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ABSTRACT Missing sensor data is a common problem associated with Internet of Things ecosystems,
which affects the accuracy of associated services such as adequate medical intervention for older adults
living at home. This problem is caused by many factors, power down is one of them, communication failure
and sensor failure are another two reasons. Multiple missing data imputation methods have been developed
to address this issue. However, irregular temporal missing data locations are challenging to handle, due
to lack of knowledge of their occurrence probability and their random temporal location. In this paper,
we propose a Bayesian Gaussian Process based imputation technique that accounts for temporal forcing
to fill in missing sensor data. Our approach; Bayesian Gaussian Process (BGaP); can efficiently impute
missing data at any missing rate and for any temporal location using prior knowledge gathered from past
observations. We illustrated how our approach performs using real data collected from sensors deployed in
the residence of 10 older adults over a two-year period. Using our novel approach, we were able to impute
all missing data which allowed us to observe long-term behavior changes that we would not have been able
to observe otherwise.

INDEX TERMS Missing sensor data, missing data imputation, Bayesian Gaussian process, long-term older
adults behavior monitoring.

I. INTRODUCTION

The Internet of Things (IoT) now makes it possible to deploy
a large number of sensory nodes in diverse environments,
for example, to monitor older adults’ behavior. In retirement
homes, sensory data helps in the decision-making process
regarding the status of older adults.

In retirement homes, long-term behavior monitoring, and
detection changes are important so that physical and cognitive
decline can be captured early and, when properly managed,
can increase the well-being of older adults for longer periods.
In addition, long-term behavioral monitoring provides valu-
able information for eventual medical intervention. However,

The associate editor coordinating the review of this manuscript and

approving it for publication was Razi Igbal

VOLUME 10, 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

long-term behavior monitoring, and change detection need
to be carried out continuously to obtain the best results; a
constraint that is fulfilled by IoT ecosystems.

Degradation of quality of life for older adults is a con-
sequence of cognitive and physical decline, which, when
detected early enough, can result in better intervention and
adaptation of medical care [1]. However, monitoring daily
changes in older adults’ behavior is challenging in practice
[2] because it requires medical staff (e.g., nurses) to be con-
stantly available for every patient. Even if this is achievable
within small retirement homes with a crew that cycles day and
night, it is a difficult, not to say impossible, task for a medium
or large retirement home. One way to evaluate changes in
the behavior of patients is to monitor the detailed behavior of
every patient over time. Typically, medical staff only record a
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FIGURE 1. loT models architecture, (a) Five-layer architecture loT
model [6].

broad description of a patient’s behavior. For example, a nurse
would record that a patient goes to the bathroom at night but
would not record the time, duration, or frequency of visits.
Such information is valuable for assessing patients’ health
status. Frequent short bathroom visits could indicate urinary
tract infection, whereas frequent long bathroom visits could
indicate diarrhea [1]. In short, although broad descriptions
to assess a patient’s physical abilities are valuable, they are
incomplete. In this respect, IoT technology can be used to
monitor ambient environments unobtrusively and continu-
ously using sensors and sensor nodes [3]. Hence, patient
movements can be assessed using IoT sensors and translated
into meaningful behavioral data.

IoT ecosystems consist of sensors and actuators that are
used to harvest physical data from the environment [4], such
as the ambient temperature and/or pressure. Although the
three-layer model is considered the basic IoT model, in this
study, we assume that a five-layer architecture model is used
to realize IoT ecosystems [5], [6], as presented in Figure 1.
A three-layer model is composed of a perception layer (the
sensors) that resembles the edge layer in the five-layer model,
a communication (or transmission) layer that resembles both
the fog and network layer in the five-layer model, and an
application layer that resembles the cloud and business layer
in the five-layer model. The role of the perception layer is to
collect data from the environment, while that of the transmis-
sion layer is to securely transmit the raw data collected by the
sensors. The application layer stores and retrieves collected
pre- or post-processed data to and from databases, while
also providing special services to be performed on the data,
including missing data recovery, anomalous data detection
and decision-making.

In the perception layer, there exist several causes that lead
to missing sensor data, such as power and hardware failure.
However, the loss of data is not limited to the perception layer;
it can also occur because of data exchange problems with
the communication layer [3]. Regardless of the layer from
which the missing data can occur, data can be missing for
short as well as long periods. Currently, missing sensor data
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is one of the important challenges in IoT because incomplete
data leads to insufficient information, which in turn results in
inaccurate analysis and can ultimately lead to wrong inter-
pretations and decisions that can have costly results both
economically and socially [7]. Commonly, missing sensory
data shift the statistical parameters estimated from a model
using the collected data, resulting in bias in the mean and/or
an increase in variance within the collected data that will
hinder the possibility to efficiently and accurately monitored
patients. Sensory data with missing rates above 50% are unre-
liable for the decision-making process [3]. Hence, handling
sensor data, e.g., through imputation, is essential.

This study presents an approach for imputing long tem-
poral gaps in sensor data that relies on dynamic linear mod-
eling and focuses on the univariate case, where a single
variable of interest is imputed. In this study, we will assume
that missing data are missing completely at random, which
assumes that the mechanisms resulting from the missing data
are completely independent from the variables (observed or
unobserved) that structure it. In the context of retirement
home IoT, it means that the behaviors of the patients being
monitored, the sensors and the sensor nodes are completely
independent from the events causing missing data, which is
a general but fair assumption. Statistically, making such an
assumption is practical because it supposes that there is no
bias in the available data.

The paper is organized as follows: Section II presents
essential information about imputation and the methods used
in this subfield of statistics. Section III presents the technical
aspects of the proposed imputation approach. Results and
discussion are presented in section IV before concluding
(section V).

Il. MISSING DATA BACKGROUND

From the sensory data acquisition perspective, what is miss-
ing data? It is when no values are obtained from a sensor dur-
ing the observation process for a specific physical quantity,
but they could have been obtained. Aside from malevolent
tempering that could affect data acquisition from a sensor,
which are situations we do not account for in this study,
several causes lead to missing data including: sensor power
down, sensor malfunction, and transmission failure issues.
As a result, sample size is reduced, which can prevent some
analyses from being performed because the statistical power
to perform these analyses is too low [8], [9], [10].

There are two stages by which missing data can occur: (1)
At the bulk or unit stage and (2) at the data item stage. Missing
data at the unit or bulk stage is the result of malfunction,
i.e., no data is collected from the sensor in these situations
and can result in chunks of missing data. However, missing
data at the item stage is sporadic. In this study, we will focus
on missing data at the data item stage. To better understand
how to handle missing data, the problem should be studied
according to the proportion of missing data, the mechanism
by which missing data happens and the pattern of missing
data [9], [10], [11], [12].
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Understanding the mechanisms by which missing data
occur is important to properly impute them. In subsection A
we explain the different levels at which missing data occur
while in subsection B the different methods that have been
proposed to impute these missing data are briefly presented.

A. MISSING DATA LEVELS

In this section we are presenting the different levels by which
the missing data can occur. We start with the proportion of
the missing data.

1) PROPORTION OF MISSING DATA

There are no predefined missing data proportion threshold
that will lead to valid (or wrong) statistical inference. Yet,
statistical inference quality is directly related to the amount
of data available and in turn to the proportion of missing data.
However, multiple studies have investigated how different
proportions of missing data influence the quality of the statis-
tical inference. For example, Schafer [13] concluded that 5%
or less of missing data does not have major influences on the
quality of a statistical inference. According to Bennett [14],
statistical biasing is more likely to happen when the missing
datarate is above 10%. However, based on a simulation study,
Madley-Dowd et al. [15] concluded that the proportion of
missing data should not be used to guide imputation strategy
or inform on their efficiency, e.g., how imputation approaches
handle bias in the data. That being said, information on the
proportion of missing data is important to guide the decision
about the imputation to use. Table 1 presents a commonly
used guideline for missing data imputation strategies, which
was initially proposed by Hair [9], [10]. However, the mech-
anisms that lead to missing data and their patterns in the
missing data are much more important to account for in
missing data analysis than the proportion of missing data [16].

2) STATISTICAL MECHANISMS UNDERLYING MISSING DATA
Rubin [17], stated that there are three mechanisms by which
missing data typically occur: 1) missing completely at ran-
dom (MCAR), 2) missing at random (MAR), and 3) missing
not at random (MNAR). Being able to associate the missing
data structure to one of these mechanisms is highly valuable
because it guides the users to the best technique to properly
handle the particularity of the data [18], [19], i.e., if we are
able to correlate the situation at which the missing data hap-
pens or the structure of the time series including the missing
data segments with one of the mentioned three missing data
mechanisms. To understand the different mechanisms under-
lying missing data, we first need to define a mathematical
reference to rely on. As a starting point, let us use a vector
of data Y as a reference point. This vector Y is composed
of observed and missing values and can thus be partitioned
in two parts: the observed values (Y pserveqd) and the missing
values (Ypissing)- The complete array of the IoT data including
the missing data can be defined as:

Y = (Yobserved s Ymissing) (D
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Using these two parts of Y, we can calculate the miss-
ingness value r for each value of Y, meaning that r has the
same dimension as Y. Depending on the statistical mechanism
considered, the way the missingness is calculated will change.

a: MISSING COMPLETELY AT RANDOM (MCAR)

Data missing completely at random occurs when the missing-
ness is completely unrelated to the mechanisms that structure
the collected data. Although there could be variables structur-
ing the missingness, such as punctual meteorological events
like a storm that could cause electrical surges preventing a
sensor to work, they are unrelated to the observation (move-
ment of a patient or behavior of a sensor). In other words,
MCAR occurs when missing data depends neither on the
missing data nor the observed data. Mathematically, MCAR
is not conditional on any values

P(r|Yobserved s Ymissing) = P(r) ()

Under this assumption, the missing data is considered a
random sample of the entire statistical population, which
usually means that the standard error of the sample estimates
is greater than that of the data. However, MCAR has the
advantage of being unbiased. This is because of the reduced
sample size [12].

b: MISSING AT RANDOM (MAR)

Data missing at random occurs when the probability of data
missing depends on the observed data and not on the missing
data itself. In more technical terms, for MAR the missingness
is conditional on the observed values

P(r|Yobserved » Ymissing) = P(r|Yobserved) 3)

In MAR, it is assumed that there are variables of important
for Y that also define the missingness. As in [20] and [21],
it is impossible to test whether MAR assumption is valid
for data or not solely with the prior knowledge of observed
data. However, it is possible to inspect the tenability of MAR
assumption using a t-test that test the difference between the
means of the complete dataset and that of the missing dataset
[16], [19].

c: MISSING NOT AT RANDOM (MNAR)

Data missing not at random occurs when the missingness
depends on the missing or the observed data, for example,
when a sensor does not make if specific voltage is reached or
if a patient tempers with a sensor. Mathematically, MNAR is
defined as

P(r|Yobserved s Ymissing) = P(r|Yobserved » Ymissing) 4)

3) PATTERN OF MISSING DATA

There are three patterns missing data can follow [12] uni-
variate, monotone [22] and arbitrary. A univariate pattern of
missingness means that missing data can be attributed to a
single variable. A monotone pattern of missingness occurs
when missing values occur at a regular interval. In addition,
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TABLE 1. Recommended imputation methods for different percentage of
missing data.

Percentage
of Missing Imputation Method
Data
<10% Any imputation method can be applied.
For MCAR:
- All methods are For MAR:
. - Model Based methods
available.

10%-20% are preferred.

- Hot deck case
substitution.

- Regression.
~20% - Regression method for - Model Based Methods
’ MCAR. for MAR.

a monotone pattern of missing data usually means that there
is a dependence within the missing data itself. It is important
to be aware that this regularity does not have to be temporal
(e.g., at a specific time interval), it could also be because a
specific voltage threshold is reached preventing the sensor
to gather data. Other than the univariate and monotone pat-
terns, in this paper we assumed that missing data patterns
are arbitrary. From a computational perspective, univariate
and monotone pattern of missingness are straightforward to
handle compared to arbitrary missing data [12] hence sta-
tistical methods such as univariate regression [23] or mean
substitution imputation by class [24] have been designed to
approach either of these problems, respectively. A complete
scheme representing the missing data problem is presented
in Figure 2. In the following subsection we briefly present
common imputation methods that can be used for sensory
data.

B. IMPUTATION METHODS

Multiple techniques have been proposed to deal with missing
data. Generally, deletion, ignorance and imputation are the
three major classes of methods used to handle missing data.
The disadvantage of deletion and ignorance is that they create
a bias and reduce the amount of data available for analyses
which in turn also reduced the quality of results. Conversely,
the objective of the imputation is to replace missing data with
reasonable values for the problem we are confronted with.
It is important to be aware that the way data is imputed may
change depending on the goal of our study. When thinking
of missing sensor data, there are three classes of imputation
methods [3], [25] depending on the type of information used
to make the imputation. In the following lines we give a brief
explanation of each one of these imputation classes.

1) SPATIAL IMPUTATION

Spatial imputation assumes we have a priori knowledge of
the spatial correlation between sensors or sensor nodes that
we can use as reference to make an imputation. Specifically,
if two sensors are near one another, it is assumed that they
capture a similar signal than when they are further apart.
Spatial imputation uses this information to handle missing
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data. In this respect, spatial correlation is calculated using
the spatial coordinates of the data. Several studies proposed
different approaches to perform spatial imputation. For exam-
ple, association rule mining techniques such as the Window
Association Rule Mining [26] and Freshness Association
Rule Mining [25] have been specifically designed for imput-
ing data on networks of sensors. Technically, these methods
estimate missing data using association rules among neighbor
sensors for which data have been gathered. Although associa-
tion rule mining was initially designed for spatial imputation,
it can also be used for temporal imputation.

2) TEMPORAL IMPUTATION

Temporal imputation requires a priori knowledge of the tem-
poral correlation between the readings collected from a single
sensor. Similarly, to spatial imputation, when performing
temporal imputation, it is assumed that data gathered at a
short temporal interval are more similar than data gathered
across longer period. In this respect, temporal correlation is
calculated using the time at which each data from a sensor
were gathered. Linear interpolation [27], Last Observation
Carried Forward (LOCF) [28], autoregressive model [29],
and Support Vector Regression (SVR) [30] are commonly
used to perform temporal imputation although they can also
be used to perform other types of imputations. However, these
methods do not handle long temporal gaps efficiently and
have a tendency to increase bias.

3) SPATIO-TEMPORAL IMPUTATION

In this type of methods, the imputation is performed based on
the a priori joint correlation for both spatial and temporal cor-
relations for sensors or sensor nodes. Among these methods
are Spatial and Temporal Imputation [31], Data Estimation
using Statistical Model (DESM) [32], k-nearest neighbor esti-
mation (AKE) [33], and Bayesian Gaussian Process (BGP)
[34], [35]. The latter method is the closest one to our method
used in imputing the missing data in this paper, where the cur-
rent observation data are considered as Gaussian distributed
given the past observation data. In the following section,
we present our proposed methodology used in this research.
The following section describes the proposed methodology
in this research.

lIl. METHODOLOGY

To efficiently impute long gaps in the data, we need to use
a model that can account for long tendencies within the
data. Dynamic Linear Models (DLMs) [36] are an appealing
option to consider because these models are flexible and can
account for short as well as long tendencies in the data. Math-
ematically, DLM relies on two equations, the observation
equation (5) and the state or system equation (6)

Y, =F0, +v (5)
0 = GO—1 + wy (6)
where 6; defines the model structures (state) at time ¢

that usually depends on different explanatory variables,
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Missing
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FIGURE 2. Scheme for missing data problem.

v ~ Ny (0, V) and w, ~ N,(0, W;). In words, v, follow a
multivariate normal distribution of size m with a covariance
matrix V; that needs to be estimated. Similarly, w; follow a
multivariate normal distribution of size p with the covariance
matrix W, that also needs to be estimated. In this general
definition of a DLM, G and F are known matrices quantifying
the importance of the model structure 6, through time.

In the most basic case, a DLM can be simplified to a
random walk model with the following observation and state
equations

Y =6 +w (N
0y = 01 +wy (8)

where, in this simpler case, v, ~ N(O, ovz) and w, ~
N(O, av%). That is both v, and w; follow a univariate normal
distribution. Compared to the more general the one presented
in (7) and (8), all values associated to m, p, G and F are equal
1. In more colloquial terms, with the previous model, the time
series is modeled as fluctuating around some level 6, which
can change through time without any additional structuring
constraints.

If we assume that we only have the time series (the obser-
vations), we can construct a DLM to fit our data based on the
prior information we have.

In the next lines, we briefly present the practical implemen-
tation of the DLM and of the data used in our study.

For the practical implementation, ten different older adults
were monitored in their residence for periods ranging from
one month to several years to identify their long-term behav-
ior over the monitoring period. The monitoring system relies
on motion and door sensors spread all over the residence to
follow the subjects’ activity levels day and night [2]. The
parameter used to measure the activity level per day for
each subject is the number of movements each subject does
in average per day. This is because the motion sensors are
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Missing dependence on

missed value itself

Missing Not At
Random (MNAR)

Monotone

Univariate

Arbitrary

Subsequent values are
Same Variable
missing depending on No Dependence
has missing data

preceding values

. Door Sensor

. Motion Sensor

|

FIGURE 3. Room floor plan describing the distribution of both the motion
and door sensors along with real photos of deployed sensors.

triggered by the subject’s movement in front of the motion
Sensor.

Figure 3 presents the locations of the sensors in a typi-
cal monitored room with pictures of the sensors that were
deployed. Motion sensors are used to detect subjects’ daily
activities in the bedroom and bathroom while door sensors
detected outing and visiting activities. Motion sensors were
used to detect the subjects’ movements within the sensors’
line-of-sight, as described by Figure 4.

The overall activity level per day as monitored by the
motion sensors for each subject is presented in Figure 5. The
missing data are evident along the time series of the captured
movements. The proportion of missing data for each subject
is presented in Table 2.
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FIGURE 7. Activity level per day for subject C where the missing segments
are highlighted with red.

FIGURE 4. Room floor plan describing the line-of-sight areas (transparent
red areas) for the motion sensors inside the room.

FIGURE 5. Activity level per day for subject A where the missing
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FIGURE 6. Activity level per day for subject B where the missing
segments are highlighted with red.
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FIGURE 9. Activity level per day for subject E where the missing segments
are highlighted in red.

along the monitored period for each subject and as such there
are no expected bias in the missing data. Note also that the

After inspecting the data presented in Figures 5-14, missing pattern is univariate because only the daily activity
we concluded that the missing data was MCAR. That is, the of each subject is considered. Hence, state-space models are
missing data gap location and size are randomly distributed best suited for this type of missing data. State-space models
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FIGURE 12. Activity level per day for subject H where the missing
segments are highlighted in red.

consider a time series as the output of a dynamic system
perturbed by random noise, which were considered as fol-
lowing a Gaussian distribution around the states of the time-
series. Model estimation and forecasting were carried out
by recursively computing the conditional distribution of the
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TABLE 2. Proportion of missing data for each subject organized from
least to most missing data.

Case ID % Of Missing Data
B 23.20%
A 37.60%
F 44.50%
D 55.40%
C 61.10%
H 64.50%
I 68%
J 69.5%
E 77.40%
G 81.30%

daily activity, given the available information. In this sense,
a natural way to treat this problem is through the Bayesian
framework, where missing data can be estimated based on
previously collected data.

A. STEPS FOR ESTIMATING DLM PARAMETERS
(PROPOSED MATHEMATICAL IMPLEMENTATION)
i. Estimate the rolling mean value for the time series to
have a mean (expected) value for each observation in
addition of the observation itself.
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ii. Calculate the difference between each observation and its
expected value to construct a vector of error, which rep-
resents the error distribution around the mean (expected)
value along the time series.

iii. Fit the error distribution to a Gaussian distribution and
estimate its variance parameter. In more technical terms,
in this step we estimate 63, which is the basis of the
error in the observation equation (Equation 7). Note that
the mean of the Gaussian distribution is assumed to be
0 because it is accounted for directly by the structure of
the model.

iv. Following, we ran an iterative loop to calculate the states
of the model (6;), since, for each timestamp ¢, we have
information on the observation (Y;) and error value (v;).
Note that the states of the model can be defined based on
the user’s preference. In our implementation, we used a
polynomial of degree 6 with overall activity as explana-
tory variable.

v. After estimating the states of the time series, we repeat
the previous steps but this time to estimate af, and 0,1
(Equation 8).

vi. In a nutshell, the key idea is to estimate o2 and o2 that
are the basis of the observation error and the states error,
which can then be used to forecast missing data based
on the prior knowledge of the observations and states
together.

B. CONFIDENCE INTERVAL CALCULATIONS
For the imputation results to be less extreme, it is also possible
to constrain v;. A way to do this is by calculating a confidence
interval on the resulting values in v;. For example, calculating
a confidence interval (CI) at a 95% confidence level can be
performed as:
1.960 x o,
N
where +1.960 are lower and upper quantiles of the Gaussian
distribution resulting in the area under the distribution to sum
to 95% of the entire distribution, o, is the observation stan-
dard deviation and N the number of missing values estimated.
As an example, if we reconstruct v; for subject A but rely-
ing on the 95% confidence interval instead of the entire data,
more extreme values can be seen to have a strong impact on
the structure of the missing values to be estimated (Figure 15).
The same results hold for the other subject considered here.
With the Gaussian parameters estimated for each subject’s
time series, we propose a procedure to estimate multiple
segments of missing data for multiple subject’s time series
(Figure 16). The computational algorithm for estimating the
missing sensory data based on DLM is presented in Algo-
rithm 1. This algorithm is repeated for each subject indepen-
dently.

Cllosq, = £ &)

IV. RESULTS AND DISCUSSION
The Gaussian distribution parameters for each subject with
and without considering the 95% confidence interval are
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FIGURE 16. Complete estimation process for missing data segments
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FIGURE 17. Estimated data segments overlapped with existing data
segments for subject A, where the estimated segments are highlighted
with green.

presented in Table 3 along with the corresponding missing
data rates and available number of observations. The highest
missing data rate is associated to subject G while subject
B has the lowest missing data rate. The estimated missing
data combined with the observed data are presented for
each subject in Figures 17-26. For subjects C (Figure 19),
D (Figure 20), E (Figure 21), G (Figure 23), H (Figure 24)
and I (Figure 25) negative activity values were estimated,
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TABLE 3. Estimated subject’s parameters.

‘Without Confidence Level

With Confidence Level 95%

Cases # Osfa?:;]igble Observation Error State Error Observation Error State Error

Std Std Mean Std Mean Std
A 88 44 22 0 0.919 0 0.459
B 109 2.975 1.095 0 0.558 0 0.205
C 190 1.920 0.787 0 0.273 0 0.112
D 139 8.248 2.530 0 1.371 0 0.420
E 116 7.307 2.980 0 1.329 0 0.542
F 465 1.777 0.709 0 0.161 0 0.064
G 156 0.634 0.261 0 0.099 0 0.041
H 89 2.009 0.956 0 0.417 0 0.198
| 188 2.427 1.022 0 0.346 0 0.146
J 95 0.9289 0.392 0 0.186 0 0.079
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FIGURE 18. Estimated data segments overlapped with existing data
segments for subject B, where the estimated segments are highlighted
with green.

which are non-sensical and should thus not be accounted for
in subsequent behavior analysis.

Subjects A (Figure 17), C (Figure 19), F (Figure 22),
H (Figure 24), and I (Figure 25) were found to experience
a decrease in their overall activity level between October and
January.

Subjects were expected to be more frequently indoors dur-
ing winter and less so during the summer of the same mon-
itoring year. This was confirmed for subjects C (Figure 19),
E (Figure 21), F (Figure 22), G (Figure 23), I (Figure 25) and
J (Figure 26).

For subject A, there was a significant decrease in activ-
ity level between December and January compared to
the October-November period, which was due to severe
mobility impairments. Similarly, subject C (Figure 19) also
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FIGURE 19. Estimated data segments overlapped with existing data
segments for subject C, where the estimated segments are highlighted
with green.

experienced severe mobility impairments at the end of
November 2015, resulting in very low activity levels, which
we were able to detect with our imputation procedure.
Note that the decrease in activity level common with the
summer period was also clearly observed for subject C in
May-August 2016.

There are spikes in the activity levels for all monitored
subjects, which were attributed to nurse visiting the resi-
dences because with these visits the overall activity level
inside the residence increased with the arrival of another
person. These nurse visits are observed for subject A in
mid-October 2014 and mid-December 2014 (Figure 17). For
subject B, they occur in mid-May 2015 and on mid-July
and late July 2015 (Figure 17). For subject C, they happen
in late September 2015 (Figure 19). For subject D, they
take place from late April to early May 2015 (Figure 20).
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Algorithm 1: Forecasting Missing Sensory Data
Input: resident_(X)_overall_activity_missing.csv
Output: resident_(X)_overall_activity_estimated.csv

1 Initialization:

Set df < resident_(X)_overall_activity_missing.csv

Set df.index < dff “Date”’]

Set df.index.sort

Set df frequency(“Day”’)

2 Calculate Missing Rate:

Set count_nan < sum(df.nan())

Set missing_data_rate < (count_nan | length(df)x100)

3 Cut series into data-containing segments:
Set events < df.split(df, where(df.nan()))

4 Calculate the time deltas between data segments:
Set deltas < empty

5 Jfor counter in range (length( events) - 1 ):

Set templ < events[counter]
Set temp2 < events[counter] + 1
Set tempdelta < temp2.index[0] — temp].index[-1]
Set deltas < deltas.append(tempdelta.days())
end
6 Obtain mean of the observation series:
Set observation < df
Set smoothed_observation < observation.rollingmean()
7 Calculate number of iterations for error estimation process:
Set length_observation < length( observation)
Set length_smoothed_observation < length( smoothed_observation)
Set loop_start < length_observation — length_smoothed_observation
8 Error estimation process:
Set estimated_error_vector <— empty

Jfor ninrange(loop_start, length_observation ):
Set temp < observation[n] — smoothed_observation[n]

Set estimated_error_vector < estimated_error_vector.append(temp)
end
9 Obtain error vector missing values:
Set mean <— mean.estimated_error_vector()
Set std < std.estimated_error_vector()
Set missed_distribution_values < random.normal(mean, std, size(loop_start))
Set estimated_error_vector <

d_error_vector. d(missed_distribution_values)

'Pp

10 Estimate mu_t vector:
Set estimated_mu_t < empty

for nin range(length(observation)):
Set temp < observation[n] — estimated_error_vector[n]

estimated_mu_t.append(temp)

end
11 Obtain mean of mu_t series:

\Y hed_mu_t < d_mu_t.rolli )
12 mu_t error estimation process:

Set smoothed_mu_t < smoothed_mu_t[0]
Set estimated_mu_t_error <— empty
Jfor nin range(loop_start, length_observation ):

Set temp < d_mu_t[n] — hed_mu_t[n]
estimated_mu_t_error < d_mu_t_error.append(temp)
end
13 Forecasting process:

Set start_index < zero

Set new_series < empty

Jfor counter in range(length(events) - 1):

4 Set start_index < start_index + length(events[counter])
Set forecasted_observation < empty

Set forecasted_mu_t < [estimated_mu_t[start_index]]
Set mean < mean.estimated_mu_t_error ()

Set std < std.estimated_mu_t_error()

for ninrange(deltas[counter] - 1):
Set temp_mu_t < forecasted_mu_t[-1] + random.normal(mean, std, 1)

Set temp_observation < temp_mu_t +
random.normal(mean.estimated_error_vector(),
std.estimated_error_vector(), 1)
Set forecasted_mu_t < forecasted_mu_t.append(temp)
Set forecasted_observation <
forecasted_observation.append(temp_observation)

end

Set temp_series <— events[counter].append(forecasted_observation)

Set new_series < newseries.append(temp_series)
end
Set resident_(X)_overall_activity_estimated.csv <— new_series

For subject E, these spikes are observed in late August 2015,
April 2015, October 2015 and November 2015 (Figure 21).
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FIGURE 20. Estimated data segments overlapped with existing data
segments for subject D, where the estimated segments are highlighted
with green.
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FIGURE 21. Estimated data segments overlapped with existing data
segments for subject E, where the estimated segments are highlighted
with green.
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FIGURE 22. Estimated data segments overlapped with existing data
segments for subject F, where the estimated segments are highlighted
with green.

For subject F, multiple nurse visits occur during between
September 2014 and October 2015 and in April 2016
(Figure 22). For subject G, a single nurse visit is observed in
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FIGURE 23. Estimated data segments overlapped with existing data
segments for subject G, where the estimated segments are highlighted
with green.
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FIGURE 24. Estimated data segments overlapped with existing data
segments for subject H, where the estimated segments are highlighted
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FIGURE 25. Estimated data segments overlapped with existing data
segments for subject I, where the estimated segments are highlighted
with green.

late December 2016 (Figure 23). For subject H, nurse visits
occur in late September and early October 2014 and also in
between late April and late May 2015 (Figure 24). For subject
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FIGURE 26. Estimated data segments overlapped with existing data
segments for subject J, where the estimated segments are highlighted
with green.

I, nurse visits occur in August and October 2015 as well as
in April and September 2016 (Figure 25). Lastly, for subject
J, no nurse visits can be observed as the subject’s behavior is
highly fluctuating (Figure 26).

V. CONCLUSION

In this paper, we proposed and implemented an approach to
estimate the missing sensor data independent of their respec-
tive temporal location. This approach is based on Bayesian
Gaussian Process and is based on knowledge gain from past
observations. We applied this approach to impute the missing
sensor data obtained from the IoT overall activity monitoring
system for older adults in residences. The imputation process
verifies the assumption that indoor activities are higher in
winter compared to summer. The imputation approach pro-
posed also enables the identification of long-term behavior
changes such as mobility impairment suffered by some sub-
jects. We also verified the assumption that there are behav-
ioral changes seasonally, especially between winter and sum-
mer with higher indoor activity during winter compared to
summer periods. We were also able to justify nurse visits in
the residence, with very high increase in activity level during
the visit day compared to the past activity levels for the same
subject.

In this study we collected data from real-life deployment
and hence, the missing part in the data are not existent in real-
ity. Based on this fact, the dataset collected does not include
a no-missing data part, and in consequence the comparison
between the missing dataset case and the no-missing dataset
case is not feasible. However, we have limited the extreme
values that might be obtained due to imputation by calcu-
lating the confidence interval for the estimated distribution
of the past collected data, and then estimating the missing
data based on it. This would limit the error and increase
the accuracy of the missing data estimation. Moreover, the
mathematical model utilized in our approach, is based on
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treating the acquired time series as an outcome from a random
process, which limits the concept of the evaluation metric
itself.
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