and X. Chen, ‘‘ColaSLAM:
Real-time multi-robot collaborative laser SLAM via edge computing,’’
in Proc. IEEE/CIC Int. Conf. Commun. China (ICCC), Jul. 2021,
pp. 242–247.

[60] P. Huang, L. Zeng, X. Chen, L. Huang, Z. Zhou, and S. Yu, ‘‘Edge robotics:
Edge-computing-accelerated multirobot simultaneous localization and
mapping,’’ IEEE Internet Things J., vol. 9, no. 15, pp. 14087–14102,
Aug. 2022.

[61] G. Grisetti, C. Stachniss, and W. Burgard, ‘‘Improved techniques for grid
mapping with Rao-Blackwellized particle filters,’’ IEEE Trans. Robot.,
vol. 23, no. 1, pp. 34–46, Feb. 2007.

[62] B. L. E. A. Balasuriya, B. A. H. Chathuranga, B. H. M. D. Jayasundara,
N. R. A. C. Napagoda, S. P. Kumarawadu, D. P. Chandima, and
A. G. B. P. Jayasekara, ‘‘Outdoor robot navigation using GMapping
based SLAM algorithm,’’ in Proc. Moratuwa Eng. Res. Conf. (MERCon),
Apr. 2016, pp. 403–408.

[63] S. Kamburugamuve, H. He, G. Fox, and D. Crandall, ‘‘Cloud-based par-
allel implementation of SLAM for mobile robots,’’ in Proc. Int. Conf.
Internet Things Cloud Comput., Mar. 2016, pp. 1–7.

[64] M. Fukui, Y. Ishiwata, T. Ohkawa, and M. Sugaya, ‘‘IoT edge server ROS
node allocationmethod formulti-SLAMonmany-core,’’ inProc. IEEE Int.
Conf. Pervasive Comput. Commun. Workshops Affiliated Events (PerCom
Workshops), Mar. 2022, pp. 421–426.

[65] V. K. Sarker, J. P. Queralta, T. N. Gia, H. Tenhunen, and T. Westerlund,
‘‘Offloading SLAM for indoor mobile robots with edge-fog-cloud com-
puting,’’ in Proc. 1st Int. Conf. Adv. Sci., Eng. Robot. Technol. (ICASERT),
May 2019, pp. 1–6.

[66] S. Dey and A. Mukherjee, ‘‘Robotic SLAM: A review from fog computing
and mobile edge computing perspective,’’ in Proc. 13th Int. Conf. Mobile
Ubiquitous Syst., Comput. Netw. Services, Nov. 2016, pp. 153–158.

[67] B. D. Gouveia, D. Portugal, D. C. Silva, and L. Marques, ‘‘Computation
sharing in distributed robotic systems: A case study on SLAM,’’ IEEE
Trans. Autom. Sci. Eng., vol. 12, no. 2, pp. 410–422, Apr. 2015.

[68] W. Chen, Y. Yaguchi, K. Naruse, Y. Watanobe, and K. Nakamura, ‘‘QoS-
aware robotic streaming workflow allocation in cloud robotics systems,’’
IEEE Trans. Services Comput., vol. 14, no. 2, pp. 544–558, Mar. 2021.

[69] Z. Hong, H. Huang, S. Guo, W. Chen, and Z. Zheng, ‘‘QoS-aware coop-
erative computation offloading for robot swarms in cloud robotics,’’ IEEE
Trans. Veh. Technol., vol. 68, no. 4, pp. 4027–4041, Apr. 2019.

[70] Z. Zhou, G. Zhang, F. Zheng, T. Wang, L. Chen, and N. Duan,
‘‘A graph optimization-based acoustic SLAM edge computing system
offering centimeter-level mapping services with reflector recognition capa-
bility,’’ Secur. Commun. Netw., vol. 2021, pp. 1–17, Dec. 2021.

[71] L. Riazuelo, J. Civera, and J. M. Montiel, ‘‘C2TAM: A cloud framework
for cooperative tracking and mapping,’’ Robot. Auto. Syst., vol. 62, no. 4,
pp. 401–413, 2014.

[72] G. Klein and D. Murray, ‘‘Parallel tracking and mapping for small AR
workspaces,’’ inProc. 6th IEEEACM Int. Symp.Mixed Augmented Reality,
Nov. 2007, pp. 225–234.

[73] P. Benavidez,M.Muppidi, P. Rad, J. J. Prevost,M. Jamshidi, and L. Brown,
‘‘Cloud-based realtime robotic visual SLAM,’’ in Proc. Annu. IEEE Syst.
Conf. (SysCon), Apr. 2015, pp. 773–777.

[74] J. Xu, H. Cao, Z. Yang, L. Shangguan, J. Zhang, X. He, and Y. Liu, ‘‘Swar-
mMap: Scaling up real-time collaborative visual SLAM at the edge,’’ in
Proc. USENIX Symp. Netw. Syst. Design Impl. (NSDI), 2022, pp. 977–993.

[75] X. Cui, C. Lu, and J. Wang, ‘‘3D semantic map construction using
improved ORB-SLAM2 for mobile robot in edge computing environ-
ment,’’ IEEE Access, vol. 8, pp. 67179–67191, 2020.

[76] J. Redmon and A. Farhadi, ‘‘YOLOv3: An incremental improvement,’’
2018, arXiv:1804.02767.

[77] J. Tang, S. Liu, L. Liu, B. Yu, and W. Shi, ‘‘LoPECS: A low-power
edge computing system for real-time autonomous driving services,’’ IEEE
Access, vol. 8, pp. 30467–30479, 2020.

VOLUME 10, 2022 116029

http://dx.doi.org/10.1109/JSYST.2022.3165571
http://dx.doi.org/10.1109/JIOT.2022.3141266


P. Sossalla et al.: DynNetSLAM: Dynamic Visual SLAM Network Offloading

[78] D. Spatharakis, M. Avgeris, N. Athanasopoulos, D. Dechouniotis, and
S. Papavassiliou, ‘‘A switching offloading mechanism for path planning
and localization in robotic applications,’’ inProc. Int. Conf. Internet Things
(iThings) IEEE Green Comput. Commun. (GreenCom) IEEE Cyber, Phys.
Social Comput. (CPSCom) IEEE Smart Data (SmartData) IEEE Congr.
Cybermatics (Cybermatics), Nov. 2020, pp. 77–84.

[79] S. Schubert, S. Lange, P. Neubert, and P. Protzel, ‘‘Map enhancement with
track-loss data in visual SLAM,’’ in Proc. Int. Conf. Intell. Robots Syst.
(IROS), Daejeon, South Korea, 2016, pp. 9–14.

[80] S. Hemminger, ‘‘Network emulation with NetEm,’’ in Proc. Aust.’s Nat.
Linux Conf., vol. 5, 2005, p. 2005.

[81] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
and A. Y. Ng, ‘‘ROS: An open-source robot operating system,’’ in Proc.
ICRA Workshop Open Source Softw., vol. 3, 2009, p. 5.

[82] X. Fan, W.-D. Weber, and L. A. Barroso, ‘‘Power provisioning for
a warehouse-sized computer,’’ ACM SIGARCH Comput. Archit. News,
vol. 35, no. 2, pp. 13–23, 2007.

[83] E. Lyczkowski, H. A. Munz, W. Kiess, and P. Joshi, ‘‘Performance of
private LTE on the factory floor,’’ in Proc. IEEE Int. Conf. Commun.
Workshops (ICC Workshops), Jun. 2020, pp. 1–6.

[84] M. Sargent, J. Chu, D. V. Paxson, and M. Allman, Computing TCP’s
Retransmission Timer, document RFC 6298, Jun. 2011, pp. 1–11. [Online].
Available: https://www.rfc-editor.org/info/rfc6298

[85] H. Lee and S. Lee, ‘‘Extended spectra-based grid map merging with
unilateral observations for multi-robot SLAM,’’ IEEE Access, vol. 9,
pp. 79651–79662, 2021.

[86] E. A. A. Memon, S. R. U. N. Jafri, and S. M. U. Ali, ‘‘A rover team based
3D map building using low cost 2D laser scanners,’’ IEEE Access, vol. 10,
pp. 1790–1801, 2022.

[87] M. Ouyang, X. Shi, Y. Wang, Y. Tian, Y. Shen, D. Wang, P. Wang, and
Z. Cao, ‘‘A collaborative visual SLAM framework for service robots,’’
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Sep. 2021,
pp. 8679–8685.

[88] Z. Zhu, W. Jiang, L. Yang, and Z. Luo, ‘‘Indoor multi-robot coop-
erative mapping based on geometric features,’’ IEEE Access, vol. 9,
pp. 74574–74588, 2021.

PETER SOSSALLA received the Diploma
(Dipl.-Ing.) degree in electrical engineering,
in 2019. He continued at the Deutsche Telekom
Chair of Communication to pursue the Ph.D.
degree. His current research interests include
robotics, software-defined networking (SDN),
time-sensitive networking (TSN), and edge
computing.

JOHANNES HOFER received the Diploma
(Dipl.-Ing.) degree in electrical engineering from
Technical University Dresden, Germany, in 2022.
His current research interests include the field of
cloud robotics and in particular the offloading of
computation in SLAM systems.

JUSTUS RISCHKE received the Diploma
(Dipl.-Ing.) degree in electrical engineering from
Technical University Dresden (TU Dresden),
Dresden, Germany, in 2017. He is currently
pursuing the Ph.D. degree with the Deutsche
Telekom Chair of Communication Networks. His
research interests include network coding and rein-
forcement learning in software-defined networks
(SDN) for low latency communication.

CHRISTIAN VIELHAUS received the Diploma
(Dipl.-Ing.) degree in electrical engineering from
Technical University Dresden (TU Dresden),
Germany, in 2019, where he is currently pur-
suing the Ph.D. degree in electrical engineering
with the Deutsche Telecom Chair of Communi-
cation Networks. His research interests include
machine learning, network simulation, and con-
gestion control.

GIANG T. NGUYEN received the Ph.D. degree
in computer science from TU Dresden, Germany,
in 2016. He is currently an Assistant Profes-
sor, heading the Haptic Communication Systems
Research Group, Faculty of Electrical and Com-
puter Engineering, TU Dresden. His research
interests include network softwarization and
distributed systems.

MARTIN REISSLEIN (Fellow, IEEE) received
the Ph.D. degree in systems engineering from
the University of Pennsylvania, Philadelphia, PA,
USA, in 1998. He is currently a Professor with
the School of Electrical, Computer, and Energy
Engineering, Arizona State University (ASU),
Tempe, AZ, USA. He is currently an Asso-
ciate Editor of IEEE ACCESS, IEEE TRANSACTIONS

ON EDUCATION, IEEE TRANSACTIONS ON MOBILE

COMPUTING, and IEEE TRANSACTIONS ON NETWORK

AND SERVICE MANAGEMENT. He currently serves as an Area Editor of
Optical Communications for the IEEE COMMUNICATIONS SURVEYS AND

TUTORIALS and as a Co-Editor-in-Chief of Optical Switching and Network-
ing. He served as an Associate Editor of the IEEE/ACM TRANSACTION

ON NETWORKING (2009–2013), served as an Associate Editor-in-Chief
of the IEEE COMMUNICATIONS SURVEYS AND TUTORIALS (2007–2020), and
chaired the Steering Committee of the IEEE TRANSACTIONS ON MULTIMEDIA,
from 2017 to 2019. He received the IEEE Communications Society Best
Tutorial Paper Award, in 2008, and a Friedrich Wilhelm Bessel Research
Award from the Alexander von Humboldt Foundation, in 2015.

FRANK H. P. FITZEK (Senior Member, IEEE)
received the Diploma (Dipl.-Ing.) degree in
electrical engineering from the University of
Technology—Rheinisch-Westfälische Technische
Hochschule (RWTH), Aachen, Germany, in 1997,
the Ph.D. (Dr.-Ing.) degree in electrical engineer-
ing from Technical University Berlin, Germany,
in 2002, and the Honorary (Doctor Honoris Causa)
degree from the Budapest University of Tech-
nology and Economy (BUTE), in 2015. He is

currently a Professor and the Head of the Deutsche Telekom Chair of
Communication Networks, Technical University Dresden, Germany, coordi-
nating the 5G Laboratory, Germany. He is the Spokesman of the DFGCluster
of Excellence CeTI. He became an Adjunct Professor at the University
of Ferrara, Italy, in 2002. In 2003, he joined Aalborg University as an
Associate Professor and later became a Professor. He co-founded several
start-up companies starting with acticom GmbH, Berlin, in 1999. He was
selected to receive the NOKIA Champion Award several times in a row,
from 2007 to 2011. In 2008, he was awarded the Nokia Achievement Award
for his work on cooperative networks. In 2011, he received the SAPERE
AUDE research grant from the Danish Government. In 2012, he received
the Vodafone Innovation Prize. His current research interests include the
areas of wireless and mobile 5G communication networks, mobile phone
programming, network coding, cross layer, and energy efficient protocol
design and cooperative networking.

116030 VOLUME 10, 2022


