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ABSTRACT This paper proposes a simple neural network compact form model-free adaptive con-
troller (NNCFMFAC) for a single thin McKibben muscle (TMM) system. The main contribution of this
work is the simplification of the current neural network (NN) based compact form model-free adaptive
controller (CFMFAC), which requires only two adaptive weights. This is achieved by designing a NN
topology to specifically enhance the CFMFAC response. The prominent control parameters of the CFMFAC
are combined and an adaptive weight is used for self-tuning, while the second adaptive weight is used to
minimize the offset at each operating point. Hence the issues of redundant adaptive weights in complex
neuro-based CFMFACs and slow response of the CFMFAC are significantly addressed. The idea is proven
in three ways: analytically, simulation on a nonlinear system and experiments on a TMM platform.
Experimental results demonstrating the superiority of the proposed method over the conventional CFMFAC
is confirmed by a 76% improvement in convergence speed and a 60% reduction in root mean square error
(RMSE). It is envisaged that the proposed controller can be very useful for TMM driven applications as it is
model-independent, has fast response, high tracking accuracy, and minimal complexity.

INDEX TERMS Artificial neural networks, hydraulic/pneumatic actuators, model-free adaptive controller,
modeling, control and learning for soft robots.

I. INTRODUCTION
Pneumatic artificial muscle (PAM) is a type of actuation in
soft robots [1]. Due to the similarities of PAMwith biological
muscles, PAM is increasingly popular in research and indus-
trial application such as rehabilitation, robotic manipulators,
and exploration [2]. The PAM structure usually contains an
inflatable inner elastic tube enclosed in braided mesh sleeves
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and fittings are used to secure the ends. When pressurized
air is pumped into the PAM body, the inner tube expands
in the radial direction and contracts axially, thus producing
an axial contractile force used for actuation. PAM actuators
are used for their high power to weight ratio, highly com-
pliant, and their soft body allows safer interaction with the
environment [1], [3].

ThinMcKibbenmuscles (TMMs) are a type of PAMdevel-
oped by [4] to further enhance the capabilities of conventional
PAM actuators in terms of flexibility, compactness, and are
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FIGURE 1. TMM platform.

significantly lighter in weight [4], [5]. Applications of TMM
include continuum manipulators [6], wearable devices [5],
and bio-inspired robots [7].

Despitemany advantages in using PAMs as actuators, char-
acteristics of PAM driven systems such as large dead-zones
due to slack, elasticity of inner rubber tube, a complex struc-
ture of braided sleeve, and aging of rubber material causes
the actuator to suffer from highly nonlinear characteristics
and time-varying parameters [8]. Furthermore, in contrast to
rigid actuators, the soft body of PAMs continuously deforms
with infinite degrees of freedom [2]. Thus, obtaining a perfect
model for PAM-driven systems is extremely complex.

Recently, various model-based control strategies have
achieved regulation and tracking objectives in PAM-related
research such as sliding mode control [9] and other
Lyapunov-based controller designs [10]. The study in [11]
modeled the motion mechanism of PAM as a dynamic non-
linear system and proposed an adaptive control method based
on a nonlinear extended state observer to estimate total dis-
turbances for a PAM system. Phenomenological modeling of
PAM was combined with a neuroadaptive controller in [8].
The findings showed that a neural network (NN) can be used
to approximate the unknown nonlinear characteristics in a
PAM system and show that tracking error converges through
PAM experiments. In [12], a dynamic model of the PAM
mechanism was introduced, and an adaptive extended state
observer is used to estimate the disturbances and states of the
mechanism to deal with the uncertainties in PAMs. Diverse
models were mathematically formulated, and control strate-
gies were designed based on the models. However, due to the
complexities in obtaining an accurate model of PAM systems,
the use of model-based controllers may cause unexpected
system behaviors and could form an unstable closed-loop
system [13], [14].

To deal with modeling-related issues such as accurate
model unavailability or systems that involve large uncer-
tainties, data-driven strategies have been implemented where
only the input and output data of the system is used to form the
controller [13]. Among various data-driven control strategies,
the model-free adaptive control (MFAC) is a popular method
used in industrial process control [15]. Recently, improved
MFAC schemes to control PAM systems are introduced.

A high-order pseudo-partial derivative-based MFAC was
implemented on a PAM platform and showed impressive
tracking abilities [14]. However, iterative pre-training is
needed which is more suitable for repetitive applications such
as in rehabilitation exercises. In [16], an improved MFAC
for PAM actuated systems for rehabilitation robots which
do not require any pre-training is constructed. However, the
controller could only manage reasonable tracking in low-
speed systems. Other findings have also proven that although
MFAC does have advantages of being model-independent,
it has slow tracking speed [17].

The study in [15] has shown that a neural network com-
bined with a partial form MFAC can be used to increase
the response speed. Even so, the use of the partial form
dynamic linearization method is more complex compared to
the compact form model-free adaptive controller (CFMFAC)
which is relatively simpler and preferable [13]. In [18],
CFMFAC which has characteristics of straightforward oper-
ation is combined with a parameter self-tuning mechanism
using backpropagation neural networks (BPNN). However,
by combining a CFMFAC with a neural network with long-
term short-term memory architecture, authors in [19] has
shown better tracking performances compared to [18]. Unfor-
tunately, many adaptive weights were used which in turn,
increases the computational load. With the objective of
decreasing the computational load, authors in [20] used a
general regression neural network (GRNN) combinedwith an
improved CFMFAC to estimate the pseudo-partial derivative
(PPD). Despite the promising work, the computational load
of the controller still depends on the number of neurons in
the pattern layer which in turn affects the controller accuracy
when low numbers of neurons are used [20]. Furthermore,
the GRNN requires an additional layer for the architecture
compared to the BPNN used in [18]. Together, these char-
acteristics results in a larger NN architecture. The major
advantages of implementing neural networks with smaller
architecture include overfitting avoidance, augmentation of
the generalized ability of the network and fewer calculations,
thus accelerating the process of weight adaption [21]. Addi-
tionally, due to the black box-like nature of neural networks,
troubleshooting a neural network is a complex process due
to the numerous learnable parameters [22]. Previous studies
have also shown that there is no linear relationship between
the complexity of the NN architecture and accuracy [23].
Therefore, it can be concluded that a neural network with
a simple architecture is preferable as it is faster, easier to
maintain, avoids overfit and can achieve high approximation
accuracy.

Based on the merits and drawbacks of the CFMFAC and
neural network combination, the main motivation of this
study is to assess the performance of this combination with a
neural networkwith a specific network topologywith reduced
weights, without compromising the speed and accuracy of
the response. Furthermore, there exists trivial experimental
evidence that can confirm the simulation findings from [15],
[17], [19], and [20] can perform in PAM driven systems.
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To our best knowledge, no previous study has assessed the
CFMFAC method on a TMM system. Hence, this study
intends to explore the potential of this model-free controller
on a TMMdriven system due to the advantages of the actuator
over conventional PAMs.

Taking everything into consideration, this study con-
tributes to the expansion of knowledge in this field by
addressing three important issues. First, the performance
of a neural network algorithm with reduced number of
total adaptive weights in enhancing the performance of the
CFMFAC. Second, the potential of the proposed model-free
NNCFMFAC control strategy for nonlinear systems, and
finally the comprehensive tracking experimental validation of
the designed controller on a single-input single-output (SISO)
TMM system.

The following section will be discussed as follows:
Section II, the designed controller is introduced. Section III,
proof of convergence and boundedness are shown.
Section IV, the proposed controller is evaluated in simula-
tion and TMM experiments, and the key findings are then
discussed. Finally, Section IV concludes the study and rec-
ommend future work.

II. CONTROL STRATEGY
A. COMPACT FORM MODEL-FREE ADAPTIVE
CONTROLLER (CFMFAC)
The general discrete time SISO nonlinear system can be
described as in (1).

y (k + 1) = f
(
y (k) , .., y

(
k − ny

)
, v (k) , .., v (k − nv)

)
(1)

where y (k) ∈ R and v (k) ∈ R are the output of the control
system and output of the CFMFAC at instant k . Meanwhile,
ny and nv represent the unknown system order of system
output and controller output respectively, and f (· · · ) is an
unknown nonlinear function. The following assumptions are
made on system (1) to allow transformation into a compact
form data linearization model.
Assumption 1: The partial derivative of f (· · · )with respect

to v (k) is continuous.
Assumption 2: Equation (1) satisfies the general Lipschitz

condition for all k with finite exception according to the
following condition in (2):

|y (k1 + 1)− y (k2 + 1)| ≤ L |v (k1)− v (k2)| (2)

for any k1 6= k2, k1, k2 ≥ 0 and v (k2) 6= v (k1), where the
Lipschitz constant, L is a positive constant.

For a general control system design, Assumption 1 is a typ-
ical constraint and is a reasonable assumption. Assumption 2
imposes an upper bound on the change rate of the output
driven by the change of the input. From an energy point of
view, the energy of the system is bounded when produced by
bounded input energy changes.

Satisfying the assumptions mentioned, Equation (1) can
be transformed into the following compact form data

linearization model (CFDL) in (3):

y (k + 1) = y (k)+ φ (k)1v (k) (3)

where |φ (k)| ≤ L is the pseudo partial derivative (PPD) at
time instant k and 1v (k) = v (k) − v (k − 1). Further proof
can be found in [13]. Next, the one-step-ahead prediction
error cost function is used to design the controller algorithm
as in (4). This cost function is used to minimize the square of
error andmaintain the smoothness in the change of the control
input.

J (v (k)) =
∣∣y∗ (k + 1)− y (k + 1)

∣∣2 + λ |1v (k)|2 (4)

where λ > 0 is a tunable control parameter added to enhance
or reduce the changing rate of the control input and y∗ is the
desired output. By substituting (3) into (4), (5) is obtained.

J (v (k)) =
∣∣y∗ (k + 1)− y (k)− φ (k)1v (k)

∣∣2
+ λ |1v (k)|2 (5)

The derivation of (5) is as (6), and an optimized solution is
obtained when ∂J (v (k))/∂v (k)= 0, resulting in the CFMAC
output in (7).

∂J (v (k))
∂v (k)

= −2φ (k)
(
y∗ (k + 1)− y (k)− φ (k) v (k)

+φ (k) v (k − 1))+ 2λv (k)− 2λv (k − 1)

(6)

v (k) = v (k − 1)+
ρφ (k)

λ+ |φ (k)|2
(
y∗ (k + 1)− y (k)

)
(7)

where ρ ∈ (0, 1] is a tunable control parameter introduced
to increase flexibility of the controller. Subsequently, the cost
function in (8) can be used to minimize the square of the error
between the actual output of the system and the output of the
CFDL model.

J (φ (k)) = |y (k)− y (k − 1)− φ (k)1v (k − 1)|2

+µ

∣∣∣φ (k)− φ̂ (k − 1)
∣∣∣2 (8)

where µ > 0 is a tunable control gain and φ̂ is an esti-
mate of the PPD. From the cost function used, φ̂ (k) can
be obtained according to the cost function in (8) by mini-
mizing ∂J (φ (k)) /∂φ (k) = 0. While the tracking error is
minimized, φ̂ (k) converges to φ (k). The estimated PPD is
obtained as in (9) and (10).

∂J (φ (k))
φ (k)

= −21v(k − 1)(1y(k)− φ(k)1v(k − 1)

+ 2µ
(
φ (k)− φ̂ (k − 1)

)
(9)

φ̂ (k) = φ̂ (k − 1)+
η1v (k − 1)

µ+1v (k − 1)2

×

(
1y (k)− φ̂ (k − 1)1v (k − 1)

)
(10)
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where η ∈ (0, 2] can be adjusted to make the controller more
general. To ensure the controller follows the set conditions,
the reset algorithm is formulated as (11).

φ̂ (k) = φ̂0, if φ̂ (k) ≤ εor |1v (k − 1)| ≤ ε (11)

where ε is a small positive constant and φ̂0 is the initial
value of the PPD estimate. The CFMFAC consist of the
CFMFAC output algorithm, PPD estimation algorithm and
reset algorithm in (7), (10), and (11) respectively. From the
derivations shown, it can be observed that the control method
only utilizes the input and output of the closed-loop control
system, hence it is a model-free adaptive control method.

B. NEURAL NETWORK COMPACT FORM MODEL FREE
ADAPTIVE CONTROLLER (NNCFMFAC)
The choice of the NN architecture is mainly problem spe-
cific [24]. The aim of this section is to design a NN architec-
ture with reduced complexity yet able to improve the response
of CFMFAC. In this study, a feedforward NN (FFNN) is
used. A feedback NN utilizes additional adaptive weights,
therefore the FFNN is preferred to reduce the complexity
of the network. The FFNN model complexity is analyzed
according to the well-established feedforward architecture
criterion (FFAC) [21]. According to the FFAC, the complex-
ity of a feed forward neural network depends on the total
number of weights and biases in the network [25] and is
defined as (12).

FFAC = γ ef (x) (12)

where γ is a constant and f (x) is a function of the total num-
ber of weights and biases. From (12), the FFAC suggests that
the penalty value increases exponentially with the number of
total weights and biases. Thus, a neural network architecture
with fewer weights and bias is preferred in reducing the
complexity of the network.

The neural network architecture is defined by three critical
components: network topology, node character, and learning
rules [26]. The topology is designed as a ‘‘2-1’’ structure
which means a two-layer NN consisting of the input layer
with two nodes and an output layer with one node. The first
input node is designed to approximate the relationship of
CFMFAC output to the system error and the second is intro-
duced with a tunable bias to shift the NN output for a faster
response. The single output node is used to convey the control
signal to the system. The layers are fully interconnected and
assigned with adaptive weights which adjust according to
the stochastic gradient descent learning rule [27]. The mean
squared error is used as the cost function as in (13).

J =
1
2
e2 (k) (13)

where e (k) is the difference between the desired system
output and the actual output at instant k . Linear activation
function is chosen as to avoid gradient vanishing problems
associatedwith other activation functions such as the Sigmoid

FIGURE 2. Neural network architecture for proposed controller.

and Tanh function [28]. The designed NN architecture is
shown in Fig. 2.

Since a linear activation function is used, the control law
of the proposed NNCFMFAC can be calculated directly from
the summation of weighted input and weighted bias and is
defined as (14).

u (k) = g (Bw1 (k)+ v (k)w2 (k)) (14)

where u (k) is the control input, g (· · · ) is a linear activation
function, B ∈ R is a tunable bias introduced to the network
and w1 ∈ [−1, 1] and w2 ∈ [0, 1] are the adaptive weights
associatedwith the bias and the CFMFACoutput respectively.
These weights can be computed as (15).

wn (k) = wn (k − 1)+1wn (k) (15)

where n = 1, 2 is the weight number and 1wn (k)
is the change of weight number n, which is calculated
as (16) and (17) with regards to the following assumption:
Assumption 3: The partial derivatives associated with the

NN is continuous.
This is a reasonable assumption as discrete-time models

are numerical discretization of continuous-time models, and
the approximation accuracy increases when using small time
steps [29].

1wn (k) = −ηn
∂J
∂wn

(16)

∂J
∂wn
=
∂J
∂e
·
∂e
∂y
·
∂y
∂u
·
∂u
∂wn

(17)

where ηn ∈ R is the learning rate at weight number n = 1, 2.
Equation (17) is further simplified as (18) and (19).

∂J
∂w1
= −e · sgn

(
∂y
∂u

)
· B (18)

∂J
∂w2
= −e · sgn

(
∂y
∂u

)
· v (19)

The designed NN is combined with the CFMFAC to form
the NNCFMFAC. Although CFMFAC has several tunable
control parameters that can be adjusted for better perfor-
mance, control parameters ρ and λ have greater influences
on the output response of CFMFAC operation where both
parameters affect the response speed [30]. Experiments con-
ducted in [15] and [19] also show that both control parameters
produce a similar trend during parameter self-tuning opera-
tion. To reduce complexity of the neural network, instead of
separating the two control gains for parameter self-tuning, the
output of the CFMFAC can be directly connected to the neural
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network input node to self-tune the speed of the controller.
The tunable bias connected with an adaptive weight helps
offset the control input which also suppresses effects of dead-
zones in TMM systems. The proposed NNCFMFAC control
strategy is shown in Fig. 3.

FIGURE 3. Block diagram of proposed NNCFMFAC.

III. CONVERGENCE ANALYSIS
A nonlinear system satisfying Assumptions 1, 2, and 3 is con-
trolled by the proposedNNCFMFAC for a regulation problem
where the desired signal is a constant y∗, then the following
theorem can be obtained for any λ> λmin and ηn < ηmax .
Theorem 1: For a SISO discrete nonlinear system, the

NNCFMFAC has the following properties.
1) The tracking error for the system output converges, and

lim
k→∞
|e (k)| = 0.

2) For all k , the output, y (k), and input, u (k) are bounded.
The tracking error is defined as (20).

e (k + 1) = y∗ − y (k + 1) (20)

Substituting the CFDL as in (3) into (20) and taking the
absolute value leads to (21).

|e(k + 1)| =
∣∣y∗ − y(k)− φ(k)1u(k)∣∣ (21)

where 1u (k) can be derived from (14) and (15) as in (22).

1u (k) = B1w1 (k)+ v (k)w2 (k)− v (k − 1)w2 (k − 1)

= B1w1 (k)+ v (k)1w2 (k)+1v (k)w2 (k − 1)

(22)

Substituting (22) into (21), the following is obtained.

|e (k + 1)| = |e (k)− φ (k) (B1w1 (k)+ v (k)1w2 (k)

+1v (k)w2 (k − 1))| (23)

From (7), 1v can be obtained and substituted in (23) to
produce (24).

|e(k + 1) =

∣∣∣∣∣∣∣e (k)− φ (k)
B1w1 (k)+ v (k)1w2 (k)

+

 ρφ̂ (k)

λ+

∣∣∣φ̂ (k)∣∣∣2 e(k)
w2 (k − 1)


∣∣∣∣∣∣∣ (24)

and from (16), 1w1 (k) and 1w2 (k) is substituted in (24),
hence (25) can be derived.

|e (k + 1)| =

∣∣∣∣∣∣∣1−
w2 (k − 1) φ (k) ρφ̂ (k)

λ+

∣∣∣φ̂ (k)∣∣∣2
−φ (k)

(
B2η1 + v (k)2η2

)∣∣∣ |e (k)|
|e (k + 1)| ≤ |1− w2 (k − 1) d1 − d2| |e (k)| (25)

where

d1 =
φ (k) ρφ̂ (k)

λ+

∣∣∣φ̂ (k)∣∣∣2
d2 = φ (k)B2η1 + φ (k) v (k)2η2 (26)

From assumptions that the reset algorithm in (11), φ̂ (k) >
ε is guaranteed. Let λmin = L2/4 and φ (k) ≤ L from

Assumption 2, 0 ≤ ρ < 1 and
(√
λ
)2
+

∣∣∣φ̂ (k)∣∣∣2 ≥ 2
√
λφ̂ (k),

the following inequality is formed.

0 < d1 ≤
φ (k) ρφ̂ (k)

λ+

∣∣∣φ̂ (k)∣∣∣2 ≤
Lρφ̂ (k)

2
√
λφ̂ (k)

≤
Lρ

2
√
λ
< 1 (27)

Since ηn < ηnmax , let η1max = a1/LB2, η2max = a2/Lv (k)2,
and 0 ≤ a1+a2 < 1, therefore 0 ≤ d2 < 1 and the following
inequality can be formed from (25).

|e (k + 1)| ≤ |d3| |e (k)|

≤ |d23| |e (k − 1)| ≤ · · · ≤ |dk3| |e (1)| (28)

where d3 = |1− w2 (k − 1) d1 − d2|. Since 0 ≤ w2
(k − 1) ≤ 1, 0 ≤ d1 ≤ 1, and 0 ≤ d2 ≤ 1, therefore
0< d3 < 1. This guarantees that lim

k→∞
|e (k)| = 0. As y∗ (k)

is a constant value, convergence of e (k) indicates that y (k)
is also bounded. The following shows that u (k) is bounded.

From (14), since B is a constant and w1, w2 are bounded,
therefore the control input is bounded if the CFMFAC output,

v is bounded. According to
(√
λ
)2
+

∣∣∣φ̂ (k)∣∣∣2 ≥ 2
√
λφ̂ (k),

and (6) the following inequality in (29) can be derived.

|1v (k)| =

∣∣∣∣∣∣∣
ρφ̂ (k)

λ+

∣∣∣φ̂ (k)∣∣∣2
∣∣∣∣∣∣∣ |e (k)|

≤

∣∣∣∣∣ ρφ̂ (k)

2
√
λφ̂ (k)

∣∣∣∣∣ |e (k)|
≤

∣∣∣∣ ρ

2
√
λmin

∣∣∣∣ |e (k)|
≤ M1 |e (k)| (29)

where M1 = ρ/2
√
λmin is a bounded constant. From

(28) and (29) we have

|v (k)| ≤ |v (k − 1)+1v (k) |

≤ |v (k)−v (k − 1)|+|v (k − 1)|

123414 VOLUME 10, 2022
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≤ |v (k)−v (k−1)|+|v (k−1)−v (k−2)|+|v(k−2|

≤ |1v (k)| + |1v (k − 1)| + · · · + |v (1)|

≤ M1 (|e (k)| + |e (k − 1)| + · · · + |e (2)|)+ |v (1)|

≤ M1

(
|dk−13 | |e (1)| + · · · + |d3| |e (1)|

)
+ |v (1)|

≤ M1
|d3|

1− |d3|
|e (1)| + |v (1)| (30)

The following can be derived from (22)

|1u (k)| ≤ η1B2 |e (k)|

+ η2

(
M1

|d3|
1− |d3|

|e (1)| + |v (1)|
)2

|e (k)|

+w2 (k − 1)M1 |e (k)|

≤ M2 |e (k)| (31)

where

M2 = η1B2 + η2

(
M1

|d3|
1− |d3|

|e (1)| + |v (1)|
)2

+w2 (k − 1)M1 (32)

therefore

|u (k)| ≤ |u (k)− u (k − 1)| + |u (k − 1)|

≤ |u (k)−u (k−1)|+|u (k−1)−u (k−2)|+|u(k−2|

≤ |1u (k)|+|1u (k − 1)| + · · · + |u (1)|

≤ M2 (|e (k)|+|e (k − 1)| + · · · + |e (2)|)+ |u (1)|

≤ M2

(
|dk−13 | |e (1)| + · · · + |d3| |e (1)|

)
+ |u (1)|

≤ M2
|d3|

1− |d3|
|e (1)| + |u (1)| (33)

Hence, this proves that the control input is bounded. For
the proposed NNCFMFAC, the adaptive weights from the
designed NN works together with the PPD estimation algo-
rithm in (10) to reduce the system error. From (28), the
adaptive parameters can be observed to help reduce d3 hence
obtaining faster convergence. This will also be verified by
simulations and experiments in the following sections.

IV. SIMULATION RESULTS
This section aims to evaluate the effectiveness of the proposed
controller on a nonlinear system. Simulations are conducted
on a SISO nonlinear discrete model, followed by the control
on actual TMM. The system in (34), is a dynamic nonlinear
system, which has certain nonlinear characteristics in a TMM
system [4]. The desired set-point (35) is a time-varying out-
put, which reflects applications of a TMM driven system to
manipulate objects. Furthermore, the model is used to evalu-
ate other neuro based improvedMFACs on nonlinear systems
in previous research [15], [19]. The system and setpoint are
as follow:

y (k + 1) =
2.5y (k) y (k − 1)

1+ y2 (k)+ y2 (k − 1)
+ 1.2u (k)

+ 0.09u (k) u (k − 1)+ 1.6u (k − 2)

+ 0.7 sin (0.5 (y (k)+ y (k − 1)))

× cos (0.5 (y (k)+ y (k − 1))) (34)

y∗ (k + 1) = 5 sin
(
kπ
50

)
+ 2 cos

(
kπ
20

)
(35)

where y denote the actual output of the system, u is the control
input, k is the iteration, and y∗ is the desired output of the sys-
tem. All values in this section are dimensionless. The initial
conditions are set as: y (0) = y (1) = 0 and u (0) = 0. In this
simulation, the proposed NNCFMFAC method is compared
with other data-driven controllers such as the particle swarm
optimization proportional integral derivative (PSOPID) con-
troller and the conventional CFMFAC. Besides this, to evalu-
ate the effectiveness of the introduced bias, a neural network
compact form model free adaptive controller without bias
(NNCFMFAC-WB) is temporarily introduced for ablation
analysis. The NNCFMFAC-WB represents the NNCFMFAC
without the advantage of the bias and additional adaptive
weight, hence it is designed to be a ‘‘1-1’’ neural network
structure with one neuron in the input layer and output
layer. Furthermore, an advanced adaptive controller combin-
ing a back propagation neural network architecture and the
CFMFAC (BPNNCFMFAC) is designed according to [18]
and [19] and is used to evaluate the performance of the
proposed controller against other intelligent parameter tuning
algorithms. The structure of the back propagation neural
network is ‘‘5-8-2’’ which means the number of neurons in
the input layer, hidden layer and output layer are 5, 8, and 2,
respectively. This neural network consists of 56 adaptive
weights.

The gains of the PID used in this work is obtained by
using particle swarm optimization (PSO) technique [31] with
50 swarm particles and 50 iterations. The inertia weight
chosen are from 0.9 to 0.4 and the acceleration coefficients
are set at 1.48. The control parameter values obtained from
PSO are Kp = 0.0500, Ki = 0.2012, and Kd = 0.0500. The
root mean squared error (RMSE) is used as a cost function
and is defined as (36).

RMSE =

√∑K
k e (k)

2

K
(36)

where K is the total number of sampling data and e (k) is
the difference between the desired output and the actual out-
put at instance k . For all CFMFAC strategies, the controller
parameters are set to η = 0.1, µ = 0.1, ε = 0.1, and φ̂0 = 8.
The controller parameters ρ for CFMFAC and NNCFMFAC
are 0.5 and 1 respectively, while the BPNNCFMFAC uses
NN to tune both ρ and λ. The values of λ in CFMFAC,
NNCFMFAC-WB, and NNCFMFAC are set to 0.3, 2.8, and
0.3, respectively. The learning rate, η1 and inertia coefficient
α, used for BPNNCFMAC are η1 = 4.0× 10−2 and α = 0.1,
while values set for NNCFMFAC are η1 = 3.5 × 10−6,
η2 = 1.5× 10−2, and B = 343. Tuning of control parameters
are obtained by the grid search method [32] and further
fine-tuned with smaller increments. The consistency of the
results compared to [15] and [19] validates that the chosen
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parameters are significant and are suitable to be used for this
simulation.

FIGURE 4. Tracking curves on nonlinear system.

The tracking performance of the designed controllers is
displayed in Fig. 4 and summarized in Fig. 5. In the first
20 seconds from Fig. 4, it can be observed that NNCFM-
FAC has the fastest response followed by the PSOPID and
BPNNCFMFAC. Although all control strategies can be seen
to have decent tracking performance, the proposed NNCFM-
FAC shows the closest tracking to the desired set point. This
can be observed in the detailed view in Fig. 4. Results from
Fig. 5 show the tracking error of the NNCFMFAC is signifi-
cantly reduced by approximately 45%, 47%, 50%, and 53% in
terms of RMSE when compared to PSOPID, BPNNCFMAC,
CFMFAC, and NNCFMFAC-WBmethods, respectively. The
BPNNCFMFAC also shows slight improvement of 5% com-
pared to CFMFAC in terms of RMSE.

FIGURE 5. Evaluation results of each controller for nonlinear system.

From Fig. 6, it can be observed that the PSOPID and
NNCFMFAC are able to sustain errors below 2. Alternately,
the BPNNCFMFAC and CFMFAC controllers had a range of
errors below 3 and NNCFMAC-WB below 4, due to large
fluctuations. These fluctuations can be observed from the

control signals in Fig. 7. From graphs in Fig. 8 and 9, the
NNCFMFAC adaptive ability to tune the adaptive weights
and pseudo-partial derivative (PPD) sensitively and coher-
ently at each operating point is shown. On the other hand,
Fig. 10 shows the parameter self-tuning results of the
BPNNCFMFAC. Although the tuning parameters can be
observed to tune parameters sensitively at each moment,
the curves have a certain degree of similarity and can be
explained by theoretical formulation in (37), where λ and ρ
play roles in preventing input from excessive deviation. This
may also explain the smoother control signal when using the
BPNNCFMFAC in Fig. 7. Furthermore, the results are also
in line with previous studies conducted by [15] and [19].
This strengthens the cause for developing the NNCFMFAC
according to the FFAC to optimize the NN by combining the
self-tuned parameters.

1v (k) =
ρφ (k)(

λ+ |φ (k)|2
) (y∗ (k + 1)− y (k)

)
(37)

FIGURE 6. Tracking errors of nonlinear system.

FIGURE 7. Control input of nonlinear system.

The performance of the NNCFMFAC can also be com-
pared in terms of the complexity of the neural network.
The BPNNCFMAC consists of 56 adaptive weights while
the neural network of the proposed controller comprises of
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FIGURE 8. Adaption of neural network weights.

FIGURE 9. PPD estimated values.

only 2 adaptive weights. The proposed controller shows a
reduction of 96.42% in total adaptive weights, hence a major
reduction in complexity is achieved while attaining lower
RMSE. This can also be compared with other NN-based
CFMFAC strategies in recent scientific literatures. The pro-
posed NNCFMFAC showed a RMSE reduction of 27.23%
and a reduction of 99.55% in terms of total adaptive weights
against a parameter self-tuning compact form model-free
adaptive controller based on long short-term memory neural
network proposed by [19].

FIGURE 10. Parameter self-tuning results of λ and ρ for BPNNCFMFAC.

Based on the evidence presented so far, simulation results
on a nonlinear system showed the proposed NNCFMFAC
is superior in terms of tracking accuracy compared to other
data-driven control strategies. This indicates that combining
a two layered neural network with two adaptive weights is
adequate to significantly improve the tracking performance
of the CFMFAC. From a practical point of view, the proposed
controller can achieve satisfactory tracking performance for a
discrete nonlinear system such as TMM driven systems with
time-varying set-points by utilizing only the input-output data
of the system. Despite the reduction in adaptive weights,
the NNCFMFAC-WB still has a lower complexity than the
proposed controller with a reduction of about one adaptive
weight. However, according to the FFAC in (12), the applied
penalty is insignificant at low total number of weights [21].
Furthermore, the proposed controller showed a 53% improve-
ment in accuracy compared to the simpler NNCFMFAC-WB.
This shows that designing a NN architecture with a lower
number of neurons affect the approximation performance of
the NN, hence the proposed architecture is a better optimized
solution. Despite the prominent performance of the NNCFM-
FAC from simulation results, the performance can be further
validated by real-time experiments to ensure the capability of
the controller on TMM driven systems.

V. EXPERIMENTAL RESULTS
As discussed in the introduction, the main objective of this
study is to evaluate the performance of a neural network
compact form model-free adaptive controller (NNCFMFAC)
with reduced number of weights on a highly nonlinear thin
McKibben muscle (TMM) system as set up in Fig. 1. This
TMM system closely mimics the human finger from the
metacarpal bone (link 1) to the proximal bone (link 2) in terms
of muscle actuation, ligaments, tendons, and motion. Due to
the softness of the materials used, this system can be used for
applications such as gripping and manipulating objects while
reducing hazardous impacts.

The platform is driven by a TMM attached to both links by
artificial tendons made by Dyneema (high-density polyethy-
lene). Two inertial measurement units (IMUs) are placed on
the links to obtain the joint angle. The joint angle is read by a
microcontroller (Arduino Mega 2560), where the proposed
controller uses the input and output signals to obtain the
control signal for the system. The microcontroller produces
pulse width modulation (PWM) output that is converted to
0-10 VDC by a PWM to voltage converter which is then fed
to an electro-pneumatic regulator (SMC ITV2050-312BL).
This regulator controls the pressure input to the TMM which
contracts the muscle, hence producing the force to pull link
2 for flexion motion as shown in Fig. 11.

Similar to human joints, ligaments are attached to the bones
to ensure joints return to its resting position when muscles
are not actuated. These ligaments are artificially replaced by
using 1 mm thick silicone sheets to ensure stability at joint.
The highly nonlinear characteristics of the TMM system such
as hysteresis at muscles and valves, large dead-zones due to

VOLUME 10, 2022 123417



M. H. A. Hafidz et al.: Simple NNCFMFAC for Thin McKibben Muscle System

FIGURE 11. TMM system (a) TMM system at rest position (b) TMM system
during flexion motion.

slack regions at tendons, and time-varying properties due to
complicated braiding structure of muscles makes it a partic-
ularly challenging system for motion control. A schematic
diagram of the control structure is presented in Fig. 12.

The performance of the controller is accessed by a single
degree-of-freedom angular position tracking at joint accord-
ing to given desired trajectories. The proposed controller
is compared with other data-driven methods such as the
well-known and established PID controller and CFMFAC
controller. An improved back propagation neural network
compact form model-free adaptive controller (BPNNCFM-
FAC) with self-tuning capabilities [18], [19] is also used as a
benchmark.

For analysis, two different set-points were used to assess
the controllers according to applications of TMM such as
gripping and manipulating objects. Case I and Case II are as
(38) and (39) respectively.

y (t) =

{
0, 0 ≤ t < 1
5, 1 ≤ t ≤ 50

(38)

y (t) =



0, 0 ≤ t < 1

6, 1 ≤ t < 10
1
2
t + 2, 10 ≤ t < 12

8, 12 ≤ t ≤ 20

(39)

The values used for the proportional gain, integral gain, and
derivative gain of the PID are 0.5, 2.0, and 0.3 respectively.

FIGURE 12. Schematic diagram for TMM system.

For all CFMFAC strategies, the controller parameters are set
to η = 0.1, and ε = 0.1. For CFMFAC, φ̂0 = 12 is used,
while BPNNCFMFAC and NNCFMFAC use φ̂0 = 8. Both
CFMFAC and NNCFMFAC use µ = 0.1 while BPNNCFM-
FAC is set to µ = 7. Learning rate and inertia coefficient
for BPNNCFMFAC is 3.85 × 10−3 and 0.1, respectively.
The learning rates and bias set for NNCFMFAC are η1 =
5 × 10−4, η2 = 5 × 10−2 and B = 35. Tuning of control
parameters are obtained by the grid search method [32] and
further fine-tuned by smaller increments. The experiments
were run onMATLABSimulinkwith sampling time of 0.05 s.
The settling time, with 2% settling time threshold, percentage
of overshoot and steady state error were measured for com-
parative analysis.

From Fig. 13, it can be observed that the proposed con-
troller reaches steady state faster with no overshoot and
smooth tracking response at transient state. It can also be
observed that the controller is better at eliminating the effects
of the dead-zones of TMM system. From Table 1, the
response shows a significant improvement in terms of settling
time by close to 86%, 76%, and 74% faster compared to the
PID controller, CFMFAC and BPNNCFMFAC, respectively.
The proposed controller also shows notable reduction in
overshoot as opposed to PID controller, CFMFAC and BPN-
NCFMFAC by 19%, 33%, and 57%, respectively. Findings
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from the error signal in Fig. 14 shows that the error at joint
angle for the NNCFMFAC converges to zero with improved
speed compared to the others. The improvement in con-
vergence speed appears to agree with the analytical proofs
formulated in the previous section.

FIGURE 13. Angle tracking results of TMM system experiment for Case I.

TABLE 1. Step response characteristics of TMM system experiment for
Case I.

FIGURE 14. Angle tracking error signal of TMM system experiment for
Case I.

Fig. 15 presents the control signal for Case I. Differences in
control signals are observed during the steady state response
of the controllers. These discrepancies might be due to the
dependence of the state of the system on the previous states
or commonly known as hysteresis which is a well-known
nonlinear characteristic in TMM [4]. From Fig. 16 and 17,
the adaptive weights and PPD estimation are presented,

FIGURE 15. Control input of TMM system experiment for Case I.

FIGURE 16. Adaptive weights of NNCFMFAC for Case I.

FIGURE 17. PPD estimated value of NNCFMFAC for Case I.

respectively. The adaptive elements can be seen to coherently
adapt together at each sample time. Overall, these findings
suggest that the NNCFMFAC offers a fast response, ability
to suppress the overshoot and handle dead-zones which are
critical for TMM systems especially when TMMs are used in
an antagonistic configuration with large dead-zones for high-
speed gripping applications.

VOLUME 10, 2022 123419



M. H. A. Hafidz et al.: Simple NNCFMFAC for Thin McKibben Muscle System

FIGURE 18. Angle tracking of TMM system experiment for Case II.

FIGURE 19. Evaluation results of each controller for Case II.

FIGURE 20. Angle tracking error signal of TMM system experiment for
Case II.

The second case is coordinated to evaluate the perfor-
mance of the proposed controller in tracking the angle for
a time-varying set-point. Fig. 18 presents the tracking
response of the controllers for Case II. From the figure, it is
observed that the proposed controller produces a faster and
smoother tracking response in comparison with the other
controllers. Further analysis in Fig. 19 supports this obser-
vation as the proposed controller demonstrates having the

FIGURE 21. Control input of TMM system experiment for Case II.

FIGURE 22. Adaptive weights of NNCFMFAC for Case II.

FIGURE 23. PPD estimated value of NNCFMFAC for Case II.

lowest RMSE with reductions of approximately 56%, 60%,
and 50% compared to the PID controller, CFMFAC, and
BPNNCFMFAC, respectively.

The error signal graph in Fig. 20 consistently points
out the faster convergence of error for the proposed con-
troller. Fig. 21 shows the control signal for Case II, while
Fig. 22 and 23 show the adaptive parameters in synchroniza-
tion with each other. From a practical implementation point
of view, the findings imply that the enhanced response of
the NNCFMFAC has improved tracking accuracy which is an
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important attribute in TMM driven system for manipulating
objects sensitively.

VI. CONCLUSION
The aim of this work is to develop a neural network com-
pact form model-free adaptive control (NNCFMFAC) with
reduced complexity and to evaluate its performance. One of
the significant key findings in this study is the ability of a
neural network with minimum adaptive weights to enhance
the performance of the CFMFAC in terms of convergence
speed, which is proven analytically, by simulation on a non-
linear system and experiments on a TMM driven system.
Furthermore, the NNCFMFAC can overcome the dead-zone
issue of TMM driven systems, while suppressing overshoots
compared to other data-driven controllers. Evidence from
the study suggests that, although smaller NN architectures
are known to have limitations in solving problems such as
the XOR problem [26], when combined with the PPD esti-
mation ability of the CFMFAC, the controller has crucial
merits to be applied in TMM applications such as fast-paced
gripping operations and fine-precision object manipulation.
Additionally, the simple and standard architecture of the NN
allows control engineers to easily retrofit the designed NN
into the CFMFAC for any SISO discrete system. From a
sustainable perspective, the reduced complexity of the neural
network is more convenient for maintenance and troubleshoot
in real world engineering processes. Despite the merits of
the proposed solution, selection of the control parameters
for improved CFMFACs is still an open problem. Although
the grid search method is considered a systematic approach,
extensive amounts of experiments need to be carried out
for this method. As an extension, it would be interesting to
explore other model-free tuning methods for the proposed
controller.
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