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ABSTRACT Verifying the functional behavior of graphical user interface (GUI) applications is essential
for reducing post-release issues. In practice, a developer/tester performs this verification by executing a
sequence of GUI actions and then witnessing the expected behavior on the GUI screen. An automated
witness generator facilitates the verification process. However, creating an unambiguous and monitorable
specification for the correct behavior and then generating the correct GUI actions to trigger that behavior is
challenging. In this study, we propose FARLEAD?2, an automated witness generator that uses unambiguous,
monitorable, and easy-to-read staged test scenarios (STSs) to specify expected behavior. FARLEAD2
maximizes its effectiveness and performance using generalized experienced replay (GER) to exploit the
experience gathered from previously witnessed scenarios on new, unwitnessed test scenarios. To the best
of our knowledge, STS and GER are novel improvements to GUI testing. Our evaluation of Android GUI
applications shows that FARLEAD?2 effectively generates a witness 95.7 times out of 100 and does it in
520 seconds, on average, indicating that FARLEAD? is approximately 65 percent faster and 6.3 percent

more effective than its best predecessor.

INDEX TERMS Experience replay, functional testing, GUI testing, reinforcement learning.

I. INTRODUCTION

Graphical user interface (GUI) applications play a huge role
in mobile devices. Statistics show that between 2019 and
2021, on average, a hundred thousand new mobile applica-
tions have been released on Google Play every month [1].
At this rate, it is inevitable for incorrect behavior to occur
in application releases. A survey [2] shows that 78%sign
of mobile GUI application users regularly encounter bugs
causing applications to fail their intended functions. To min-
imize incorrect behavior without slowing down the soft-
ware development process, developers need a practical
way to verify functionality as much as possible before
release.

In practice, a developer/tester verifies the correct behavior
by observing it after executing a sequence of GUI actions
with the help of a test automation tool. A GUI test automation
tool can re-execute a given GUI action sequence, saving the
developer/tester from manually executing every GUI action.
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Furthermore, the developer/tester may insert simple asser-
tions between GUI actions, such as observing a text. Then,
these assertions automatically verify correct behavior.

A developer/tester using a test automation tool must still
determine GUI actions and assertions related to the GUI
function under test. According to a bibliometric analysis [3],
automated GUI test generators have been a growing research
topic for 30 years. A GUI test generator produces GUI action
sequences, saving the developer/tester from manually deter-
mining the GUI actions.

In mobile GUI testing studies, many test generators check
fatal exceptions (crashes), target structural coverage criteria,
or both [4], [5], [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24],
[25], [26], [27]. Tests produced by these generators excel
at detecting crashes and exploring as many GUI screens as
possible. However, they still may not witness a GUI function
under test because they do not specifically target that GUI
function. Some specialized test generators focus on accessi-
bility issues [28], energy bugs [29], common app-agnostic
problems [30], [31], and targeting sensitive APIs [32].
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These studies show that a specialized test generator is a
necessity to target a specific testing goal.

Most existing research on mobile GUI testing focus on
structural coverage and bugs/crashes, so the goal of verify-
ing GUI functions remains a neglected research topic. Our
experience with real-world mobile banking applications [33]
shows that a state-of-the-art test generator is ineffective in
witnessing GUI functions located deep in the GUI appli-
cation. Hence, a practical test generator must exhibit better
performance and effectiveness. In addition, the same experi-
ence shows that developers need an unambiguous, readable,
maintainable, and automatically monitorable test scenario
language to specify example use cases for GUI functions. The
test scenarios then would act as automated test oracles for
GUI functions.

We propose a novel test generator called fully automated
reinforcement learning driven-2 (FARLEAD?2). FARLEAD?2
aims to maximize its effectiveness and performance via gen-
eralized experience replay (GER), a novel technique that
exploits the experience gathered from previously witnessed
scenarios on new, not-witnessed test scenarios. In addition,
it introduces the novel staged test scenario (STS) language.
STS is not just unambiguous, readable, and automatically
monitorable but is also divided into multiple stages. These
stages facilitate FARLEAD?2’s learning process by using the
test scenario as a guide that positively rewards FARLEAD?2,
as it witnesses intermediate stages instead of just presenting
it as a Boolean test oracle.

Fig. 1 presents the overview of FARLEAD?2. First, the AUT
gets installed on a mobile device. The mobile device can
be an emulator, a VirtualBox guest, a physical device, or a
finite state transition system modeling the device. The only
requirement is that it accepts an action as input and outputs
its device state.

Second, the Developer/Tester provides a test scenario in
the form of an STS related to the AUT. The STS monitor
receives the STS, then computes the monitor state and cal-
culates the immediate reward to supervise the reinforcement
learning (RL) agent. Note that FARLEAD?2 uses RL, a popu-
lar semi-supervised machine learning technique. RL outper-
forms humans in many fields like resource management [34],
traffic light control [35], chess [36], Atari [37], and chem-
istry [38]. Furthermore, to the best of our knowledge, the best
functional witness-generating predecessor of FARLEAD?2 for
Android uses RL, too [39], [40].

Third, the GER agent generates labels by processing
every generalized unit experience residing in the experience
database, where a generalized unit experience is a transition
between two device states via an action. The GER agent
receives rewards from the STS monitor and learns the initial
policy. After exhausting all the generalized unit experiences,
the GER agent sends the initial policy to the RL agent.

Fourth, after receiving the initial policy, the RL agent
searches for a witness (a replayable action sequence consis-
tent with the given STS) by selecting an action according
to its current policy and executing it on a mobile device.
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Then, the RL agent observes the device state and generates
a generalized unit experience along with labels, storing the
generalized unit experience in the experience database and
sending the labels back to the STS monitor. The STS monitor
calculates the reward from the labels and sends it back to the
RL agent. The RL agent learns from the reward and continues
searching until it finds a witness or gives up the search after
a predefined limit.
Our main contributions to the literature are

1) the novel GER as a mobile GUI testing improvement for
effectiveness and performance,

2) the novel STS as a readable test scenario instead of an
LTL specification or Gherkin script, and

3) an experimental evaluation of FARLEAD?2, demonstrat-
ing its superiority over its best predecessor in functional
witness generation for Android GUI applications.

The remainder of this paper is organized as follows.
Section II discusses the related work. Section III explains
the necessary background on GUI testing, RL agents, and
ER. Section IV describes our method. Section V presents our
evaluation of FARLEAD2. Section VI discusses threats to
validity. Section VII concludes by summarizing our findings
and stating future research avenues.

Il. RELATED WORK
In this section, we discuss related work in three categories,

1) GUI testing,

2) Android runtime monitoring tools that enable automatic
following of a specified test oracle, and

3) Studies combining RL with a formal specification lan-
guage, such as linear-time temporal logic (LTL) formu-
lae, where an LTL formula acts as an automated oracle.

A. GUI TESTING

Graphical user interface (GUI) testing is the system testing
of an application under test (AUT) through a GUI front-
end [41]. As such, GUI testing naturally involves verifying
the functional behavior of the AUT. This verification task has
two challenges: automated test oracles and test generation.

1) AUTOMATED GUI TEST ORACLES
According to a systematic mapping of GUI testing
works [41], most studies on GUI testing do not use any test
oracle. We consider these articles to be out of our scope
because they do not propose fully automated GUI testing
methods.

In addition to being a necessity for fully automated testing,
a test oracle also contributes significantly to test effective-
ness [42]. GUI testing studies with test oracles mostly used
either state references or crashes as test oracles [41]. State
referencing is the practice of storing GUI states during test
execution and then reviewing the stored states to evaluate
AUT behavior. State references are impractical, because the
number of GUI states available for a GUI application is
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FIGURE 1. FARLEAD2 Overview.

typically large. Therefore, reviewing every GUI state is prac-
tically infeasible for the developer/tester.

When the test oracle checks for application crashes instead
of state referencing, any crash-free behavior passes the test.
Therefore, the test oracle fails to distinguish the correct
behavior even if it observes that behavior and accepts faulty
behavior if it does not crash. Therefore, the crash-type
test oracles are also not particularly useful for functional
verification.

Several studies [19], [23], [43] have used structural cov-
erage criteria as a test oracle. However, traditional cover-
age criteria work poorly for GUI testing because they are
suitable for conventional software systems and not for GUI
applications [44], [45]. In addition, a test oracle targeting
structural coverage suffers from a problem similar to crash-
type test oracles; it may ignore correct behavior or accept
faulty behavior as long as it observes a structural coverage
increase.

Formal methods-based GUI test oracles target the auto-
matic verification of the correct behavior. These test oracles
either monitor a model or a specification during test execution
and decide whether the test triggered a target behavior during
runtime.

Model-based GUI test oracles require an approximately
accurate GUI model to evaluate whether a test has passed.
However, these models are often unavailable. Therefore,
in practice, the test generator crawls the AUT to gen-
erate a model. However, if no one specifies the correct
behavior, the crawler cannot know what to look for and is
unable to generate the necessary model for verifying a target

116226

function. Moreover, conventional GUI models such as finite-
state machines do not have sufficient descriptive power for
verification [46]. Hence, a model-based GUI test oracle is
unsuitable for verifying app-specific functional behaviors.

Initial specification-based GUI test oracle studies used

operators with first-order logic semantics to describe the test
oracle [45], [46]. Subsequently, GUICOP [47], [48] used
a custom specification language with variables, properties,
constraints, and relational operators based on propositional
logic. These relational operators rely on arithmetic compar-
isons to describe GUI widgets relative to each other, such as a
GUI widget residing next to another widget. Finally, our pre-
vious works [39], [40] used linear-time temporal logic (LTL)
to describe similar test oracles for Android GUISs. In contrast
to other logic systems, LTL has the advantage of providing
a natural way to express a target behavior over time. Even
s0, our experience with a real-world banking application [33]
shows that any logic-based specification as a test oracle is
impractical because the developer/tester’

1) Must become proficient in the language or underlying
logic (propositional, first-order, or temporal),

2) Maintains specifications, which would be easier if they
were natural language instead of logical expressions,
and

3) Presents the test oracle as a test scenario or a software
requirement use case to the customer, who does not
necessarily know coding or any logic system but needs
to know that the AUT’s functions work correctly.

Hence, a practical test oracle for verifying functional behav-
ior should be a test scenario close to a natural language but
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TABLE 1. Android GUI Test Generators.

Year # Name Goal
N/A 1 Monkey [4] Crash Detection
2012 2 ACTEve [5] Structural Coverage
3 A3E [6] Structural Coverage
2013 4 DynoDroid [7] Coverage & Crash
5 Orbit [8] Structural Coverage
6 SwiftHand [9] Structural Coverage
7 EvoDroid [10] Structural Coverage
8 GreenDroid [29] Energy
2014 9 MOobiGUITAR [11] Crash Detection
10 PUMA [12] Coverage & Crash
11 Quantum [30] Common Bugs
2015 | 12 MonkeyLab [13] Structural Coverage
13 CrashScope [14] Crash Detection
2016 14 Sapienz [15] Coverage & Crash
15 TrimDroid [16] Structural Coverage
2017 16 DroidBot [32] Sensitive APIs
17 Stoat [17] Structural Coverage
18 CrawlDroid [18] Crash Detection
19 MATE [28] Accesibility
2018 20 QBE [19] Coverage & Crash
21 TCM [20] Crash Detection
22 SwiftHand2? Structural Coverage
23 LAND [21] Structural Coverage
2019 24 Paraaim [22] Structural Coverage
25 | FARLEAD-Android [39] Functional Witness
2020 | 26 Q-testing [23] Coverage & Crash
27 GENIE [31] Common Bugs
2021 28 DroidBotX [24] Coverage & Crash
29 SQDroid [25] Coverage & Crash
30 Deep-GUIT [26] Coverage & Crash
2022 | 31 SARSA [27] Coverage & Crash
2022 | 32 ODIN [49] | Coverage & Common Bugs
2022 | 33 Fastbot2 [50] Coverage & Crash
“https://github.com/wtchoi/swifthand2

also unambiguous and runtime monitorable. Our experience
with readable UI automation syntaxes, such as Gherkin [33],
also shows that predefined semantics are not intuitive for such
syntaxes, making them impractical for runtime monitoring.
To the best of our knowledge, a readable test scenario
language that is also a practical automated GUI test oracle
such as the STS language is nonexistent in the literature.

2) AUTOMATED GUI TEST GENERATION

The second challenge in verifying the functional behavior of
GUI applications is to generate the correct GUI actions that
triggers this behavior. Note that this challenge is different
than Al-based planning for GUI testing [45], [51], which
produces high-level test cases but leaves the coding of all
critical decision points of a low-level, executable test to the
developer/tester [44].

Several GUI test generators including AutoBlackTest [52],
AntQ [53], TESTAR [54], QBE [19], curiosity-driven
Q-testing [23], DroidBotX [24], SQDroid [25], Deep-
GUIT [26], and SARSA [27] use RL to guide the test gen-
eration. All of these test generators are exploratory tools
because they aim to explore a given AUT quickly and as
much as possible. Hence, they infer reward functions from
the structural coverage criteria. However, verifying a specific
GUI function requires a goal-oriented testing tool rather than
an exploratory tool.
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Table 1 shows the 33 Android GUI test generators inves-
tigated in chronological order. Among these test generators,
27 tools target structural coverage, crash detection, or both.
Some specialized test generators focus on accessibility issues,
energy consumption problems, common bugs, and trigger-
ing of sensitive APIs. These studies show that a special-
ized test generator is necessary to achieve a specific testing
goal.

FARLEAD-Android is the first RL-driven GUI test gen-
erator that targets user-specified GUI functions by gen-
erating witnesses for these functions. Note that SQDroid
uses functional semantics to improve structural coverage
and does not target specific GUI functions. Our evaluation
in Section V shows that FARLEAD-Android is not always
effective in witnessing test scenarios that verify functional
behavior. When ineffective, FARLEAD-Android executes as
many GUI actions as possible on the AUT without pro-
ducing anything useful for the GUI function under test,
throwing away the experience it could exploit. This problem
reinforces the FARLEAD-Android’s impracticality for the
developer/tester.

To the best of our knowledge, FARLEAD? is the first
RL-driven GUI test generator that targets user-specified GUI
functions and utilizes previous experience to boost the test
generator effectiveness.

B. RUNTIME MONITORING FOR ANDROID

A runtime verification (RV) tool monitors the AUT and
reports whether an LTL test oracle passes. RV-Droid [55],
RV-Android [56], ADRENALIN-RV [57], and Android-
SRV [58] monitor Android AUTs. However, these tools mon-
itor the LTL properties at the source code level. Instead,
FARLEAD?2 monitor was at the GUI level. In addition, the
RV tools do not generate tests whereas FARLEAD?2 generates
tests while monitoring.

C. RL-LTL STUDIES

Several studies [59], [60], [61], [62] have developed RL-LTL
systems. Using RL, these systems learn to obey the
constraints specified in LTL. These RL-LTL systems must
continuously perform their given tasks, without termination.
Hence, as in typical RL-LTL approaches, they must con-
verge to an optimal policy to guarantee the highest reliability.
Instead, FARLEAD? is an RL-LTL system with a finite task;
therefore, it can terminate once the task is complete. There-
fore, FARLEAD does not have to converge to an optimal
policy, thereby saving from the learning time.

lll. BACKGROUND
The following two subsections describe (i) the Android GUI
environment (ii) the RL agent and (iii) ER.

A. ANDROID GUI ENVIRONMENT
We now discuss GUIs, GUI actions, test scenarios, and
reward values.
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TABLE 2. Supported GUI Actions.

Related
Widget

Action
Type

Menu
Back
2xBack
Click
Long-Click
Scroll-Up
Scroll-Down
Scroll-Left
Scroll-Right
Write
Reinit

Universal Parameters

R R B B B & B {A NN
AR NN NANE B 8

1) GRAPHICAL USER INTERFACE (GUI) AND GUI ACTIONS

A GUI is a visual medium through which a user interacts
with the AUT. We aim to automatically verify a GUI function
where a GUI function is an operation of the AUT according to
the software requirements of the AUT. Typically, witnessing
a test scenario ensures the correct behavior of a GUI function,
where the test scenario is just an example use case of a GUI
function. A test generator witnesses a test scenario by execut-
ing a GUI action sequence consistent with the test scenario.
Note that not every GUI action sequence corresponds to a test
scenario. Therefore, a GUI action sequence is a candidate,
and a candidate is a witness only if all its GUI actions are
consistent with the test scenario.

Table 2 lists the GUI actions that we support. Menu, back,
and 2xback actions are universal actions that are always
enabled. Click, long-click, scroll-up, scroll-down, scroll-left,
scroll-right, and write have related GUI widgets, where a
GUI widget is a GUI component visible on the screen. These
actions were enabled only if a related GUI widget appeared
on the screen. Technically, we determined the set of currently
enabled actions by parsing the XML hierarchy of the current
GUI layout. Only the write action has a parameter, which is
the text to write on its related GUI widget. We mainly deduce
this parameter from the test scenario, although it is possible to
provide a dictionary of generic text inputs. Finally, the reinit
action is a GUI action with no related GUI widget and is not
universal. Itis enabled only at the beginning of the GUI action
sequence.

2) TEST SCENARIO AND REWARD VALUES
A test scenario is typically an informal description because it
should be human-readable for a developer, tester, or customer
with no coding skills.The test scenario must be monitored
automatically, which is difficult when it is ambiguous. Hence,
a test scenario must be a formal description that is unambigu-
ous and runtime monitorable.

Given a test scenario, we aim to find the witness via
trial-and-error, generating many candidates before the one
consistent with the test scenario. We generated one candidate
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FIGURE 2. An Example GUI Step.

per episode, where each episode is a finite sequence of steps.
We generated and executed a GUI action at each step. To learn
after every step, we maintain a reward variable R. Most of
the R values are typical for an RL agent. When R = 4-1.00,
the candidate at hand (GUI action sequence) is indeed a
witness. When R = —1.00, the candidate never becomes a
witness because of its previous GUI actions. When R = 0.00,
the candidate does not get closer to or farther from being a
witness. In addition to these typical values, atypical partial
reward values vary between 0.00 and +1.00. In this case,
the candidate is not yet a witness but satisfies some of the
conditions of becoming one. In the literature, using such
partial reward values is known as Reward Shaping (RS) [63].

Atevery step, the monitor calculates the reward value auto-
matically by checking the currently monitored propositions
at that step for consistency with the test scenario. All of
these propositions are Boolean. We observe some of these
propositions during one step. All these observed propositions
are labels for that step.

A step has two types of proposition: necessary and suffi-
cient. These propositions create three possibilities for each
step. (i) Sufficient propositions represent a subset of the
labels. In this case, the monitor returns a positive reward,
plus one if this is the last step of the given test scenario.
(ii) Sufficient propositions are not a subset of the labels, and
at least one necessary proposition is not a label. The monitor
then returns a minus one reward. (iii) In all other cases, the
monitor returns zero. Note that a proposition is related to
either the current GUI action or GUI state, where a GUI state
is all the GUI widgets’ attributes on the screen.

Fig. 2 illustrates an example GUI step. On the screen to
the left, every necessary proposition is a label. However, the
“text IS Moving to recycle bin” proposition is not. We must
generate and execute the correct GUI action, so this propo-
sition also becomes a label, and we get a positive reward for
that. In reality, there are many more GUI actions enabled on
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FIGURE 3. RL Agent Flowchart.

the screen to the left. However, for simplicity, we consider
only the Click Cancel, Click Delete, and Click Note I actions.
Clicking Cancel closes the current screen. After this action,
the monitor generates a minus one reward because (i) the
“text IS Moving to recycle bin”’ proposition did not become
a label, and (ii) the necessary propositions stopped being
labels. Click Delete action opens a popup with “Moving to
recycle bin” text without closing the current screen, making
all the propositions labels. Therefore, the monitor generates a
positive reward. This reward is plus one if the action witnesses
the whole test scenario. Click Note 1 action clicks the text
at the top, so the screen remains unchanged where still, the
necessary propositions are labels, but the “text IS Moving to
recycle bin” proposition did not become a label. Therefore,
the monitor generates a zero reward. Note that all propositions
in the example are state propositions. Action propositions
may constrain what actions a test generator should take.
In that case, we automatically reduce the set of enabled
actions to avoid any future negative rewards and pursue pos-
itive rewards.

B. REINFORCEMENT LEARNING AGENT

Fig. 3 shows the flow of the RL agent. First, line (1) initializes
the number of episodes (E) to zero. If the number of episodes
is equal to or larger than the predefined maximum number
of episodes (MaxE), the RL agent terminates because it has
failed to generate a witness. Otherwise, the RL agent starts
a new episode through lines (2)—(5). line (2) initializes R as
zero. line (3) increments the number of episodes. line (4)
empties the candidate. line (5) restarts the monitor, so the
monitor starts to observe the test scenario from the beginning.
The RL agent begins a new step in lines (6)—(8). Line (6) pro-
vides the monitored propositions in the current step. Line (7)
obtains the set of enabled actions by the AUT. Line (8)
reduces the set of enabled actions according to necessary and
sufficient propositions. The RL agent reaches a dead end only
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if there are no enabled actions after the reduction. In this
case, line (9) sets R to minus one, and line (10) updates the
action selection policy according to R. Then, the RL agent
starts a new episode. Otherwise, line (11) selects a GUI action
according to the action selection Policy. Line (12) executes
this GUI action, and line (13) appends it to the candidate.
line (14) calculates the labels. Finally, line (15) calculates R
from these labels, and line (16) updates the action generation
Policy. If R = +1.00, the candidate is a witness, and the
RL agent terminates. If R = —1.00, it starts a new episode.
Otherwise, the RL agent proceeds to generate a new step
by going to line (6). The RL agent eventually terminates
because its monitor has an internal step counter that produces
a negative one reward if there are too many steps in the
episode.

The RL agent effectively generates a witness only if it
produces the witness within the predefined maximum number
of episodes. Otherwise, there are two possible explanations.
Either we need more episodes to find a witness, or the GUI
function is nonexistent in the AUT. Note that the RL agent
cannot prove the nonexistence of a GUI function such as a
model checker.

In addition to verifying GUI functions, we can also repro-
duce a known GUI bug using a test scenario for the bug. From
a test generator’s perspective, a GUI bug is equivalent to a
GUI function because it reproduces a GUI bug in the same
way that it verifies a GUI function.

C. EXPERIENCE REPLAY (ER)
Experience replay (ER) [64] is an improvement in RL.
ER exploits the experience stored in an experience database
from previous tasks instead of discarding it. Fig. 4 illustrates
an experience database as an ordered collection of unit experi-
ences. A unit experience is a quadruple ((s, m), a, (s’, m’), 1),
meaning that the AUT goes from one device-monitor state-
pair (s, m) to the next (s’, m’) by executing action a and
obtaining reward r. The main idea is not to throw away but
to save all the unit experiences from previous tasks and then
reuse all the unit experiences for the task at hand.

One strength of ER is its ability to influence the RL agent’s
initial policy without executing any actions on the device.
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FIGURE 5. Generalized Experience Replay (GER) Example.

Instead, ER immediately provides reward values to the RL IV. METHOD

agent from its experiences, allowing the RL agent to start
with an initially better action generation policy than a random
one. As a result, the RL agent should converge towards its
objective faster while avoiding the execution costs of all
the unit experiences. As ER gathers more unit experiences,
it should become faster.

The underlying assumption of ER is generalization via
connectionism. Connectionism implies that the unit experi-
ences are related to the task at hand. Otherwise, they can
hinder the learning effectiveness and performance instead
of enhancing it. Generalization implies that a generaliz-
able pattern exists between unit experiences. Otherwise,
it would not be possible to learning anything from the unit
experience.
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FARLEAD? improves RL-driven witness generation through
GER and STSs. This section first explains why the traditional
ER would hamper FARLEAD?2 performance, so we imple-
ment GER. We then discuss STSs in detail.

A. GENERALIZED EXPERIENCE REPLAY (GER)

Every unit experience ((s,m), a, (s’,m’), r) in a traditional
ER has a fixed reward and monitor states; r, m, and m’.
However, once FARLEAD?2 witnesses a test scenario, the
developer/tester will not use FARLEAD2 again but the
already existing replayable witness instead. Hence, the devel-
oper/tester will always use FARLEAD2 with unique test
scenarios (scenarios that FARLEAD?2 has never witnessed
before). Every unique test scenario yields a different reward
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function and monitor states. Therefore, if FARLEAD?2 uses
traditional ER, some of the recorded rewards are bound to
be misleading for the new test scenario, hampering witness
generation’s effectiveness and performance.

The STS monitor generates its state and a reward value at
every step by checking the labels of that step. The RL agent
determines these labels by looking at the step’s GUI action
a and the device state s’ that is reached after executing the
GUI action. In other words, the reward r and the monitor
state m are functions of the GUI action a and the device
state s’. Hence, storing only the device states and GUI actions
is sufficient to compute the monitor states and calculate the
reward values for any test scenario.

A generalized unit experience is a triple (s, a, s’), meaning
that the AUT goes from device state s to device state s’ by
executing action a. Note that storing only (a, s’) is sufficient
to calculate the reward value. However, it is insufficient to
determine which state-action pair (s, a) that value refers.

Fig. 5 demonstrates an example in which the generalized
experience gathered in the first test scenario facilitates wit-
nessing the second. These scenarios involve reaching differ-
ent AUT screens in two steps. We already have a witness
for the first test scenario. This witness has two GUI actions,
A and B. For the second test scenario, we do not yet have
a witness. Therefore, GUI actions C and D are unknown.
Before any exploration, the GER module replays the gen-
eralized experience gathered from the first witness. During
replay, GUI action A gets a positive reward value because it
is consistent with the first step of the second test scenario.
However, the GER module assigns a negative reward value
to the GUI action B because it is inconsistent with the second
step of the test scenario. Consequently, FARLEAD?2 selects
C=A with no exploration and eliminates B as a candidate
for the second step. Overall, the search space for the second
witness shrinks, thereby facilitating witness generation.

The GER agent first traverses all the generalized unit
experiences in chronological order and receives rewards from
the STS monitor. At this point, the GER agent does not
learn the initial policy. Instead, it sorts all the generalized
unit experiences according to their rewards, in ascending
order. Then, it traverses all the generalized unit experiences
in this order, learning from each generalized unit experience
7+2] times, where r is the reward value. Overall, re-learning
the positively rewarded generalized unit experiences many
times and learning them after other experiences significantly
increases their impact on the initial policy.

B. STAGED TEST SCENARIO (STS)

Fig. 6 shows an overview of a an STS, where the inside angle
and square brackets are variables and optional constructs,
respectively. Keywords separated by slashes are alternatives.
The main idea behind STS is that it divides the scenario into
consecutive STS stages. FARLEAD?2 searches for a candidate
that witnesses the STS stages in the given order. The devel-
oper or tester may specify the maximum number of steps or
the time available for the entire scenario or any STS stage.
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SCENARIO: <ScenarioName>
[MAXSTEPS = <MaxSteps>]
[MAXTIME = <MaxTime>]
STAGE: <StageName>
[MAXSTEPS = <MaxSteps>]
[MAXTIME = <MaxTime>]
INVARIANTS:
[<Proposition>[AND/OR <Proposition>]...]
[<Proposition>[AND/OR <Proposition>]...]

[STEPS:
<StepProposition>
[<StepProposition>]

]
EVENTUALLY:

<Proposition>[AND/OR <Proposition>]...
[<Proposition>[AND/OR <Proposition>]]...

[STAGE: <StageName>

]

Example Propositions:

P = activity CONTAINS MainActivity

Q =text IS Note 1

R =text IS NOT Note 1

S = ActionType IS Write
AND ActionDetail IS username
AND ActionParam IS Yavuz
(Write Yavuz TO username)

o

FIGURE 6. Staged Test Scenario (STS) Overview.

Within the given time constraints and step bounds, a can-
didate witnesses a stage only if all of its invariants are
true (labels) until all of its eventual conditions become true
(labels). In other words, all invariants and all eventual condi-
tions are necessary and sufficient propositions, respectively.
Note that this is like the until operator in LTL. All the invari-
ants and eventual conditions are Boolean propositions. These
propositions do not have to be atomic. They may have several
terms connected via AND or OR operators.

We assume that every Boolean proposition is a triple (prop-
erty, relation, and value). There are two types of properties:
action and state properties. Three types of action properties
exist. These are ActionType, ActionParam, and ActionDetail,
which are linked to the GUI action type, the action parameter,
and an attribute of the related widget, respectively. State
properties are either crashed, package, activity, or one of any
GUI widget’s attributes on the screen. The relation is IS,
IS NOT, CONTAINS, or NOT CONTAINS.

In Fig. 6, P, Q, R, and S are some example propositions.
These propositions become labels only if the current activ-
ity name contains MainActivity, the screen has a text that
writes exactly “Note 17, there are no texts that write exactly
“Note 17, and the GUI action types the word “Yavuz” to
username, respectively.
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A stage may have optional steps. These steps are a list of
action properties. For example, S is a step proposition, and P,
Q, and R are not shown in Fig. 6.

The step propositions can be cumbersome to specify.
To address this issue, we have developed shorthand notation.
FARLEAD?2 automatically converts every shorthand notation
in the STS into a proper step proposition. Fig. 6 gives the
shorthand notation for S between the round brackets.

The initial state of the STS monitor m indicates that the
candidate has not yet witnessed any STS stage. Once the STS
stage is complete, the STS monitor moves to the next state n'.
Reporting the monitor state is essential for teaching the RL
agent the correct order of test steps necessary to witness a
given test scenario.

V. EVALUATION
This section describes the experimental setup, discusses the
research questions, and evaluates the experimental results.

A. EXPERIMENTAL SETUP

1) TEST GENERATORS

In this study, we compared three test generators, random
(RND), reinforcement learning (RL), and generalized expe-
rience replay assisted RL (GER).

RND generates random GUI actions, ignoring all rewards.
We included RND in our experiments as a baseline for evalu-
ation. Therefore, any other test generator should outperform
RND.

RL is equivalent to FARLEAD-Android. To the best of
our knowledge, FARLEAD-Android is the most effective
test generator for producing functional witnesses. Therefore,
we aim to improve on RL.

GER is the proposed method for FARLEAD?2. Our exper-
iments demonstrate that GER is more effective than and
outperforms both RND and RL.

2) EFFECTIVENESS

In our evaluation, a test generator was required to produce a
witness within 100 episodes. Therefore, the effectiveness of
the test generator is the percentage of times it is successful
within this limit. We executed the same test generator ten
times for the same test scenario under the same conditions.
Thus, the witness generator is a hundred percent effective if
it generates a witness ten times. Conversely, it is zero percent
effective if it fails at all times. We took the average across all
test scenarios to measure the overall effectiveness of the test
generator.

In summary, the effectiveness is the expected number of
witnesses that the test generator produces out of 100 attempts.
An ineffective test generator would waste the developer’s
time without generating any witnesses; therefore, the most
critical aspect of a practical test generator is to be as close to
a hundred percent effective as possible.

3) PERFORMANCE

A witness generator outperforms the others if it terminates
faster. We have two measures reflecting performance, (i) the
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total number of steps and (ii) the total seconds it takes until
termination. We examine the first measurement to ensure that
the latter does not suffer from noise caused by the varying
execution times of individual GUI actions on the mobile
device. Because we executed the same scenario under the
same conditions ten times, we took the average of both per-
formance measures.

4) THE MOBILE DEVICE

Throughout our experiments, the mobile device was a Virtu-
alBox guest with 1024 megabytes of random access memory.
The operating system of this device is the Intel x86 port of
Android 6.0. Using a VirtualBox guest, we create exact clones
of our experimental environment, allowing mass witness gen-
eration for different test scenarios in parallel. Furthermore,
no physical mobile devices or hardware preparations were
required to replicate the experiments.

5) ANDROID APPLICATIONS

We used the Themis Automated Android GUI Testing
Benchmark [65] and the F-Droid repository to locate Android
applications to evaluate our test generators. Themis is a well-
known and maintained benchmark, recently developed to
compare Android GUI test generators. F-Droid is an open-
source Android GUI application repository. Multiple Android
GUI test generators in the literature [19], [24] use Android
applications from this repository.

We evaluate the experimental test generators over two
Android applications: Notes from F-Droid and Wikimedia
Commons from Themis. Notes is a small-sized (2 MBs)
Android application similar to the other small note-taking
applications in the Themis benchmark, such as Omni-Notes
and Scarlet-Notes. The Commons application is a medium-
sized (17 MBs) Android application.

The Notes application allows users to create four types of
notes: audio, text, sketch, and checklist. Furthermore, users
can construct categories and divide notes into these cate-
gories. This application has a known bug in its sketch notes
where the color palette has no black color, preventing users
from making black drawings [66]. The Commons application
allows users to search for pictures in the public domain. Users
may view these pictures and their descriptions.

6) TEST SCENARIOS
Our experimental setup has 24 test scenarios: 17 and 7 for
the Notes and the Commons applications, respectively. The
complexities of these test scenarios vary between 2 and 13,
where we define the test scenario’s complexity as the length
of its shortest witness. The shortest witness length is the
minimum number of steps (GUI actions) necessary to witness
atest scenario. We argue that a test generator would face more
difficulties in a complex test scenario because of the number
of unknown steps that need to be discovered.

Fig. 7 shows an example of a manually generated witness
for test scenario 014. The existence of this witness places an
upper bound of seven on the complexity of this test scenario.
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Default - Default

-

B = Click OKAY
heckiom C = Click Expand Icon
D = Click New checklist
E = Write checkitem
F = Click Add
> G = Click checkbox
Test Scenario Complexity <7

FIGURE 7. A Witness for Test Scenario 014.

We manually produced witnesses for all the test scenarios to
determine their complexity.

An STS is a flexible structure, allowing the develo-
per/tester to incorporate apriori information about the test
scenario. We call this information hints. According to the
hints given in an STS, there are two extreme STS types:
declarative and imperative.

A declarative STS only contains the information necessary
for a scenario. This information includes (i) the invariants
and (ii) the eventual conditions of every stage. Therefore, the
developer/tester declares only what the test generator should
witness. In contrast, an imperative STS defines the steps
of every stage. It shrinks the search space; therefore, there
is often only one candidate. However, it is cumbersome to
maintain an imperative STS because it requires restructuring
after almost any software update, whereas a declarative STS
should work across multiple versions of the AUT.

For every experimental test scenario, we have four STSs,
with four levels of hints: L4 (imperative), L3 (manual),
L2 (automated), and L1 (declarative). Hence, for the 24 test
scenarios, we obtained a total of 96 ST'Ss.
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Fig. 8 shows the L1-L4 STSs for test scenario 014. The first
stage of L1 has no invariants but only one eventual condition,
starting the AUT package on the device. The second stage
has one invariant, indicating that the AUT package must be
active until the second stage’s eventual condition is satisfied,
so ChecklistNoteActivity is on the screen. Again, the third
stage has the same invariant, describing that the AUT package
must be active, but now it is until the device ends up in
the ChecklistNoteActivity, while there is a text that writes
“checkitem” and there is a checked checkbox on the screen.
Overall, L1-STS states that (i) eventually, the AUT must be
opened. (ii) After that, eventually, the ChecklistNoteActivity
must be opened. (iii) Finally, the ChecklistNoteActivity must
be on the screen with the checklist containing a checked item,
and the “‘checkitem” text appears on the screen. Whenever
FARLEAD? encounters a text proposition, it automatically
considers writing that text to any appropriate GUI widget an
enabled action.

We automatically generated L2-STSs from L1-STSs
through intent-resolution analysis [6]. Intent resolution anal-
ysis is a static analysis of an Android GUI application binary
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. N\ 7 \
SCENARIO: 014_LA1 SCENARIO: 014_L2
STAGE: OpenNotes STAGE: OpenNotesAndGoToMainActivity
EVENTUALLY: EVENTUALLY:
package IS org.secuso.privacyfriendlynotes package IS org.secuso.privacyfriendlynotes
STAGE: GoToChecklistNoteActivity activity CONTAINS MainActivity
INVARIANTS: STAGE: GoToChecklistNoteActivity
package IS org.secuso.privacyfriendlynotes INVARIANTS:
EVENTUALLY: package IS org.secuso.privacyfriendlynotes
activity CONTAINS ChecklistNoteActivity activity CONTAINS MainActivity
STAGE: CreateltemAndCheck EVENTUALLY:
INVARIANTS: activity CONTAINS ChecklistNoteActivity
package IS org.secuso.privacyfriendlynotes STAGE: CreateltemAndCheck
EVENTUALLY: INVARIANTS:
activity CONTAINS ChecklistNoteActivity package IS org.secuso.privacyfriendlynotes
text IS checkitem activity CONTAINS ChecklistNoteActivity
checked IS true ) EVENTUALLY:
_ ~ activity CONTAINS ChecklistNoteActivity
SCENARIO: 014_L3 text IS checkitem
STAGE: OpenNotesAndGoToMainActivity checked IS true
MAXSTEPS =1
EVENTUALLY: \ )
package IS org.secuso.privacyfriendlynotes | ~
activity CONTAINS MainActivity SCENARIO: 014_L4
STAGE: ExpandDrawer STAGE: OpenNotesAndGoToMainActivity
MAXSTEPS =2 STEPS:
INVARIANTS: reinit
actionType IS click EVENTUALLY:
package IS org.secuso.privacyfriendlynotes package IS org.secuso.privacyfriendlynotes
activity CONTAINS MainActivity activity CONTAINS MainActivity
EVENTUALLY: STAGE: GoToChecklistNoteActivity
text CONTAINS New INVARIANTS:
activity CONTAINS MainActivity package IS org.secuso.privacyfriendlynotes
STAGE: GoToChecklistNoteActivity STEPS:
MAXSTEPS = 1 click OKAY
INVARIANTS: click expand
actionType IS click click checklist
text CONTAINS New EVENTUALLY:
package IS org.secuso.privacyfriendlynotes activity CONTAINS ChecklistNoteActivity
activity CONTAINS MainActivity STAGE: CreateltemAndCheck
EVENTUALLY: INVARIANTS:
activity CONTAINS ChecklistNoteActivity package IS org.secuso.privacyfriendlynotes
STAGE: CreateltemAndCheck STEPS:
MAXSTEPS =3 write checkitem
INVARIANTS: click Add
actionType IS click OR actionType IS write click checkitem
activity CONTAINS ChecklistNoteActivity EVENTUALLY:
EVENTUALLY: activity CONTAINS ChecklistNoteActivity
activity CONTAINS ChecklistNoteActivity text IS checkitem
text IS checkitem checked IS true
checked IS true
\ J \\ J/

FIGURE 8. L1-L4 STSs for Test Scenario 014.

that extracts the static activity transition graph (SATG) of an of steps allowed for each stage. Setting every MAXSTEPS
AUT. The SATG determines from any activity to which a condition to an absolute minimum forces the test genera-
tester can go, and using the SATG, FARLEAD?2 updates the tor to produce the shortest witness. As a result, the test

given STS with extra invariants and eventual conditions. For generator spends more time than finding an arbitrary wit-
test scenario 014, FARLEAD?2 determined that it could reach ness. Therefore, we slightly relaxed MAXSTEPS values.
ChecklistNoteActivity via MainActivity. Therefore, it auto- Second, “actionType” propositions restrict the action type.
matically restricts its search for these activities by adding Third, an extra stage called ExpandDrawer states that the
activity constraints to the appropriate stages of the STS. text “New” must appear on the screen before reaching the
Overall, L2-STS reduces the search space without manual ChecklistNoteActivity. All these additions shrink the search
effort. space but require additional manual effort.

The L3-STS incorporates any hints that the developer The L4-STS is imperative and describes all the steps,
or tester may provide, except for the steps (GUI actions) so almost no learning is required. Fig. 7 shows that after

themselves. First, MAXSTEPS defines the maximum number the GUI action D, FARLEAD?2 must still learn the correct
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GUI widget to write on. With the L4-STS, search space is
the smallest, but the developer/tester determines all the GUI
actions manually, making the manual effort of writing an
L4-STS the highest among all STSs. Still, writing an exe-
cutable test script requires coding skills, whereas an L4-STS
is a no-code script. Thus, writing an L4-STS requires less
effort than writing a test script.

We have designed one test scenario (four STSs) to
reach each activity of the Notes application (test scenarios
001-009). Hence, witnessing all the test scenarios achieved
full activity coverage. We have created a test scenario (test
scenario 012) to reproduce the palette bug [66]. Finally, the
rest of the test scenarios concern the main GUI functions
of the Notes application, namely, creating, deleting, recy-
cling, and categorizing notes. For the Commons application,
the first five scenarios were activity-reachability scenarios.
The remaining two verified different GUI functions of the
application.

7) GENERALIZED EXPERIENCE REPLAY (GER) SETUP

GER depends on the experience gathered so far. Our experi-
mental setup starts with no experience and executes GER on
the test scenarios in the order of increasing test complexity.
Even though GER re-witnesses an STS multiple times in our
experiments, it never uses the experience of the same STS.
GER selects one run per previous STS and uses the cumu-
lative experience gathered only from these STSs. Hence,
we expect GER to produce results similar to those of RL
in test scenario 001. GER will have the most experience
when it witnesses the most complex test scenario (Notes,
test scenario 017). Note that we used separate experience
databases for each STS level. Finally, although we perform
our experiments in parallel, GER waits for the previous sce-
narios to finish before generating witnesses.

8) OVERALL

Our experimental setup has three test generators (RND, RL,
and GER), 96 STSs, and ten runs for each test generator-STS
combination. Hence, there were a total of 3840 experimental
runs. We collected four values for every experimental run:
(i) success/fail, (ii) total number of steps, (iii) total number
of seconds, and (iv) witness length. The first value measures
effectiveness, the second and third values measure perfor-
mance, and the last value measures test complexity.

B. RESEARCH QUESTIONS
Our experimental setup aims to answer the following research
questions.

RQ1. (Feasibility) Are all the experimental test scenarios
witnessable?

RQ2. (Effectiveness) How much more effective is GER than
RL and RND?

RQ3. (Performance) How much performance increase does
GER have compared to RL and RND?

RQ4. (Hints) What is the impact of hints (L1-L.4 STSs) on
the test generation effectiveness and performance?
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TABLE 3. Overall Results.

RND RL GER

Effectiveness (%) 67.1 89.4 95.7

Overall # Steps 210 213 140
96 STSs Time (s) | 1102 859 520
Witness Length 6.19 6.69 6.78

Effectiveness (%) 66.5 87.1 94.3

Notes # Steps 190 238 167
68 STSs Time (s) 650 778 555
Witness Length 5.42  6.16 6.45

Effectiveness (%) 68.6 95.0 99.3

Commons # Steps 259 153 73.6
28 STSs Time (s) | 2199 1055 433
Witness Length 8.01 7.87 7.52

RQ1 verifies that every experimental test scenario has pos-
itive utility in evaluating effectiveness, performance, and test
complexity. If the underlying GUI function that a test scenario
exploits is nonexistent in the AUT, there are no witnesses for
that test scenario. Then, the effectiveness will be zero percent
regardless of the test generator, and the performance and
witness length measurements would be infeasible. We aim to
show that at least one witness exists for every experimental
test scenario.

RQ2 evaluates the most crucial criterion for a witness
generator: its effectiveness. Depending on the test sce-
nario, an ineffective test generator frequently fails in prac-
tice, frustrating the developer/tester. We aim to ensure
that GER is more effective than RND and RL in witness
generation.

RQ3 evaluates how fast a test generator terminates. A faster
and more effective test generator would produce more wit-
nesses within a constant testing budget, providing the devel-
oper/tester more utility. We aim to demonstrate that GER
outperformed RND and RL in our experiments.

Finally, RQ4 aims to determine GER’s effectiveness and
performance under different STS levels.

C. EXPERIMENTAL RESULTS

Table 3 shows our overall experimental results comparing the
effectiveness, time, steps, and witness lengths of RND, RL,
and GER. Each result for the Notes and Commons applica-
tions is an average across the STSs of that application. Each
overall result is an average across all STSs.

(RQ2 and RQ3) Overall, FARLEAD?2 (GER) generated a
witness 95.7 times out of 100 and did it in 140 steps and
520 seconds, on average. FARLEAD?2 (GER) was 6.3 percent
more effective and 339 seconds (approximately 65 percent)
faster than its best predecessor, FARLEAD-Android (RL).
Furthermore, it was 28.6 percent more effective and
582 seconds (112 percent) quicker than RND.

For the small-sized Notes application, FARLEAD?2 (GER)
generated a witness 94.3 times out of 100 and did it in
167 steps and 555 seconds, on average. Hence, in the
Notes application, FARLEAD?2 (GER) was 7.2 percent more
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FIGURE 9. Overall Effectiveness Results.

effective and 223 seconds (approximately 40 percent) faster
than its best predecessor, FARLEAD-Android (RL). Further-
more, it was 27.8 percent more effective and 95 seconds
(17 percent) quicker than RND.

For the medium-sized Commons application, FARLEAD?2
(GER) generated a witness 99.3 times out of 100 and did
it in 73.6 steps and 433 seconds, on average. Hence, in the
Commons application, FARLEAD2 (GER) was 4.3 percent
more effective and 622 seconds (approximately 144 percent)
faster than its best predecessor, FARLEAD-Android (RL).
Furthermore, it was 30.7 percent more effective and
1766 seconds (408 percent) quicker than RND.

All results in Table 3 show that FARLEAD2 (GER) is
consistently more effective and faster than its alternatives,
revealing the benefits of experience replay.

Fig. 9 shows the effectiveness scores of RND, RL, and
GER for every test scenario averaged across all STS levels
(L1-L4). The lines in this figure represent the effectiveness
scores listed in Table 3. (RQ1) RND, RL, and GER did not
have zero effectiveness in any test scenario, indicating that
all the test scenarios are feasible.

Fig. 10 shows the test generation times (Fig. 10a) and the
number of steps (Fig. 10b) of GER under the L1-L4 STSs.
Because there were no discrepancies between step count and
time results, we assume the noise in test generation times was
negligible. Therefore, in this case, the test generation time is
an accurate performance measure.

(RQ4) Fig. 10a shows that for both the Notes and Com-
mons applications, more hints yielded faster test generation
times. Without hints (L1 - declarative), it took FARLEAD2
(GER) more than 1000 seconds to generate a witness
on average. Enabling L2 STSs significantly improved the
average test generation performance. However, Fig. 10a
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further shows that test scenarios 014 and 016 of the Notes
application required more than 4000 seconds with L1 and
L2 STSs, respectively, whereas L3 STSs never took more
than 2000 seconds. Therefore, with manually generated
L3 STSs, GER provided more reliable performance than L1
or L2 STSs. L4 STSs required almost no time to witness.

VI. DISCUSSION

Now, we discuss the threats to the validity of our experimen-
tal setup, methodology, and implementation. Specifically,
we elaborate on the construct and external validities.

A. CONSTRUCT VALIDITY

The maximum number of steps allowed in each episode
was 30. The highest test complexity in our experiments is less
than 30; therefore, this limit will not cause ineffectiveness in
any test generator. In addition, our experience with Android
GUI applications shows that developers implement simple
GUI functions such that any user can perform them via fewer
than 30 consecutive actions.

In our experiments, the episode limit is 100. Our experi-
ence shows that the test generators become ineffective when
this limit is too low. A high episode limit causes the test
generator to waste more time when a witness cannot be found.
We refrained from finding the optimal episode limit to avoid
bias toward our experimental AUTs. Instead, we arbitrarily
choose the episode limit, considering only the testing budget.

Because we re-executed every experimental run ten times,
the GER setup collected experience for the same scenario
multiple times. However, in practice, the developer/tester
would never re-execute FARLEAD?2 on a test scenario with
an already available witness. To reflect this fact in our
experimental environment, we forced every run of a test
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FIGURE 10. The Effect of STS Levels on GER Performance.

scenario to use only the experience gathered during the
respective runs of the previous test scenarios. Note that all of
our experimental test scenarios are distinct; therefore, GER
always uses the experiences of witnessed test scenarios on
unwitnessed test scenarios.

Every test generator that we evaluated must monitor
the STSs. The original FARLEAD-Android monitors LTLs
instead of STSs; therefore, we had to make technical mod-
ifications to implement RL in our experiments. During the
experiments, we noticed that cycles in the state transitions
may create a positive feedback loop that stuck FARLEAD
(RL) and FARLEAD2 (GER). Thus, our modified implemen-
tation proceeds to the next episode when it encounters a cycle
that is not a self-loop. For fairness, we also force RND to go
to the next episode in the same cases.
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Finally, although there are many Android GUI test gen-
erators in the literature, we did not include all of these
generators in our evaluation. First, to the best of our knowl-
edge, none of these test generators implement STS mon-
itoring. Second, even if we implemented STS monitoring
on top of these test generators, it would be an unfair
comparison because these modified test generators cannot
benefit from the rewards produced by the STS monitor.
Hence, we compared our proposed method to FARLEAD-
Android, the best predecessor of FARLEAD?2 for generating
witnesses for given GUI test scenarios in Android. Note
that FARLEAD?2 implements experience replay on top of
FARLEAD-Android. Therefore, we compared FARLEAD?2
with FARLEAD-Android to demonstrate the benefits of
experience replay.
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B. EXTERNAL VALIDITY

FARLEAD?2 (GER) achieved 100 percent activity coverage
on Notes and Commons applications. RND and FARLEAD-
Android (RL) also reached 100 percent activity coverage in
our experiments because we specified one test scenario per
activity, and all the test generators producd witnesses for
every test scenario. As a result, we did not include activity
coverage in our comparisons because it did not distinguish
test generator effectiveness and performance when witness-
ing a test scenario. The developer/tester must provide fea-
sible test scenarios for all activities of an AUT to achieve
100 percent coverage.

The set of supported actions directly affects witness gen-
eration effectiveness. Our experience shows that one back
is sometimes insufficient to return to the previous activity.
Hence, we introduced the 2 xback action. In addition, some
real-world applications involve dynamically-loaded activi-
ties. These activities may require the user to wait for a
few seconds before performing any action. Therefore, for
practical use of FARLEAD?2, it may be necessary to intro-
duce the option of waiting for a few seconds as a GUI
action.

The Android applications in our experiments were stand-
alone. However, for example, the developer/tester needs at
least two devices to test a messaging application. Thus, the
witness becomes not just a GUI action sequence but at least
two GUI action sequences interleaved. Additional implemen-
tation is necessary to support such test cases.

Finally, the FARLEAD?2 performance and effectiveness
results under increasing test complexity may not generalize
to overly complex test scenarios, owing to the explosion in
the search space. If the shortest witness for a test scenario is
too long for FARLEAD? to find, the developer/tester might
consider dividing the test scenario into two or more test
scenarios.

VII. CONCLUSION

In summary, we have proposed FARLEAD?2, a fast witness
generation method for readable test scenarios using gen-
eralized experience replay (GER). We have described the
novel staged test scenario (STS) language and explained how
GER works with STS instances via flowcharts and examples.
Our experiments have shown that FARLEAD?2 generates a
witness 95.7 times out of 100 and does it in 520 seconds,
on average, indicating that FARLEAD?2 is approximately
65 percent faster and 6.3 percent more effective than its best
predecessor.

In the future, we will evaluate how different test scenario
orderings affect witness generation and determine the best
test scenario ordering for the developer/tester. We will exe-
cute GER, RL, and RND on large-scale AUTs to gener-
alize our results further. We will train multiple RL agents
with different test scenarios (hence, multi-objective) within
the same execution, enabling simultaneous witness genera-
tion for many test scenarios. Finally, we will also conduct
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a manual testing study to evaluate the benefits of automated
witness generation.
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