
Received 16 October 2022, accepted 28 October 2022, date of publication 1 November 2022, date of current version 8 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3218884

BrowVis: Visualizing Large Graphs in the Browser
LUCA CONSALVI, WALTER DIDIMO , GIUSEPPE LIOTTA , (Senior Member, IEEE),
AND FABRIZIO MONTECCHIANI
Dipartimento di Ingegneria, Università degli Studi di Perugia, 06125 Perugia, Italy

Corresponding author: Fabrizio Montecchiani (fabrizio.montecchiani@unipg.it)

This work was supported in part by MIUR through ‘‘AHeAD: efficient Algorithms for HArnessing networked Data’’ under Grant
20174LF3T8; and in part by the University of Perugia, Fondi di Ricerca di Ateneo 2021, Project ‘‘AIDMIX—Artificial Intelligence for
Decision Making: Methods for Interpretability and eXplainability.’’

ABSTRACT A recent stream of research focuses on building high-performance data analysis and manage-
ment systems that run completely in the browser. Indeed, today personal devices offer non-trivial amount of
computing power, while the latest Web browsers provide powerful JavaScript engines. On the other hand,
the use of visualization to present and analyze networks is taking a leading role in conveying information and
knowledge to users that operate in multiple domains. In this scenario, the aim of our research is to explore the
scalability limits of a system that executes the full graph visualization pipeline entirely in the browser. In this
paper, we present BrowVis, a self-contained system to compute interactive visualizations of large graphs in
the browser. Experiments show that, on a common laptop, BrowVis can visualize graphs with thousands of
elements in seconds, as well as graphs with millions of elements in minutes. Once the initial visualization
has been computed, BrowVis makes it possible to interactively explore the represented graph by following a
details-on-demand paradigm. The use of BrowVis in practice is demonstrated by a case study dealing with
a real-world scientific collaboration network.

INDEX TERMS Network visualization, visual analytics, in-browser computing.

I. INTRODUCTION
Graphs appear as a natural model for representing data in var-
ious fields and application domains, such as for instance arti-
ficial intelligence [1], finance [2], recommender systems [3],
social network analysis [4], and tourism [5]. In particular, the
use of visualization to present and analyze networked data is
taking a leading role in conveying information and knowledge
to users that operate in the above mentioned domains (see,
e.g., [6]). Indeed, when dealing with large graphs, a recent
extended survey [7] revealed that visualization is a very pop-
ular and central task in graph processing pipelines. On the
other hand, designing algorithms to produce valuable visual-
izations of large graphs is difficult, and it is reported in [7] as
one of the most pressing graph processing challenges.

The problem of producing graph visualizations can be
decomposed into a two-step graph processing pipeline, with
iterations that might be triggered by user interaction. In the

The associate editor coordinating the review of this manuscript and

approving it for publication was Yu-Da Lin .

first step, a layout of the input graph is computed, which
involves the assignment of geometric representations to the
vertices and to the edges of the graph. In the second step,
the layout is rendered on the screen through a user interface,
which often enables the exploration of the displayed data via
interaction primitives. The layout step involves the design of
efficient algorithms to optimize some aesthetic criteria while
satisfying given conventions and constraints. For instance,
in the popular node-link paradigm, vertices are represented
as points, edges are straight-line segments, and the layout
should both avoid the clutter given by overlapping features
and highlight possible symmetries in the underlying graph.
The vast majority of the algorithms used to produce node-link
layouts of large graphs follows force-directed methods [8],
[9], [10], which usually yield super-linear time complexities.
In fact, for the sake of efficiency, layout algorithms can be run
remotely on powerful servers or cloud computing infrastruc-
tures (see, e.g., [11] and [12]). The rendering step requires a
careful use of the graphics system on the client side to avoid
inefficiencies and artifacts, as well as the design of suitable

115776 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-4379-6059
https://orcid.org/0000-0002-2886-9694
https://orcid.org/0000-0002-0543-8912
https://orcid.org/0000-0001-5100-6072

L. Consalvi et al.: BrowVis: Visualizing Large Graphs in the Browser

interaction paradigms to support an effective exploration of
the conveyed data. It is worth mentioning that interactive ren-
dering paradigms may involve the use of visual abstractions
of the input layout, aimed to reduce both the overall clutter of
the visualization and the computational cost of displaying a
huge amount of geometric elements (see, e.g., [13]).

Today personal devices offer non-trivial amount of com-
puting power and Web browsers provide powerful JavaScript
engines. As a consequence, a recent stream of work focuses
on building high-performance data analysis and manage-
ment systems that run completely in the browser. A lim-
ited list of examples include the following: El Gebaly and
Lin [14] present an analytical relational DBMS implemented
in JavaScript that runs within the browser; Lin [15] describes
a self-contained JavaScript-based search engine; Lee et al.
[16] propose a JavaScript implementation of a keyword spot-
ting system that can be deployed directly on user devices.

In this paper, we aim at exploring the scalability lim-
its of a system that executes the entire graph visualization
pipeline relying only on the JavaScript processing engine of
the browser. The main motivation of our work is twofold:
on the one hand, having the whole visualization produced in
the browser cuts off network latency, enables offline usage,
avoids security and privacy issues related to the transit and
remote storage of the data, and removes any external depen-
dency. On the other hand, while modern web technologies
(and in particular JavaScript) can be used to effectively tackle
large graph datasets [17], existing graph visualization tools
struggle to achieve satisfactory performance already with
graphs having up to few hundred thousand elements [18].

Our main contribution is as follows:
• We describe BrowVis, a self-contained system to com-
pute interactive visualizations of large graphs in the
browser. BrowVis significantly differs from existing
Web technologies as it combines two best-in-class tech-
niques to carry out the entire graph processing pipeline.
Namely, a layout of the input graph is computed with
a JavaScript porting of FM3 [19], [20], a multi-level
force-directed algorithm originally developed in C++.
To perform rendering and interaction, BrowVis incor-
porates and adapts the main ideas behind LaGO [13],
an OpenGL-based implementation of a technique to
interactively render massive node-link layouts with
adjustable level of abstraction.

• We provide a publicly available proof-of-concept imple-
mentation of BrowVis, and we report the outcome of
an extensive experimental analysis aimed at assessing
its performance. The experiments show that, on a com-
mon laptop, BrowVis can visualize graphs with several
thousand elements in seconds, as well as graphs with
millions of elements in minutes. Moreover, once the
initial visualization has been computed, BrowVis makes
it possible to interactively explore the represented graph
by following a details-on-demand paradigm.

• We finally showcase the features of BrowVis’s user
interface with a case study dealing with a real-world

scientific collaboration network. BrowVis quickly pro-
duces a first visualization of the network, and it then
supports a smooth exploration of the drawing. The inter-
action reveals, in particular, the presence of communities
of authors, as well as the role of some central scientists
that bridge different communities.

The remainder of this paper is organized as follows.
Section II contains the necessary background on graph
visualization, along with a brief overview of the related
literature. Section III provides a detailed description of
BrowVis and of the rationale behind each of its design
choices. Section IV describes the experimental analysis and
its outcome. Section V reports on the case study. Section VI
concludes the paper with a short discussion and future
research directions.

II. BACKGROUND AND RELATED WORK
In this section we provide some background on the two key
ingredients of our system, namely force-directed layout algo-
rithms and rendering techniques, along with a brief overview
of the related literature.

A. FORCE-DIRECTED LAYOUT ALGORITHMS
Force-directed algorithms are the most common solution to
the problem of computing node-link layouts of general unre-
stricted graphs. They follow two basic principles: (i) edges
should not be too long and hence adjacent vertices should
be drawn near to each other; (ii) vertices should not overlap
and should evenly distribute on the drawing area. These two
principles can be encoded in a system of forces acting on the
vertices of the input graph. We point the reader to the exten-
sive surveys of Cheong and Si [8] and by Kobourov [10] on
the vast literature on force-directed algorithms, as well as to
the surveys by Hu and Shi [9] and by Landesberger et al. [21]
that are focused on the visualization of large graphs. We also
remark that the versatility of force-directed algorithms makes
them suitable to visualize dynamic graphs [22], as well as
clustered and compound graphs [23], [24]. Common to all
force-directed algorithms are a model of the system of forces
acting on the vertices and an iterative algorithm to find a
static equilibrium of this system, which represents the final
layout of the graph. In terms of running time, the main
bottleneck lies in the fact that each vertex interacts with all
other vertices, giving rise to an overall quadratic number of
forces in each iteration of the algorithm. To alleviate this
problem, different authors proposed spatial decomposition
techniques to approximate forces acting between vertices that
are far from each other [25], [26]. A quantum leap towards
the applicability of force-directed algorithms to larger graphs
is represented by multilevel force-directed algorithms, intro-
duced in [26], [27], and [28]. Algorithms in this family
proceed along a framework that roughly works as follows:
first the input graph is iteratively simplified via coarsening
techniques, giving rise to a stack of coarser graphs; second,
such a stack is traversed backward and a final layout of
the original graph is obtained by progressively computing a

VOLUME 10, 2022 115777

L. Consalvi et al.: BrowVis: Visualizing Large Graphs in the Browser

layout for each intermediate graph in the sequence. As experi-
mentally observed, FM3 [29], [30] is one of the most effective
multilevel force-directed algorithms, as it produces less edge
crossings and fewer vertex overlaps [20], [31].

In order to unleash the power of modern computing infras-
tructures, different implementation choices have been inves-
tigated; we briefly describe a restricted list of examples. The
first attempts to scale force-directed algorithms to very large
graphs exploit the power of GPUs [32], [33], [34], [35].
They can draw graphs with a few million edges, but their
development requires a low-level implementation tied to the
computing platform. Parallel and distributed approaches have
also been considered. Meyerhenke et al. [36] present a C++
implementation based on OpenMP of a layout algorithm
using the maxent-stress metric for the layout optimization.
Mueller et al. [37] and Chae et al. [38] propose force-directed
algorithms that use multiple large displays; vertices are
evenly distributed on the different displays, each associated
with a different processor, which is responsible for computing
the positions of its vertices. Tikhonova and Ma [39] present
a parallel force-directed algorithm that can run on graphs
with few hundred thousand edges and experimented it on
the BigBen Cray XT3 cluster. More recently, a series of
works has pursued the use of modern Big Data frameworks.
Hinge and Auber [40] describe a distributed force-directed
algorithm implemented in Apache Spark (using the GraphX
library). Hinge et al. [41] present a multilevel force-
directed algorithm, also implemented in Apache Spark.
Arleo et al. [11], [12] describe both force-directed and multi-
level force-directed algorithms based on the Apache Giraph
platform. Their multilevel implementation follows the ideas
of FM3 and can draw graphs with millions of edges in few
minutes.

Finally, sampling and sparsification approaches have been
very recently proposed to obtain sublinear force computation
schemes [42].

B. RENDERING TECHNIQUES
The goal of rendering techniques is to avoid clutter and
over-plotting, which are undesirable effects both in terms of
readability and efficiency. Clutter occurs when many vertices
and edges of the graph are drawn in small portions of the
screen, giving rise to ambiguous blobs of pixels. This issue
is unavoidable if we insist on drawing each single vertex
and edge of a large graph containing more elements than
the pixels the screen can offer. Moreover, dense portions of
the graph force many edges to traverse common areas of the
screen which, in turn, gives rise to plotting over the same
pixels multiple times, a severe problem in terms of efficiency.
Inspired by Shneiderman’s mantra [43] ‘‘Overview first,
zoom and filter, then details-on-demand’’, several authors
proposed multilevel visualizations aimed at computing mul-
tiple abstractions of the input graph (see, e.g., [26], [44],
[45], and [46]). While seminal approaches in this direction
bundle together layout and rendering, Zinsmaier et al. [13]

propose an interactive rendering technique with adjustable
levels of detail that operates directly on a given layout
and does not require precomputed hierarchies or meshes.
The approach in [13] consists of a combination of edge
accumulation with density-based vertex aggregation, and its
implementation exploits graphics hardware for speeding-up
the computation. In the same spirit, Perrot and Auber [47]
describe a multilevel system that works for any given layout
in input. The main differences with respect to [13] are the use
of different algorithms for vertex and edge aggregation and an
implementation based on distributed platforms for Big Data
processing.

While all above papers provide fundamental scientific
groundwork for our research, none of the above techniques
is conceived to run entirely in the browser. On the other
hand, there exist many JavaScript-based libraries that can deal
with both the layout and the rendering steps. In particular,
Han et al. [18] present NetV.js, a JavaScript library for the
visualization of large graphs, and compare its performance
with several other JavaScript libraries for graph visualiza-
tion, namely Cytoscape.js [48], D3.js [49], Sigma.js [50],
and Stardust.js [51]. Based on their experiments, the authors
conclude that Stardust.js and D3.js can render up to a total
of one hundred thousand elements (both vertices and edges),
while NetV.js can render up to a total of one million elements
showing at least one frame per second. The main drawback
of the experimental analysis in [18] is that no performance
metric is reported (e.g., runtime or memory footprint) other
than the framerate. Moreover, and most importantly, none of
the above libraries provide abstractions but instead draw each
single vertex and edge of the graph, thus incurring into both
clutter and over-plotting.

In addition to the general-purpose libraries mentioned
above, we briefly discuss some related systems for process-
ing networks entirely in the browser. Carbonic [52] is a
Javascript-based system for interactive visual exploration and
editing of compound graphs. The main similarities between
Carbonic and BrowVis are the adoption of a multiscale visu-
alization paradigm and of edge bundling techniques to cope
with visual clutter. On the other hand, the main goal of
Carbonic is to effectively support the visualization and explo-
ration of the hierarchical structure underlying compound
graphs, in particular, it employes sunburst diagrams rather
than node-link diagrams. NDExEdit [53] is an in-browser
application to support edits and enhancements of biologi-
cal networks. NDExEdit is compatible with Cytoscape and
NDEx and fits the needs of collaborative workflows in the
biological domain.

III. THE BrowVis SYSTEM
In this section we describe the design of BrowVis, a self-
contained system to compute interactive visualizations of
large graphs fully in the browser. Our system embraces the
concept of multilevel visualization in order to achieve both
readability and scalability. The graph processing pipeline

115778 VOLUME 10, 2022

L. Consalvi et al.: BrowVis: Visualizing Large Graphs in the Browser

FIGURE 1. A graph with a regular structure and that contains about
20 000 elements (vertices and edges) visualized with BrowVis.

FIGURE 2. A complex network with about 1 200 000 elements visualized
with BrowVis.

adopted by BrowVis is described below. The source code is
publicly available.1 Figs. 1 and 2 illustrate two graphs with
different structures and sizes visualized with BrowVis.

A. LAYOUT
As discussed in Section II, there exists a vast literature
concerning force-directed algorithms, and the design of an
original layout algorithm is beyond the scope of this paper.
Instead, our choice is to rely on the OGDF implementation
of FM3 [19], [20], a robust implementation already experi-
mented in multiple works.

We ported the C++ implementation of FM3 into
WebAssembly,2 an open standard that defines a portable
binary-code format for executable programs and that pro-
vides a JavaScript API. In particular, we used Emscripten,3

an open source software to compile C and C++ code into
WebAssembly; the output code is compact and runs at near-
native speed. To avoid blocking the user interface during the
layout computation, we use a dedicatedWeb worker that runs
in background.

As it will be further clarified in the remainder of this
section, the layout step of the pipeline is executed only once
in BrowVis, whereas the rendering step may be repeated
multiple times depending on user interaction.

1https://github.com/Luk4e/graph_visualization
2https://webassembly.org/
3https://emscripten.org/

FIGURE 3. Color palette used for the density field.

B. RENDERING
To perform the rendering, BrowVis engineers the main
ideas behind LaGO [13]. The original implementation of
LaGO exploits the OpenGL rendering pipeline, which is
not conceived for Web browsers. Instead, BrowVis exploits
the WebGL technology, which is based on OpenGL ES,
a subset of OpenGL. Specifically, we utilize pixi.js,4 a
general-purpose library that offers low-level primitives for
2D rendering. Moreover, the computed layout is rendered by
means of a dedicated Web worker that runs in background.

At high-level, BrowVis first accumulates vertices based
on density fields and it then exploits the obtained fields to
aggregate edges. To accumulate vertices, the system adopts
a kernel density estimation (KDE) with Gaussian kernels
(hence following the approach in [13]). Formally, let G =
(V ,E) be a graph with n vertices and m edges and let 0
be a drawing of G in output from the layout step. For each
vertex vi ∈ V (i ∈ {1, . . . , n}), let pi = (xi, yi) be the point
representing vi in 0. For each pixel p = (x, y) of our drawing
area, the density field function at p is defined as follows and
depends on the parameter σ :

Df (x, y, σ) =
n∑
i=1

1
2πσ 2 e

−
1

2σ2
(x−xi+y−yi)2

Based on the zoom level, part of the drawing 0 may be
outside the drawing area; in such a case, the density field
is computed only with respect to the vertices that are part
of the visible area, plus those vertices that lie in a frame of
fixed size around it. Once a density value has been computed
for each pixel, the values are normalized in the range [0, 1]
and discretizes by using a constant number of levels mapped
to the color palette illustrated in Fig. 3. To speed-up our
implementation, rather than applying the above formula for
each pixel and for each vertex, we generate a single density
field prototype and move it iteratively on top of each vertex
in the drawing area, in order to update only the pixels in a
neighborhood of that vertex.

To aggregate edges, the idea is to identify clusters in the
density field and only represent inter-cluster edges. We use
a hill climbing algorithm to move each endpoint of an edge
to the highest point around it, called peak in the following.
After this operation, there will be bundles of aggregated
edges (those whose endpoints are mapped to the same peaks).
In particular, inner-cluster edges (those whose endpoints are
both mapped to the same peak) disappear, while inter-cluster
edges are emphasized. Let the weight of an inter-cluster edge
be the number of original edges aggregated into this edge.
Similarly as for the density field, the weights are normal-
ized and discretized by using a constant number of lev-
els mapped to the color opacity and to the line thickness

4https://pixijs.com/

VOLUME 10, 2022 115779

L. Consalvi et al.: BrowVis: Visualizing Large Graphs in the Browser

FIGURE 4. The same network layout with two different vertex
aggregation levels. The network has about 25 000 elements, and the
vertex aggregation level has been doubled in the right figure.

associated with the edge segment (whose color is orange).
In terms of implementation, for each vertex vi we identify
its cluster by applying the following process. Initially, let
pi be the pixel representing the position of vi, and con-
sider the 8-neighborhood of pi. Let qi be the pixel of this
8-neighborhood with highest density field value. If the value
of pi is larger than qi, then pi will be the center of the cluster
and the process halts. Otherwise, we set pi = qi and we repeat
the process.

C. INTERACTION AND USER INTERFACE
The system provides a user interface with general-purpose
interaction features.5 Once the input graph is loaded, the pro-
duced visualization is scaled so to fit entirely within a canvas
of fixed size. The user interface makes it possible to obtain
coarser or finer vertex and edge aggregations, by suitably
modifying the aggregation parameters of the density field and
of the hill climbing algorithm. Fig. 4 shows two visualizations
obtained by modifying the vertex aggregation level.

A classic zoom and pan feature permits to move the
drawing (panning) with respect to the canvas, or to scale it

5A demo version with a preloaded network (the one used in
Section V) is available at the following URL: http://mozart.diei.
unipg.it/montecchiani/browvis/

FIGURE 5. Zooming in a specified portion of the drawing.

up and down (zooming). As a consequence of a zoom or
pan operation, the sets of vertices and edges in the canvas
change and both the density field and the edge aggregation
are recomputed. In other words, the rendering step is repeated
on a portion of the whole layout. When zooming-in, the
density field becomes more fine grained and fewer edges
are aggregated, while when zooming-out, the density field
becomes less detailed and more edges are bundled together.
An undesired effect of a quick zoom-in or zoom-out operation
is a sudden change in the visualization, which is caused by
the sharp (dis)aggregation of vertices and edges. To cope with
this issue, an important feature of our interface, is that the ver-
tex and edge aggregation levels are dynamically tuned so to
make the whole exploration process more stable. We remark
that this feature is not present in [13].

A second feature allows the user to select a smaller portion
of the drawing, which is rendered inside a dedicated view
with a zoom level chosen by the user and independent of the
zoom level of the whole drawing; see Fig. 5 for an illustration.

Finally, BrowVis makes it possible to display a certain
percentage of the node labels with higher degree; this percent-
age is automatically set by the system based on the current
zoom level and on the current level of vertex aggregation.
In particular, to limit the overall visual complexity, one can
choose to visualize the labels in a neighborhood of a desired
point. Refer to Section V for illustrations and examples of this
feature.

IV. EXPERIMENTAL ANALYSIS
In this section we describe the experimental analysis that we
executed in order to assess the performance of BrowVis.

A. GRAPH BENCHMARK
We used three different benchmarks of graphs, already
exploited in similar experiments (see, e.g., [11]).

• Real. It consists of 12 real networks, with up to
1.5 million edges, taken from the Sparse Matrix Col-
lection of the University of Florida,6 the Stanford Large
Networks Dataset Collection,7 and the Network Data

6http://www.cise.ufl.edu/research/sparse/matrices/
7http://snap.stanford.edu/data/index.html

115780 VOLUME 10, 2022

L. Consalvi et al.: BrowVis: Visualizing Large Graphs in the Browser

Repository8 [54]. Details about name, type, and struc-
ture of these graphs are reported in Table 1. The whole
algorithmic pipeline (layout and rendering) is applied on
these graphs after the removal of isolated vertices, self-
loops, and parallel edges.

• Synth-Rand. It contains 18 synthetic random graphs
generated with the Erdõs-Rényi model [55]. These
graphs are divided into six groups of three graphs
each, with size (number of edges) m ∈ {104, 5 ·
104, 105, 106, 1.5 · 106, 2 · 106} and density (number of
edges divided by number of vertices) in the range [2, 3].

• Synth-SF. It contains 18 synthetic scale-free graphs
generated with the Barabasi-Albert model [56]. Again,
these graphs are divided into six groups of three graphs
each, with size (number of edges9) m ∈ {104, 5 ·
104, 105, 106, 1.5 · 106, 2 · 106} and density in the
range [2, 3].

B. EXPERIMENTAL SETTING
We executed the experiments on a MacBook Pro (Mid 2015)
laptop equipped with an i7-4870HQ CPU, 16 GB of RAM,
and runningmacOSBig Sur as operating system. Also, for the
experiments we used the 96.0.4664.45 version of the 64-bit
Google Chrome browser. For each computation, wemeasured
the running time and the memory footprint. For each graph,
we repeated the computation three times.

C. RESULTS
Table 2 shows the recorded running time and memory foot-
print for each of the three benchmarks. The running time
is split between the two main steps, layout and render-
ing. The values are averaged over the three executions.
For Synth-Rand and Synth-SF, the graphs are further
grouped based on the number of edges. The standard devia-
tion is also reported.

• Real. One can immediately observe that the layout
step is about one order of magnitude slower than the
rendering step. The relatively small standard deviation
values assess a good stability of the algorithms. The
smallest network (≈ 15 · 103 elements) took about
2.5 seconds to be visualized, while the largest one
(≈ 2.5 · 106 elements) took about 13 minutes. Notably,
the rendering step took less than 1 second for all graphs
with up to about 2 · 105 elements, and about 14 seconds
for the largest instance. Concerning the primarymemory
required by the computations, it ranges from 17 MB
for the smallest graph to about 2.6 GB for the largest
instance.

• Synth-Rand. Again the layout is significantly slower
than the rendering. The standard deviation is large, due
to the fact that graphs in the same group can have

8http://www.networkrepository.com/
9For each sample m, the actual number of edges of a graph in this sample

is approximately m, as the generator does not allow us fixing the number of
edges exactly.

(slightly) different sizes. However, the more uniform
structure of the graphs yields faster running times. The
smallest instances (≈ 14 · 103 elements) took about
2.2 seconds to be visualized, those with ≈ 2 · 106 ele-
ments took about 8 minutes, while the largest ones
(≈ 2.8 · 106 elements) took about 11 minutes.

• Synth-SF. Also for this benchmark, laying out the
graph is significantly slower than rendering the lay-
out. The standard deviation is larger than in the previ-
ous cases, because graphs in the same group can have
(slightly) different sizes and, in addition, their structure
is less uniform with this model. The smallest instances
(≈ 14 · 103 elements) took about 2.5 seconds to be
visualized, those with ≈ 2.5 · 106 elements took about
8 minutes, while the largest ones (≈ 2.8 · 106 elements)
took about 9 minutes. Overall, the running time and the
memory footprint are slightly lower than those obtained
for the Synth-Rand graphs. The reason may lie in the
fact that scale-free graphs often exhibit a dense core,
which results in better aggregations (especially in the
rendering step), which in turn yield faster computation
times and more compact data structures.

D. DISCUSSION
Our experiments show that BrowVis is able to visualize
graphs with several thousand edges in seconds, while it
can scale up to graphs with millions of edges in minutes.
We remark that, once the initial visualization has been com-
puted, any further interaction only requires to (partially)
repeat the rendering step, which never took more than
15 seconds in our experiments, and it actually took less than
0.5 seconds for all instances with less than 105 edges. In terms
of scalability, it shall be noticed that, since the WebAssembly
code runs in a sandbox, the communication with JavaScript is
obtained via shared memory locations references with 32-bit
pointers, which limits themaximum amount of primarymem-
ory that can be used to 4GB. Hence, scaling to much larger
graphs would require to overcome this memory limit, e.g.,
by filtering the graph in a preprocessing routine [57].

As already discussed, the experiments conducted in [18]
report neither the running time nor the memory footprint of
the algorithms. In particular, it is not clear what it is the initial
time to wait until a first stable visualization is produced. Yet,
the experiments in [18] suggest that BrowVis outperforms
the considered technologies, namely Stardust.js andD3.js can
render up to a total of 105 elements (both vertices and edges),
while NetV.js can render up to a total of 106 elements showing
at least 1 frame per second. In Section V, we will also report
about the observed framerate during an interaction session
with the computed visualizations. In addition, we remark
that BrowVis produces an interactive abstraction of the input
graph, which allows for a details-on-demand exploration that
avoids clutter and over-plotting.

V. CASE STUDY
In this section, we describe a case study that shows how
BrowVis can be effectively exploited to extract useful

VOLUME 10, 2022 115781

L. Consalvi et al.: BrowVis: Visualizing Large Graphs in the Browser

TABLE 1. Details for the Real benchmark. |V | and |E | are the number of vertices and edges of the instances.

information from a large real-world graph. The input is a
scientific collaboration network representing co-authorships
in the area of visualization and computer graphics. Specifi-
cally, from the popular DBLP repository [58], we collected
meta-information about the articles published until 2020 on
three journals that are highly representative of the aforemen-
tioned research area, namely IEEETransactions onVisualiza-
tion and Computer Graphics, IEEE Computer Graphics and
Applications, and Computer Graphics Forum. Additionally,
we considered all articles appeared until 2020 in the pro-
ceedings of the annual Symposium on Graph Drawing and
Network Visualization (GD), which focuses on theoretical
and application aspects of graph visualization.

From the collected set of articles, we constructed a network
such that each node represents an author and two nodes are
connected by an edge if they are co-authors of at least one
article. The network consists of n = 16 435 nodes and m =
52 778 edges, hence it has density m

n = 3.2. In terms of
connectivity, the network is composed of 1 293 connected
components, 436 of them being isolated nodes. The largest
connected component, denoted as C , contains nC = 13 008
nodes (about 79.1% of the total node set) and mC = 48 464
edges (about 91.8% of the total edge set); its density is
therefore mC

nC
= 3.7.

We visually inspected C with BrowVis, on the same
machine used for running the experiments of Section IV: The
layout time was of 6.9 seconds and the rendering time was of
0.75 seconds. Without interaction the visualization consists
of 60 FPS (frame per second). With the default level of
vertex and edge aggregation, the framerate during interaction
(zoom or panning) was about 35 FPS. The framerate dropped
below 10 FPS with the maximum level of vertex and edge
aggregation, which requires the highest computational effort.

Fig. 6 depicts a high-level visualization of the network. The
vertex and edge aggregations at this level clearly reveal the
presence of three denser areas in the network, loosely con-
nected to each other: Two bigger areas at the core of the layout

FIGURE 6. High-level view of the scientific collaboration network
analyzed in the case study. The visualization reveals three main denser
areas, two in the central part of the layout and one smaller in the top-left
part.

and a smaller area in the top-left part of the layout. Each area
appears as a darker blue zone, which reflects the aggregation
of many vertices, containing some thick yellow segments,
representing the aggregation of several edges. We inspected
the three areas separately to get insights about what they
represent. To this aim, we displayed some node labels inside
them. Recall that BrowVis allows us to display a certain per-
centage of the labels of the nodes with higher degree, and that
this percentage is automatically decided based on the current
zoom level and on the current level of vertex aggregation.
At the same time, the user can choose to visualize the labels
in a neighborhood of a desired point.

Using these functionalities, we could observe that each of
the three areas refers to a specific type of community. Namely,
one of the two big central areas (the top one) consists of
authors that mainly work in information visualization and
visual analytics; as shown in Fig. 7, some representative
authors in this area includeK.Ma, H. Qu, H. Pfister, B. Preim,
D. A. Keim, and D. S. Ebert. The lower big central area
is more focused on computer graphics, with representative
authors including H. Seidel and M.H. Gross. Also, some

115782 VOLUME 10, 2022

L. Consalvi et al.: BrowVis: Visualizing Large Graphs in the Browser

TABLE 2. Running time and memory footprint. The symbol σ denotes the standard deviation.

FIGURE 7. Visualization of few representative labels in the different
areas. Some authors look as bridges between different communities.

authors (e.g., W. Chen), fall in the middle of the two areas.
The smaller area in the top-left part of the network consists
of authors in the graph drawing community. It is worth

observing that some of them, such as S. G. Kobourov and
U. Brandes, are well recognized both in the graph drawing
and in the information visualization fields, thus representing
a bridge between the two communities. In the layout, these
authors are correctly located in the middle of the two corre-
sponding areas.

Fig. 8 is a zoom-in of a portion of the graph drawing com-
munity, where more elements are visible. Although the edge
and vertex aggregation mechanisms make it often difficult
to visually establish the existence of connections between
specific pairs of authors, the overall picture provides useful
information. For example, it is worth observing that there is
a high concentration of edges emanating from some clusters,
in particular the one represented by M. Kaufmann, who is
in fact recognized as one of the most collaborative authors
of this community. The node labels shown in the figure are
the authors that share some articles with M. Kaufmann. Also,

VOLUME 10, 2022 115783

L. Consalvi et al.: BrowVis: Visualizing Large Graphs in the Browser

FIGURE 8. Zoom-in of a portion of the graph drawing community. The green highlighted rectangle indicates an intensive and continuous
collaboration of Kaufmann with other two authors; the orange rectangle indicates authors that stopped their collaboration with Kaufmann
several years ago.

FIGURE 9. Magnification of an upper left portion of the graph drawing community, which highlights scientists working on theoretical
aspects of graph drawing.

node proximity in the layout provides additional insights.
For instance, the two authors (M. Bekos and P. Angelini)
that are very close to M. Kaufmann (see the highlighted
green rectangle in Fig. 8) have been collaborating intensively
with him for many years; conversely, the farther two authors
(R. Wiese and M. Siebenhaller) in the highlighted orange
rectangle stopped their collaboration with Kaufmann back in
time.

Wefinally report in Fig. 9 a detail of an upper left portion of
the graph drawing community, obtained through themagnify-
ing glass offered by the system. The authors appearing in this

area are Eastern European scientists working on theoretical
aspects of graph drawing.

VI. CONCLUSION AND FUTURE WORK
Motivated by the goal of exploring the scalability limits
of a system that executes the entire graph visualization
pipeline in the browser, we developed BrowVis, a self-
contained Javascript-based system to interactively visualize
large graphs. BrowVis adopts a multi-level force-directed
algorithm to layout the input graph, and it allows an interac-
tive exploration of the produced visualization, with adjustable

115784 VOLUME 10, 2022

L. Consalvi et al.: BrowVis: Visualizing Large Graphs in the Browser

level of abstraction. A publicly available proof-of-concept
implementation of BrowVis has been used to run an extensive
experimental analysis. On a common laptop, BrowVis can
visualize graphs with several thousand elements in seconds,
as well as graphs with millions of elements in minutes.
In addition, the usefulness of BrowVis is demonstrated in
a visual exploration session of a large real-world scientific
collaboration network.

Our work demonstrates that visualization pipelines of con-
siderably large graphs can be entirely integrated in client-side
systems. Still, there are several research directions that are
worth pursuing. Among them:

• The most natural research direction is to further
speed-up our techniques. We believe that pursuing such
a direction, especially for the rendering step, requires the
design of more sophisticated data structures to update
the density field and the edge bundles dynamically.
In addition, alternative exploration paradigms or visual
abstraction methods may contribute to this research
direction.

• We focused on static graphs whose structure does not
change over time. Dealing with dynamic graphs, such as
those originated by streaming data sources, would open
the way to new interesting applications (see, e.g., [22]).
This would require to re-think both the layout step,
which should produce layouts that remain stable over
time, as well as the rendering step, which should high-
light the changes that occur over time.

• Integrating intelligent agents that employ task offloading
strategies [59] is also of great interest, in order to exploit
a broader and dynamic range of available computing
resources, spanning from local hardware to the cloud
through edge devices.

• Our user interface is designed for laptop and desktop
screens. Optimizing it for smartphones would be useful.
In this direction, the study of intelligent interfaces that
dynamically optimize and adjust their menus represents
an active line of research [60].

ACKNOWLEDGMENT
This is an expanded paper from the First Italian Conference
on Big Data and Data Science (ITADATA 2022).

REFERENCES
[1] X. Jia, T. Wen, W. Ding, H. Li, and W. Li, ‘‘Semi-supervised label dis-

tribution learning via projection graph embedding,’’ Inf. Sci., vol. 581,
pp. 840–855, Dec. 2021.

[2] W. Didimo, L. Grilli, G. Liotta, F. Montecchiani, and D. Pagliuca, ‘‘Visual
querying and analysis of temporal fiscal networks,’’ Inf. Sci., vol. 505,
pp. 406–421, Dec. 2019.

[3] Z. Lin, L. Feng, R. Yin, C. Xu, and C. K. Kwoh, ‘‘GLIMG:Global and local
item graphs for top-N recommender systems,’’ Inf. Sci., vol. 580, pp. 1–14,
Nov. 2021.

[4] N. Binesh and M. Ghatee, ‘‘Distance-aware optimization model for influ-
ential nodes identification in social networks with independent cascade
diffusion,’’ Inf. Sci., vol. 581, pp. 88–105, Dec. 2021.

[5] R. Baggio and M. Fuchs, ‘‘Network science and E-tourism,’’ Inf. Technol.
Tourism, vol. 20, nos. 1–4, pp. 97–102, Dec. 2018.

[6] L. T. Mohammed, A. A. AlHabshy, and K. A. ElDahshan, ‘‘Big data
visualization: A survey,’’ in Proc. HORA, 2022, pp. 1–12.

[7] S. Sahu, A. Mhedhbi, S. Salihoglu, J. Lin, and M. T. Özsu, ‘‘The ubiquity
of large graphs and surprising challenges of graph processing: Extended
survey,’’ VLDB J., vol. 29, nos. 2–3, pp. 595–618, May 2020.

[8] S.-H. Cheong and Y.-W. Si, ‘‘Force-directed algorithms for schematic
drawings and placement: A survey,’’ Inf. Visualizat., vol. 19, no. 1,
pp. 65–91, Jan. 2020.

[9] Y. Hu and L. Shi, ‘‘Visualizing large graphs,’’ Wiley Interdiscipl. Rev.,
Comput. Statist., vol. 7, no. 2, pp. 115–136, Mar. 2015.

[10] S. G. Kobourov, ‘‘Force-directed drawing algorithms,’’ in Handbook of
GraphDrawing and Visualization, R. Tamassia, Ed. Boca Raton, FL, USA:
CRC Press, 2013.

[11] A. Arleo, W. Didimo, G. Liotta, and F. Montecchiani, ‘‘Large graph
visualizations using a distributed computing platform,’’ Inf. Sci., vol. 381,
pp. 124–141, Mar. 2017.

[12] A. Arleo, W. Didimo, G. Liotta, and F. Montecchiani, ‘‘A distributed
multilevel force-directed algorithm,’’ IEEE Trans. Parallel Distrib. Syst.,
vol. 30, no. 4, pp. 754–765, Apr. 2019.

[13] M. Zinsmaier, U. Brandes, O. Deussen, and H. Strobelt, ‘‘Interactive level-
of-detail rendering of large graphs,’’ IEEE Trans. Vis. Comput. Graphics,
vol. 18, no. 12, pp. 2486–2495, Dec. 2012.

[14] K. El Gebaly and J. Lin, ‘‘In-browser interactive SQL analytics with after-
burner,’’ in Proc. ACM Int. Conf. Manag. Data, May 2017, pp. 1623–1626.

[15] J. Lin, ‘‘Building a self-contained search engine in the browser,’’ in Proc.
Int. Conf. Theory Inf. Retr., Sep. 2015, pp. 309–312.

[16] J. Lee, R. Tang, and J. Lin, ‘‘Honkling: In-browser personalization for
ubiquitous keyword spotting,’’ in Proc. Conf. Empirical Methods Natural
Lang. Process. 9th Int. Joint Conf. Natural Lang. Process. (EMNLP-
IJCNLP), 2019, pp. 91–96.

[17] S. Dutta and S. Roy, ‘‘Complex network visualisation using JavaScript:
A review,’’ in Intelligent Systems, S. K. Udgata, S. Sethi, and X.-Z. Gao,
Eds. Singapore: Springer, 2022, pp. 45–53.

[18] D. Han, J. Pan, X. Zhao, and W. Chen, ‘‘NetV.Js: A web-based library
for high-efficiency visualization of large-scale graphs and networks,’’ Vis.
Informat., vol. 5, no. 1, pp. 61–66, Mar. 2021.

[19] M. Chimani, C. Gutwenger, M. Jünger, G. W. Klau, K. Klein, and
P. Mutzel, ‘‘The open graph drawing framework (OGDF),’’ in Handbook
of Graph Drawing and Visualization. Boca Raton, FL, USA: CRC Press,
2013, pp. 543–569.

[20] S. Hachul and M. Junger, ‘‘Large-graph layout algorithms at work:
An experimental study,’’ J. Graph Algorithms Appl., vol. 11, no. 2,
pp. 345–369, 2007.

[21] T. VonLandesberger, A. Kuijper, T. Schreck, J. Kohlhammer, J. J. vanWijk,
J.-D. Fekete, and D. W. Fellner, ‘‘Visual analysis of large graphs: State-of-
the-art and future research challenges,’’ Comput. Graph. Forum, vol. 30,
no. 6, pp. 1719–1749, Sep. 2011.

[22] S.-H. Cheong, Y.-W. Si, and R. K. Wong, ‘‘Online force-directed
algorithms for visualization of dynamic graphs,’’ Inf. Sci., vol. 556,
pp. 223–255, May 2021.

[23] W. Didimo and F. Montecchiani, ‘‘Fast layout computation of clustered
networks: Algorithmic advances and experimental analysis,’’ Inf. Sci.,
vol. 260, pp. 185–199, Mar. 2014.

[24] U. Dogrusoz, E. Giral, A. Cetintas, A. Civril, and E. Demir, ‘‘A layout
algorithm for undirected compound graphs,’’ Inf. Sci., vol. 179, no. 7,
pp. 980–994, Mar. 2009.

[25] T. M. J. Fruchterman and E. M. Reingold, ‘‘Graph drawing by force-
directed placement,’’ Softw., Pract. Exper., vol. 21, no. 11, pp. 1129–1164,
Nov. 1991.

[26] A. J. Quigley and P. Eades, ‘‘FADE: Graph drawing, clustering, and visual
abstraction,’’ in Graph Drawing (Lecture Notes in Computer Science),
vol. 1984. Berlin, Germany: Springer, 2000, pp. 197–210.

[27] R. Hadany and D. Harel, ‘‘A multi-scale algorithm for drawing graphs
nicely,’’ Discrete Appl. Math., vol. 113, no. 1, pp. 3–21, Sep. 2001.

[28] C. Walshaw, ‘‘A multilevel algorithm for force-directed graph-drawing,’’
J. Graph Algorithms Appl., vol. 7, no. 3, pp. 253–285, 2003.

[29] S. Hachul, ‘‘A potential field based multilevel algorithm for drawing
large graphs,’’ Ph.D. dissertation, Mathematisch-Naturwissenschaftlichen
Fakultaet, Univ. Cologne, Cologne, Germany, 2005. [Online]. Available:
http://kups.ub.uni-koeln.de/volltexte/2005/1409/index.html

[30] S. Hachul and M. Jünger, ‘‘Drawing large graphs with a potential-field-
based multilevel algorithm,’’ in Graph Drawing (Lecture Notes in Com-
puter Science), vol. 3383. Berlin, Germany: Springer, 2004, pp. 285–295.

[31] G. Bartel, C. Gutwenger, K. Klein, and P. Mutzel, ‘‘An experimental
evaluation of multilevel layout methods,’’ in Graph Drawing (Lecture
Notes in Computer Science), vol. 6502. Berlin, Germany: Springer, 2010,
pp. 80–91.

VOLUME 10, 2022 115785

L. Consalvi et al.: BrowVis: Visualizing Large Graphs in the Browser

[32] D. Auber and Y. Chiricota, ‘‘Improved efficiency of spring embedders:
Taking advantage of GPU programming,’’ in VIIP. Palma de Mallorca,
Spain: ACTA Press, 2007, pp. 169–175.

[33] A. Godiyal, J. Hoberock, M. Garland, and J. C. Hart, ‘‘Rapid multipole
graph drawing on the GPU,’’ in Graph Drawing (Lecture Notes in Com-
puter Science), vol. 5417. Berlin, Germany: Springer, 2009, pp. 90–101.

[34] S. Ingram, T. Munzner, and M. Olano, ‘‘Glimmer: Multilevel MDS on
the GPU,’’ IEEE Trans. Vis. Comput. Graph., vol. 15, no. 2, pp. 249–261,
Mar./Apr. 2009.

[35] E. Yunis, R. Yokota, and A. Ahmadia, ‘‘Scalable force directed graph
layout algorithms using fast multipole methods,’’ in Proc. 11th Int. Symp.
Parallel Distrib. Comput., Jun. 2012, pp. 180–187.

[36] H. Meyerhenke, M. Nollenburg, and C. Schulz, ‘‘Drawing large graphs by
multilevel maxent-stress optimization,’’ IEEE Trans. Vis. Comput. Graph-
ics, vol. 24, no. 5, pp. 1814–1827, May 2018.

[37] C. Mueller, D. Gregor, and A. Lumsdaine, ‘‘Distributed force-directed
graph layout and visualization,’’ in Proc. EGPGV, Eurographics, 2006,
pp. 83–90.

[38] S. Chae, A. Majumder, and M. Gopi, ‘‘HD-GraphViz: Highly distributed
graph visualization on tiled displays,’’ in Proc. 8th Indian Conf. Comput.
Vis., Graph. Image Process. (ICVGIP), 2012, pp. 43.1–43.8.

[39] A. Tikhonova and K. Ma, ‘‘A scalable parallel force-directed graph layout
algorithm,’’ in Proc. EGPGV, Eurographics, 2008, pp. 25–32.

[40] A. Hinge and D. Auber, ‘‘Distributed graph layout with spark,’’ in Proc.
19th Int. Conf. Inf. Visualisation, 2015, pp. 271–276.

[41] A. Hinge, G. Richer, and D. Auber, ‘‘MuGDAD:Multilevel graph drawing
algorithm in a distributed architecture,’’ in Proc. Conf. Comput. Graph.,
Vis. Comput. Vis., 2017, p. 189.

[42] A. Meidiana, S.-H. Hong, S. Cai, M. Torkel, and P. Eades, ‘‘Sublinear-time
attraction force computation for large complex graph drawing,’’ in Proc.
IEEE 14th Pacific Visualizat. Symp. (PacificVis), Apr. 2021, pp. 146–150.

[43] B. Shneiderman, ‘‘The eyes have it: A task by data type taxonomy for
information visualizations,’’ in Proc. IEEE Symp. Vis. Lang., Apr. 1996,
pp. 336–343.

[44] J. Abello, F. van Ham, and N. Krishnan, ‘‘ASK-GraphView: A large scale
graph visualization system,’’ IEEE Trans. Vis. Comput. Graphics, vol. 12,
no. 5, pp. 669–676, Sep. 2006.

[45] D. Auber, Y. Chiricota, F. Jourdan, and G. Melancon, ‘‘Multiscale visu-
alization of small world networks,’’ in Proc. IEEE Symp. Inf. Visualizat.,
Oct. 2003, pp. 75–81.

[46] F. van Ham and J. J. van Wijk, ‘‘Interactive visualization of small world
graphs,’’ in Proc. IEEE Symp. Inf. Visualizat., Oct. 2004, pp. 199–206.

[47] A. Perrot and D. Auber, ‘‘Cornac: Tackling huge graph visualization with
big data infrastructure,’’ IEEE Trans. Big Data, vol. 6, no. 1, pp. 80–92,
Mar. 2020.

[48] M. Franz, C. T. Lopes, G. Huck, Y. Dong, S. O. Sümer, and G. D. Bader,
‘‘Cytoscape.Js: A graph theory library for visualisation and analysis,’’
Bioinformatics, vol. 32, no. 2, pp. 309–311, 2016.

[49] M. Bostock, V. Ogievetsky, and J. Heer, ‘‘D3 data-driven documents,’’
IEEE Trans. Vis. Comput. Graph., vol. 17, no. 12, pp. 2301–2309,
Dec. 2011.

[50] J.-P. Coene, ‘‘Sigmajs: An R htmlwidget interface to the sigma. Js visual-
ization library,’’ J. Open Source Softw., vol. 3, no. 28, p. 814, Aug. 2018.

[51] D. Ren, B. Lee, and T. Höllerer, ‘‘Stardust: Accessible and transparent GPU
support for information visualization rendering,’’ Comput. Graph. Forum,
vol. 36, no. 3, pp. 179–188, Jun. 2017.

[52] C. Rodriguez, P. Toharia, L. Pastor, and S. Mata, ‘‘Carbonic: A frame-
work for creating and visualizing complex compound graphs,’’ Appl. Sci.,
vol. 12, no. 15, p. 7541, Jul. 2022.

[53] F. Auer, S. Mayer, and F. Kramer, ‘‘Data-dependent visualization of bio-
logical networks in the web-browser with ndexedit,’’ PLOS Comput. Biol.,
vol. 18, no. 6, pp. 1–13, Jun. 2022.

[54] R. A. Rossi and N. K. Ahmed, ‘‘The network data repository with
interactive graph analytics and visualization,’’ in Proc. AAAI, 2015,
pp. 4292–4293. [Online]. Available: http://networkrepository.com

[55] P. Erdos and A. Rényi, ‘‘On random graphs I,’’ Pub. Math. (Debrecen),
vol. 6, pp. 290–297, Dec. 1959.

[56] A.-L. Barabási and R. Albert, ‘‘Emergence of scaling in random net-
works,’’ Science, vol. 286, no. 5439, pp. 509–512, 1999.

[57] X. Huang and C. Huang, ‘‘NGD: Filtering graphs for visual analysis,’’
IEEE Trans. Big Data, vol. 4, no. 3, pp. 381–395, Sep. 2018.

[58] M. Ley, ‘‘The DBLP computer science bibliography: Evolution, research
issues, perspectives,’’ in String Processing and Information Retrieval (Lec-
ture Notes in Computer Science), vol. 2476. Berlin, Germany: Springer,
2002, pp. 1–10.

[59] F. Saeik, M. Avgeris, D. Spatharakis, N. Santi, D. Dechouniotis, J. Violos,
A. Leivadeas, N. Athanasopoulos, N. Mitton, and S. Papavassiliou, ‘‘Task
offloading in edge and cloud computing: A survey on mathematical, arti-
ficial intelligence and control theory solutions,’’ Comput. Netw., vol. 195,
Aug. 2021, Art. no. 108177.

[60] G. Pau, F. Arena, M. Collotta, and X. Kong, ‘‘A practical approach based
on Bluetooth low energy and neural networks for indoor localization and
targeted devices identification by smartphones,’’ Entertainment Comput.,
vol. 43, Aug. 2022, Art. no. 100512.

LUCA CONSALVI received the master’s degree in
computer and robotics engineering from the Uni-
versity of Perugia, in 2021. While developing and
writing his thesis, he studied web technologies and
information visualization techniques for network
visualization and network analysis.

WALTER DIDIMO received the Ph.D. degree
in computer engineering from the University of
Rome ‘‘La Sapienza,’’ in 2000. He is currently
an Associate Professor at the Department of
Engineering, University of Perugia. His research
interests include graph drawing, information visu-
alization, algorithm engineering, and computa-
tional geometry. He collected more than 150
international publications in the above areas and
chaired the program committee of the International

Symposium on Graph Drawing. He currently serves as an Associate Editor
for the IEEE ACCESS journal.

GIUSEPPE LIOTTA (Senior Member, IEEE) is
currently a Professor at the Department of Engi-
neering, University of Perugia, Italy. His research
interests include information visualization, graph
drawing, and computational geometry. On these
topics, he published more than 250 research
papers. He chaired the Steering Committee of the
International Symposium of Graph Drawing and
Network Visualization and he currently serves as
the Editor-in-Chief of Computer Science Review

and the Journal of Graph Algorithms and Applications.

FABRIZIO MONTECCHIANI received the Ph.D.
degree in information engineering from the Uni-
versity of Perugia, in 2014. He currently works
as an Associate Professor with the University
of Perugia. His research interests include graph
drawing, computational geometry, visual analyt-
ics, and big data algorithms. He collected more
than 100 scientific publications in the above areas.
In 2021, he has been awarded by the IC-EATCS as
the Best Young Italian Researcher in Theoretical

Computer Science. He has been the Guest Editor of the Journal of Graph
Algorithms & Applications and Future Internet, and he has been a PC
Member of international conferences, such as EuroCG,GD,MFCS, andWG.

Open Access funding provided by ‘Università degli Studi di Perugia’ within the CRUI CARE Agreement

115786 VOLUME 10, 2022

