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ABSTRACT When controversial products are introduced, effective promotion efforts and eventual public
acceptance require consideration of multiple factors such as existing social network structures, numbers
of pioneers and their locations, and appropriate methods for product information diffusion. These factors
have been the focus of marketing, investment and other studies for many years, most recently in com-
puter information science. Researchers are especially motivated to understand diffusion processes for new
technologies and controversial products within and across social networks. While many product diffusion
simulation models have been proposed, most suffer from assumptions of unchanging internal agent attitudes
toward products, no opinion exchanges between agents, and non-significant relationships between agent
internal opinion attitudes and diffusion thresholds. In this paper we propose an opinion dynamics model that
assumes both agent interaction and changes in agent attitudes over time. Social psychology theory is used to
explain interactions between opinion and diffusion dynamics, with changing agent attitudes and behaviors
affected by interpersonal relationship factors. Simulations were used to study dynamic diffusion processes
involving controversial products (e.g., vaccines and genetically modified foods) in different social networks.
Results indicate that the proposed model accurately reflects several kinds of social phenomena, including
pioneer influences, rural marketing strategies, and the influence of social network structure. This effort to
identify instances of product diffusion under various social conditions is offered in support of research in
communication dynamics and social media-centered marketing strategies.

INDEX TERMS Opinion dynamics model, diffusion dynamics model, controversial products, social
simulation, multiagent system, cognitive dissonance, theory of reasoned action.

I. INTRODUCTION diffusion rates rapidly increasing when the number of product

As E. M. Rogers notes in Diffusion of Innovations (1995), itis
rare for large segments of social systems to agree on accepting
new products or concepts [1], since product acceptance gen-
erally results from successive adoption events. This process
entails a group of individuals who are willing to be the first
to accept new and possibly controversial products or ideas—
without their support, the odds of acceptance and successful
dissemination are low. Pioneer quantity is considered key
to product popularity and ease of promotion, with product
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adopters reaches a ““critical mass,” [2], [3] a concept based
on Mancur Olson’s Logic of Collective Action theory [4].
According to the idea of “perceived critical mass™ proposed
a decade later, the behaviors of individuals are affected by
the number of friends who adopt the same behaviors [5].
When developing his diffusion of innovation theory, Rogers
used this idea to define critical mass as the minimum num-
ber of users required to support innovative behaviors or
products [1].

From a sociological perspective, individuals experiencing
perceived critical masses are affected by a mix of objective
facts plus normative influences that support recognition of
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TABLE 1. Comparison of critical mass and reasoned action theories.

Critical Mass Reasoned Action
Theoretical Use long-term observations of social Individual behaviors are determined by a
Basis phenomena to locate time points at mix of internal attitudes and external
which product adopter numbers increase  pressures.
sharply.
Disadvantages Researchers are limited to static Researchers are limited to static

observations of social situations.

Dynamic interactions between

individuals are not described in detail.

evidence of individual potential to act at
certain time points. Does not depict or
explain the dynamic behaviors of
individuals over time.

the expectations of others [6]. An economics concept sim-
ilar to critical mass is ‘“‘network externality,” defined as the
increasing consumption value or utility that occurs when user
numbers increase [7]. According to Metcalfe’s Law, network
value (proportional to the square of the number of con-
nected users of a system [8]) increases exponentially when
user scale reaches a critical mass, thus attracting additional
users. Common technologies such as telecommunications,
fax machines, email platforms, websites, and apps such as
Line and Facebook Messenger all reflect network external-
ity [9]. Until recently, critical mass studies have required long
periods of social observations and the use of questionnaires
to collect indirect information on the psychological states of
individuals. Today it is possible to apply social simulation
tools (as we did for the present study) to observe dynamic
changes in agent behaviors and attitudes in a manner that
supports an understanding of technology, product, or concept
acceptance, as well as subsequent effects under various social
conditions [10].

For several decades social psychologists have used Fish-
bein and Ajzen’s theory of reasoned action (TRA) to study
the decision-making behaviors of individuals [11]. According
to TRA, such behaviors are affected by a combination of
internal attitudes and external subjective norms; Ajzen later
added a volitional control factor when creating his theory
of planned behavior (TPB) [12]. Davis et al.’s TRA-based
technology acceptance model (TAM) considers ease of use
and the utility of new technologies in determining new prod-
uct acceptance [13]. Subsequent studies have generally been
based on these models and theories, along with the addition
of modifications and parameters deemed necessary for under-
standing decision-making behaviors [14]; a comparison is
shown in Table 1. Since the details of behaviors and human
interactions change over time, we added a social simulation
tool from information science to create an agent-based model
that includes a time axis. This supports an understanding of
factors leading to the acceptance or rejection of controversial
technologies, products and ideas.

Some researchers have used agent-based diffusion mod-
els to examine internal attitudes and external pressures in

VOLUME 10, 2022

product adoption decisions [15], [16], [17], as well as when
designing customizable simulation models capable of meet-
ing the requirements of individual environments. However,
almost all of these models suffer from the drawback of fixed
agent attitudes toward products or concepts, regardless of
agent interaction content or duration. Real world individu-
als must deal with internal attitudes and external pressures
when examining controversial issues such as experimental
vaccines and genetically modified foods. Such issues share
at least three commonalties: a lack of consensus among
experts, incomplete information, and inconsistent applica-
tions of existing data, recommendations, and predictions [18].
According to rational action theory [19], the behaviors
of individuals are strongly affected by internal mentality
(attitudes) and external social pressure (subjective norms).
For this study we added an opinion dynamics mechanism
when simulating changes in internal attitudes resulting from
interpersonal communication. Regarding subjective norms,
we also added a threshold model to simulate various levels
of situationally determined social pressures [20] in order to
simulate the dynamic interactive influences of attitudes and
behaviors.

In this paper we describe a simulation model that more
closely reflects real-world scenarios—that is, one that con-
siders dynamic changes in internal attitudes and external
pressures at different time points. Our proposed model can be
applied to marketing and communication studies of product
or concept diffusion involving long-term tracking for analyz-
ing growth in the number of users or acceptors. However,
research in this area is limited in terms of understanding
the internal attitudes of consumers and the effects of opin-
ion exchanges on acceptance rates. Since our model sup-
ports observations of interactions between opinion exchanges
and product acceptance, simulation results can be used to
identify which social conditions exert the greatest impacts
on product acceptance. Our model can also be applied to
social psychology and computer information science prob-
lems. Social psychologists can use it to observe interactions
between psychological theories and to analyze the details of
individual theories. Whereas computer information scientists
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(a) Small world

FIGURE 1. lllustrations of three complex networks.

are accustomed to simulating the diffusion of new products in
the same manner as viral infections [21], our proposed model
uses social psychology principles to consider the influences
of internal attitudes and external social pressures. We expect
that the model will evolve in step with new research on
product diffusion.

Regarding the structure of this paper, in the following
section we describe research efforts in the areas of artificial
social networks, cognitive dissonance theory, opinion dynam-
ics models, diffusion threshold models, and diffusion of inno-
vation. In the third section we introduce the simulation model
design, including equations, basic settings, relationship net-
works and their construction, agent attributes, experimental
procedure, public opinion dynamic mechanisms, and related
algorithms. Section IV discusses five sets of reference group
characteristics: an external pressure threshold with a normal
distribution, the geographic distribution or concentration of
pioneers, high-controversy products, changing interpersonal
networks, and impact degree. A conclusion is offered in the
final section.

Il. RELATED WORKS

Sociologists use network structure simulations to analyze
social interactions [22], [23], [24], [25], with individuals rep-
resented as points or nodes and relationships as lines or links
[26], [27], [28]. Since individual, group, societal and national
social networks are complex (with relationships involving
friendliness, hostility or neutrality), we incorporated two
social network definitions: (a) a specific connected network
of individuals with a structure that influences social behaviors
[29], and (b) a group of social actors (individual or collective)
with special ties reflecting different levels of cooperation or
opposition [11], [30], [31], [32].

Researchers generally agree that all social networks consist

of a minimum of three elements:

« Points (actors) with network-specific roles, meaning that
social networks can break down when actors leave for
any reason.

o Links indicating relationship content, direction, or
strength. Content can be organized as one of eight direc-
tional or non-directional categories: family affection,
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(b) Scale-free

(c) Random

social role, emotion, cognition, action, flow, distance,
or co-occurrence [33]. Strength can be assessed as dura-
tion, depth of conversation, or degree of familiarity,
among other measures.

o Actors with ties indicating more than one relationship
type [34]. For example, ties between actors who are both
classmates and friends can be individually classified as
weak or strong [35].

Sociologists frequently use two concepts for their net-
work analyses: degree of separation, referring to the average
shortest path length between any two points, and clustering
coefficient, used to measure the degree to which graph nodes
tend to gather. Two characteristics of social networks are high
degree of clustering and low degree of separation. For many
years only two types of artificially constructed networks were
considered—regular and random—but today’s researchers
also work with small world and scale-free networks. Watts
and Strogatz’s small world network has been characterized
as having qualities between regular and random networks
[36], [37], and Barabasi’s scale-free network features a power
law distribution of branch degree [38]—Facebook and other
social media are said to have this characteristic (Fig. 1). Our
focus in this study is on small world networks because they
more closely resemble real-world networks in terms of high
degree of clustering and low degree of separation.

A. SMALL-WORLD NETWORKS

Fig. 2 shows the small-world network creation process, start-
ing with aregular network consisting of n nodes and k degrees
of connection. Each network edge has potential for breaking
off and reconnecting to a randomly selected network node—a
process resembling real-world social networks. Determining
whether the resulting network is a small-world type requires
verification of a high degree of clustering and low degree of
coefficient separation. Within a society designated as G, v;
denotes network nodes and k; their respective degrees, C(v;)
the clustering coefficient of each node, and Ei the number
of edges connecting all vi neighbors. C(v;) is defined as E;
divided by k;(k; — 1)/2, and network clustering coefficient
C(G) is defined as the average C(v;) value for all nodes. Each
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increasing randomness

FIGURE 2. Small world network evolution: (a) regular, (b) small world, (c) random.
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Motivation

FIGURE 3. Theory of Reasoned Action model diagram.

C(v;) clustering coefficient is expressed as
C(vi) = QE)/(ki(ki — 1)) (H

with S(v;, vj) representing the shortest path between any two
points v; and v;, and S(G) the separation coefficient for the
entire network—that is, the average of the shortest paths
between any two points in the network [39], [40].

B. COGNITIVE DISSONANCE AND THEORY OF

REASONED ACTION (TRA)

Social psychologists study the behavioral adjustments of
individuals in situational contexts [41], [42]. When analyzing
the impacts of group processes on individual decisions, their
observations and research methods focus on social percep-
tions (personal attributes, attitudes, and changes in attitudes)
and social influences (including the ideas of conformity and
compliance, among others). The social psychologist Leon
Festinger (best known for his theories of cognitive dissonance
and social comparison) observed that most people see them-
selves as rational individuals, therefore when they perceive
that their behaviors are viewed as unreasonable or worse, they
are likely to take one of four actions: change their behavior
to become consistent with other’s thoughts; change the dis-
sonant thought to restore consistency; add other consonant
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thoughts that justify or reduce the importance of the disso-
nant thought, thereby diminishing inconsistency; or trivialize
the inconsistency, making it less important and less relevant
[43], [44]. According to Festinger’s theory, individuals are
likely to change their attitudes (including rationalization) to
resolve dissonance associated with perceived inconsistencies.
We used this theory when defining simulation parameters as
part of our examination of interactions between behaviors and
attitudes, the effects of cognitive dissonance, and consequent
adjustments.

TRA assumes that behaviors are determined by intention,
which in turn is determined by a combination of inner atti-
tude and subjective norms [11]. A structural diagram of the
TRA operational mode is shown in Fig. 3. Definitions for its
component parts include

1. Behavioral intention, referring to the strength of an indi-
vidual’s intention to perform a certain behavior. When look-
ing at the relationship between intention and actual behavior,
the latter is measured in terms of the former and labeled as
“intention mode.”

2. Attitudes toward behaviors, referring to an individual’s
perception of behaviors being good/bad or positive/negative.
Attitudes toward specific behaviors are affected by beliefs
and evaluations that are generated during execution.
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3. Beliefs that executing certain behaviors will produce
specific results.

4. Evaluations of behavioral results. Note that the attitude
of individual A regarding a specific behavior equals the sum
of behavior belief and result evaluation—expressed as A =
Y.b;e;, with b denoting beliefs and e evaluation.

5. Subjective norms (SN), meaning perceived social pres-
sures when engaging in certain behaviors. SN is determined
by a mix of normative beliefs and compliance motivation,
expressed as SN= Xm;n;, with n denoting normative beliefs
and m the compliance motivation.

6. Normative beliefs, referring to the influence of a social
environment on individual behavioral intentions—that is,
an individual’s perception regarding the extent to which oth-
ers who are important to them believe they should or should
not perform particular behaviors.

7. Compliance motivation, meaning degree of individual
compliance in reaction to the opinions of other individuals or
groups.

In addition to social issues, several researchers have con-
firmed the ability of TRA to predict and explain why users
are likely to adopt new information systems, specifically in
research fields that emphasize technological acceptance [13].
Examples include the use of TRA to predict the acceptance
of genetically modified foods and to analyze the weights of
various factors affecting individual behaviors [45].

C. OPINION DYNAMICS MODEL
Researchers use multi-agent opinion dynamics models
to simulate opinion exchanges [46], [47]. Such models
encode opinions as real number ranges with sets known as
opinion spaces—some continuous ([0, 1]), others discrete
({—1, +1}). Agents who are connected according to a
model’s social network structure have opportunities to
exchange opinions. Individual agents are given inner opinion
values during model initialization, after which opinions are
exchanged according to one or more rules (note our inter-
changeable use of “‘agent attitude” and ‘“‘agent opinion’’).
Models then show changes in group opinion dynamics that
produce consensus, polarization, or dispersion. An important
limitation of the bounded confidence (BC) model [48] is
that only agents with similar opinions communicate with one
another, with communication automatically stopping when
opinion differences exceed a threshold. The Hegselmann-
Krause (HK) [49], [50], [51], [52] model expresses opinion
value as a real number with a [0, 1] interval, with the uncer-
tainty ¢ parameter synonymous with bounded confidence in
the BC model. During each round of communication, evolv-
ing agent opinions represent the average of all opinions held
by friends. The continuously repeated simulation process
supports observations of opinion distributions. Since the HK
model does not have an interpersonal relationship network
structure, any two agents can exchange similar opinions.
Several extensions have been added to the BC model,
including social structure, dynamic networks [53], and multi-
issue communication dynamics [54]. These additions support
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model applications to scenarios involving mass media [55]
and the spread of extreme opinions [56]. The relative agree-
ment model (RA, sometimes referred to as the D model) was
created to study the prevalence of extreme opinions [57].
There are two important differences between the RA and HK
models: RA opinion spaces are defined as [—1, 4+1], and RA
opinion exchanges are two-way, with both sides capable of
modifying their opinions. For the opinion exchange process
we randomly selected two agents. When the opinion distance
between them is within the bounded confidence interval, they
communicate opinions that are close to each other according
to the following calculations [58]:
xj = xj + uiChj/ui — Dx; — x;j) (@)
uj + uiChij/u; — 1)(w; — u;) 3)

Uj

Agent i has an x; opinion and u; uncertainty; for agent j they
are x; and u;, respectively. The bounded confidence interval
between the two agents is denoted as h;;. Accordingly, indi-
viduals change their opinions more frequently as their atti-
tudes become more uncertain, reflecting real-life scenarios in
which individuals who strongly insist on their own opinions
are less affected by the opinions of others. When studying the
spread of radicalism, the RA model includes both extreme
and moderate agents, with the former characterized by low
uncertainty. This is a very different assumption from the HK
model, which treats all agents as moderate.

D. DIFFUSION THRESHOLD MODEL

Individuals are affected by personal experiences, impres-
sions, prejudices, and social pressures [59]. Watts’ threshold
rule [36] states that individuals are likely to choose wrong
answers to problems even when they are obviously wrong,
as long as they perceive agreement from a threshold number
of others. According to a comparison of reasoned action
theory and the diffusion threshold model shown in Table 2,
the theory’s subjective norms are affected by a combination of
normative beliefs and compliance motivation corresponding
to the number of neighbors and threshold values found in the
model [60].

E. DIFFUSION OF INNOVATION

Technology adoption research can be traced to a 1960 sur-
vey of community group responses to innovative technology
products [61]. Subsequent technology adoption life cycle
studies have distinguished among different times of adop-
tion, resulting in curves approximating normal distributions
(Fig. 4) [62]. Adopters are now categorized as innovators,
early adopters, early majority, late majority, or laggards [69],
each with different personality traits. Early adopters have
positive attitudes toward change, new ideas, and innovative
products. Significant effort is being made to determine how
to best use the internet to communicate the benefits and
advantages of innovative products to early adopters as an
initial step in the diffusion process [63], [64].
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TABLE 2. Comparison of reasoned action theory and a diffusion threshold model.

Reasoned Action Diffusion Threshold
Normative  Refers to social environment Increased external belief that one should engage in
Beliefs influences on individual behavior behaviors as more friends adopt them.
intentions—i.e., certain actions that
most others believe one should
adopt.
Compliance The degree to which individuals Stronger individual responses to others’ opinions
Motivation follow the opinions of others. indicate lower external pressure thresholds and
greater likelihood of being influenced by those
opinions.
2
]
a
o Early Late
'8 Majority Majority
- 34% 34%
(e}
—
]
o
£
=] Early Laggards
z Innovators Adopters 16%
13.5%
Time

FIGURE 4. Technology adoption life cycle [62].

Technology markets for innovative high-tech products can
be categorized as early (innovators and early adopters), main-
stream (early and late majority) and late (laggards) (Fig. 5)
[65], [66], [67]. Marketers view the gap between early and
mainstream markets as problematic—some new technology
products adopted by innovators fail to grab the attention
of users in other categories. Success in bridging this gap
can determine product acceptance and profitability [68],, but
the task requires a thorough understanding of differences
between early and mainstream markets in order to identify
and successfully execute gap-bridging strategies. Some com-
panies purposefully pursue a strategy of identifying technol-
ogy innovators and helping them express their approval to
early adopters. The motivations are to build early majorities,
trigger maximum turnover in mainstream markets, and earn
recognition as maintainers of product standards. When prod-
uct sales enter the mainstream stage, marketers must consider
the influence of market contrarians [69], [70].

F. GAPS BETWEEN AND WITHIN EXISTING STUDIES

Innovation diffusion studies have been performed with Fish-
bein and Ajzen’s TRA, Ajzen’s TPB, Davis et al.’s TAM,
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and decision-making behaviors [11], [12], [13], [14]—all dis-
cussed in an earlier section. However, social science studies
require large amounts of data collected over long time peri-
ods, often with questionnaires designed to gather information
on peoples’ internal feelings. Data frequently reflect specific
decision-making behaviors within limited time frames. Since
individuals tend to continually adjust their attitudes based
on opinion exchanges over time [71], time point-focused
data collection methods such as questionnaires frequently
produce data that do not accurately portray opinion dynam-
ics. To address this shortcoming, some computer science
researchers apply agent-based and network-oriented simula-
tion approaches to measure the effects of various factors on
decision-making behaviors [49], [57], [72].

A number of computational social science researchers have
experimented with opinion dynamics and adoption threshold
models of innovation diffusion to examine opinion exchanges
and consensus formation [36], [49], [57], [73]. However,
many opinion dynamics model studies emphasize agent opin-
ion exchanges without discussing follow-up actions, and
many adoption threshold model studies only address indi-
vidual decisions that depend on proportions of friend and
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FIGURE 5. Technology adoption life cycle model and market phases [65], [66], [67].

neighbor outcome behaviors, without considering opinion
differences in internal agent attitudes. To our knowledge,
no attempts have been made to combine the two model
types when simulating opinion exchanges and observing their
effects on decisions and agent actions. Our motivation in this
paper is to combine the two in order to achieve a broader
understanding of opinion exchanges and product acceptance.

Iil. MODEL DESIGN
Definitions for all system parameters and agent attribute val-
ues discussed in this section are given in Table 3.

A. EQUATIONS MODEL DESCRIPTION AND
BASIC SETTINGS
The experiment design was based on four assumptions:

1. All social communication occurs within small-world
networks.

2. All individuals have their own positive, negative or
neutral opinions that influence the adoption or rejection of
controversial products and issues.

3. Based on cognitive dissonance theory, individuals who
adopt controversial products or ideas only exchange opinions
with agents who are equally or more accepting of them, thus
increasing the positive strength of the initial agent’s opinion.

4. Individuals with negative attitudes never consider adopt-
ing controversial products.

B. BUILDING RELATIONSHIP NETWORKS

An artificial society based on N x N 2D cellular automata
with a toroidal structure was created (Fig. 6). As stated above,
small-world networks resemble human networks in terms
of high clustering, low separation, and normal connectivity
distribution [21]. To increase the clustering degree, we used
the Moore model [74] to add links to neighbors surrounding
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each node. To achieve low separation, we re-wired all con-
nections according to a probability calculated as {x|x € Q,
0<x<1}.

C. SETTING AGENT ATTRIBUTES AND

EXPERIMENTAL PROCEDURE

A single-issue model served as the basis for the main
experiment. These kinds of issues—for example, accep-
tance/rejection of COVID-19 vaccines or genetically
modified food—are the most likely to trigger opinions
and attitudes ranging from O (extremely negative) to
100 (extremely positive). In our simulations, individual
agents were given values for four characteristics: attitude
(att), meaning internal evaluation of an idea or product;
bounded confidence (d), a determinant of ongoing commu-
nication between two agents; external pressure threshold
(u_threshold), a conformity indicator (i.e., whether an agent
adopts a product/idea due to the number of friends who
adopt it); and action (action), indicating whether an agent
has adopted a product/idea, after which it only communicates
with agents holding a similar positive opinion.

The experiment consisted of three stages:

1. Initialization, meaning the establishment of a small
world network and its agents. After setting the att, d,
u_threshold and action parameters, a small number of positive
pioneers who had already adopted the product were added.
According to our proposed model, pioneers can be randomly
scattered throughout a social network, or concentrated in one
or more areas.

2. Opinion exchanges, all implemented in accordance with
RA model rules [36]. Two agents with attitudes within a
predetermined bounded confidence range can communicate
and modify their opinions to be closer to each other. After
randomly selecting a friend from a network, each agent
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TABLE 3. System and agent parameters.

Parameter Type Description Range Interval
no-pioneers integer Number of pioneers. [0, 100] 1
clustered- .
. boolean Whether pioneers are clustered. true/false
pioneers

Communicable range indicating
whether agents can tolerate differences

max-opinion- in friend attitudes. The larger the

: int 1,1 1
distance fteger range, the greater the agent tolerance. [1, 100] 0
Smaller ranges indicate conservative
or exclusive perspectives.
Proportion of agents moving toward
convergence-rate real p g & [0.1, 1.0] 0.1

each other.

Public evaluation of an issue or
avg-attitudes integer product. Larger values indicate more [1, 100] 10
positive attitudes.
For normally distributed agent
std-attitudes integer attitudes, larger SD values indicate [0, 30] 5
more dispersed public opinions.
An agent conformity measure. Larger
values indicate greater societal
avg-thresholds integer conservatism and caution. Lower [1, 100] 10
values indicate more openness and
willingness to take risk.
For normally distributed agent
thresholds, larger SD values indicate

std-thresholds integer greater differences in public [0, 30] >
personality traits.
max-time integer Maximum simulation iterations. 1[05(? 6] 300
. . . .. . . . [10,
iterations integer Individual experiment iterations. 1000] 100
att integer Agent evaluation of a product. [0, 100] 1
d integer Bounded confidence interval. [0, 100] 1
) Agent conformity.
u_threshold integer [0, 100] 1
Action? integer Boolean value indicating whether an
true/false
agent has adopted a product.
Boolean value indicating whether the
Ready? Integer opinion values of two agents are true/false

within the bounded confidence
interval.
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FIGURE 6. Two-dimensional representation of circular cellular automata.

determines which behavior should be performed based on one
of four conditions:

a. If the agent and friend reject the controversial product,
they influence and adjust each other’s attitudes as long as
the distance between their opinions is within the bounded
confidence interval.

b. If an agent has already adopted a product but the friend
hasn’t yet done so, and if the friend’s opinion value is lower
than the agent’s, then only the friend’s attitude value is
affected by an exchange of opinions. If the friend’s opinion
value is higher than the agent’s, the attitudes of both are
influenced by an exchange of opinions. Again, this is only
true when the two parties’ opinions are within the bounded
confidence interval.

c. In situations where both parties adopt a product, if the
friend’s attitude value is higher but within the bounded con-
fidence interval, then only the attitude of the original agent is
affected. If the friend’s attitude value is lower but within the
bounded confidence interval, only the friend’s attitude value
is affected.

d. If the agent hasn’t adopted the product but the friend
has, and if the agent’s attitude value is lower than the friend’s
but within the bounded confidence interval, only the agent’s
attitude is affected. If the agent’s attitude is higher than the
friend’s, the attitude values of both parties are affected by
exchanges of opinion.

115260

3. Execution decision stage. According to rational action
theory, agent behaviors are affected by a mix of internal atti-
tudes and external social norms. The u_threshold parameter is
defined as the threshold value for an agent to decide whether
or not a product should be adopted. If the agent has a positive
attitude and the number of friends who have already adopted
the product is higher than the parameter u_threshold, the
agent also adopts it.

D. PUBLIC OPINION DYNAMIC MECHANISM

Implementing this mechanism entails three parameters. For
att, a range from O to 50 indicates a negative attitude and
from 51 to 100 a positive attitude. For the bounded confi-
dence interval, attitude values for two agents (as calculated
in section II(C)) determine whether or not they have an
opportunity to communicate; for additional agents, those with
certain attitude values may be able to communicate with one
or more agents but not with others. The third parameter,
convergence, indicates the degree of opinion aggregation.
In all cases the attitudes of two agents move closer to each
other after exchanging opinions, as expressed in equation 4,

x; = x; + convergence X (xj — x;) “)

where x; denotes the attitude of agent j, x; the attitude of
agent i, and convergence the system parameter convergence
rate.
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TABLE 4. One-way persuasion and two-way communication scenario descriptions discussed in section Ili(e).

Agent_i Not adopted Adopted
Agent j
Two-way communication (Case 1) One-way persuasion | Two-way communication
Not adopted
(Case 2) (Case 3)
Two-way One-way
Adopted communication | persuasion (Case 5) One-way persuasion (Case 6 or 7)
(Case 4)

For counter e <=
iterations

Exchange opinions
(Switch cases)
(Table 3. One-way
persuasion and
two-way
communication.)

Did the simulation
each a stable state?

For P Update a
or counter r <= <1 and agent

max-time

attitude values

Counter r reaches the
limit value?

Finish

A

For all agents

(Counter 1) T

For all friends of
agent i
(Counter j)

Initialization —

PEE—

<«

:

FIGURE 7. Algorithm flowchart.

This study looks at two types of communication. One-way
communication occurs when an agent has already adopted
a product and a friend has a lower attitude value; in those
cases the agent’s attitude is not affected even if their attitude
values are within the bounded confidence interval. According
to cognitive dissonance theory, the friend’s attitude becomes
slightly more positive in such situations. Illustrations of
one-way and two-way communication timing are presented
in Table 4.

E. ALGORITHMS AND PSEUDOCODE

A flow chart depicting the algorithm process is presented as
Fig. 7. The following pseudocode is for the model design and
algorithm for simulating the evolution process:
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ounter j reaches the
limit value?

ounter i reaches the
limit value?

ounter e reaches the
limit value?

Check the

u_threshold values
of all agents to
decide whether the
agent should adopt
the product

1. Build a social network
*Each highly abstract real society is represented as
a network. In the network model, all individuals are
shown as nodes. Edges between nodes indicate interac-
tions/relationships between social individuals.
*Set the network to one of four types: regular (cellular
automata, CA), random (RN), small world (SWN), or scale-
free (SFN).
(Set system parameter "Network_type" as SEN/SWN/CA/RN
with "Rewiring_probability.")

*Initialize all agent attributes (agent.att, agent.d,
agent.u_threshold, agent.Action?, agent.Ready?)
2. Initialize system parameter "no-pioneers," "clustered-

"convergence-rate,"
"avg-thresholds,"

"max-opinion-distance,”
"std-attitudes,"

pioneers,"
"avg-attitudes,"
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"std-thresholds,” "max-time," and "iterations." For system
parameters see descriptions in Table 4.
3. Perform opinion exchange and diffusion simulations:
Loop "iterations"
Loop "max-time":
For Agent_i in the social network:
For Agent_j as friend of agent i :
If(|Agent_i.att — Agent_j.att| <= "max-opinion-distance")
then:
/I Table 3. One-way persuasion and two-way communication.
Switch case: (Agent_i.Action? and Agent_j.Action?)
Case 1: (Agent_i.Action? == false and Agent_j.
Action? == false)
Agent_i.att = Agent_i.att + convergence-rate*(Agent_j.
att — Agent_i.att);
Agent_j.att = Agent_j.att + convergence-rate*(Agent_i.
att — Agent_j.att)
Break switch;
Case 2: (Agent_i.Action? == true and Agent_j.
Action? == false) and (Agent_i.att > Agent_j.att)
Agent_j.att = Agent_j.att + convergence-rate*(Agent_i.
att — Agent_j.att);
Break switch;
Case 3: (Agent_i.Action? == true and Agent_j.
Action? == false) and (Agent_i.att <= Agent_j.att)
Agent_i.att = Agent_i.att + convergence-rate*(Agent_j.
att — Agent_i.att);
Agent_j.att = Agent_j.att + convergence-rate*(Agent_i.
att — Agent_j.att);
Break switch,
Case 4: (Agent_i.Action? == false and Agent_j.
Action? == true) and (Agent_i.att >= Agent_j.att)
Agent_i.att = Agent_i.att + convergence-rate*
(Agent_j. att — Agent_i.att);
Agent_j.att = Agent_j.att 4+ convergence-rate
*(Agent_i. att — Agent_j.att);
Break switch;
Case 5: (Agent_i.Action? == false and Agent_j.
Action? == true) and (Agent_i.att < Agent_j.att)
Agent i .att = Agent_i.att + convergence-rate*
(Agent_j. att — Agent_i.att)
Break switch;
Case 6: (Agent_i.Action? == true and Agent_j.
Action? == true) and (Agent_i.att > Agent_j.att)
Agent_j.att = Agent_j.att + convergence-rate*
(Agent_i.att —Agent_j.att);
Break switch;
Case 7: (Agent_i.Action? == true and Agent_j.
Action? == true) and (Agent_i.att <= Agent_j.att)
Agent_i.att = Agent_i.att + convergence-rate*
(Agent_j. att - Agent_i.att)
Break switch;
End switch case
End if then
End Agent_j as friend of agent i
End Agent i in the social network
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4. Agent decides whether to adopt the product:

For Agent_i in the social network:

IF (Agent_i.att >= Agent_i.u_threshold), then
Agent_i.Action? = True;

IV. SIMULATION EXPERIMENTS

Simulation experiments were grouped according to separate
variables to determine their respective effects. The iterations
parameter was set to 1000 and max-time to 300. The main-
frame computer used in this project had an Intel® Core (TM)
i7-8565U CPU @ 1.80GHz 1.99 GHz processor (16.0 GB
RAM, x64-type) with an Intel® UHD 620 graphics card
(Microsoft Windows 11 Pro Version 21H2). The software was
written in NetLogo 4.0.5; source code is available from the
corresponding author. The six simulation experiment groups
are described in the rest of this section.

A. REFERENCE BENCHMARK EXPERIMENT GROUP

To ensure high clustering, low separation, and a normal
degree of distribution (i.e., number of agent friends), “small
world” was used as the default network for this group
(100 x 100cellular automata with a re-wiring value of 0.3).
The M=50, SD=25 att parameter indicates a moderate (non-
extreme) public attitude toward a widely distributed product,
while the constant value of 30 for opinion_distance (bounded
confidence interval) indicates a conservative public attitude.
For controversial issues or products there is greater likeli-
hood that agents will only exchange strong opinions with
friends holding similar opinions. Pioneers were initially dis-
tributed so as to avoid concentrations in certain areas. The
u_threshold low-controversy product parameter was set to
30%, indicating a lower product adoption threshold—that
is, agents adopted products when 30% of their friends used
them. The u_threshold value for a separate high-controversy
product was set to 50%—in other words, 50% of an agent’s
friends had to express support for a product before the agent
considered adopting it.

Next, a simulation program was used to observe how many
product adopters emerged from different pioneer percentages,
with the numbers of final product adopters equal to average
values obtained after 40 simulation rounds. Throughout the
experiment we observed pioneer ratios at which the number
of recipients increased significantly, indicating the speed at
which a product became popular (i.e., achieved critical mass).
The above-described settings were used to establish two types
of product standards: low-controversy and high-controversy.
These benchmarks were used to adjust social parameters for
observing dynamic product spreading. As shown in Fig. 8§,
for low-controversy products (u_threshold = 30%) pioneer
proportions of 6-8% were sufficient to trigger rapid product
popularity. As shown in Fig. 9, for high-controversy products
(u_threshold = 50%) the required pioneer proportion for
a similar rapid expansion was 20%. According to the two
figures, different adoption curves were produced depending
on the degree of product or idea controversy. Low pioneer
proportions were unlikely to trigger the rapid spread of a
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FIGURE 8. Simulation results for a low-controversy product benchmark in a small world network at a

u_threshold of 30%.
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FIGURE 9. Simulation results for a low-controversy product benchmark in a small world network at a u_threshold of 50%.

high-controversy product, but a surprisingly small number of
pioneers may have been sufficient to trigger the rapid spread
of a low-controversy product. All subsequent results were
compared to this benchmark experiment.

B. EXTERNAL PRESSURE THRESHOLD IN A NORMAL
DISTRIBUTION

Since public doubts about controversial products tend to
show normal distributions, we set the agent u_threshold
parameter to normal with a 30% mean value (SD=10)
for low-controversy products and 50% mean value for
high-controversy products (SD=25). As shown in Fig. 10,
for low-controversy products the diffusion rate for the normal
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threshold distribution curve was faster than for the constant
threshold value. A normal threshold value distribution indi-
cates a percentage of individuals with lower threshold values
who are the first ones to be influenced when pioneer propor-
tions are small. Since they increase the potential for product
acceptance or adoption by a larger percentage of a population,
the degree of diffusion will likely be much higher than in sit-
uations marked by a constant threshold value. Accordingly,
when the proportion of pioneers grows to a medium or large
size, the likelihood of a product spreading throughout a soci-
ety increases sharply, even when agent thresholds remain con-
stant. Stated differently, there is little difference in the total
number or percentage of adopters when pioneer proportions
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FIGURE 10. Small-world network simulation results for low-controversy products with a u_threshold of 30%
(normal distribution) compared to a benchmark u_threshold of 30% (constant value).
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FIGURE 11. Small world network simulation results for high-controversy products at a u_threshold of 50% with a normal
distribution compared to a benchmark u_threshold of 50% with a constant value.

are large, regardless of whether the pioneer threshold value is
a normal distribution or a constant.

We analyzed a normal distribution with a 50% mean
threshold value and SD=25 in three scenarios; results are
shown in Fig. 11. At a <20% level of pioneers, a normal
threshold value distribution indicated a higher number of
agents who were the first to be influenced and the first to
influence a large number of others. However, pioneers are
not always capable of influencing low-threshold agents. If the
agent threshold value is a constant, the degree of influence on
others is exceptionally limited. In other words, when the pro-
portion of pioneers is small and accompanied by a normally
distributed threshold value, a stronger product diffusion effect
occurs. Note that when the proportion of pioneers reached
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21-24%, the number of adopters influenced a larger number
of agents, even at a constant agent threshold—62.4% at a 24%
pioneer percentage. A normal distribution threshold does not
significantly support diffusion in such situations. When the
pioneer proportion was >24% and the agent threshold value
was normally distributed, diffusion did not benefit as much
as when the threshold value was constant, since a normal
threshold distribution indicated the presence of agents with
higher threshold values who were not easily affected by
pioneers. Looking at the end of the curve shown in Fig. 10,
note that 100% diffusion was difficult to achieve when the
threshold was a normal distribution due to the number of
high-threshold agents—there was greater chance of reaching
100% at a constant threshold value of 50%. In short, when
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FIGURE 12. Small world network simulation results for low-controversy products (u_threshold = 30%) with
either geographically concentrated or randomly scattered (benchmark) pioneers.
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FIGURE 13. Small world network simulation results for high-controversy products with a u_threshold of 50% and either
geographically concentrated or randomly scattered (benchmark) pioneers.

the number of pioneers was sufficiently large, diffusion was
likely to be greater at a constant threshold.

C. GEOGRAPHIC CONCENTRATION OF PIONEERS

Marketers understand the potential benefits of concentrat-
ing pioneers in specific areas to develop a sense of prod-
uct acceptance or popularity that can spread to other areas.
We used simulations to examine this tactic at various pioneer
concentrations. Fig. 12, which presents our results for low-
controversy products, shows that concentrating pioneers in
one area accelerated an increase in the number of adopters.
The largest difference between adopter proportions in the two
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curves was observed at pioneer ratios of 6-8%, after which the
two curves gradually converged.

A key pioneer proportion for high-controversy products
(50% threshold) was 20%; below this level, few agents
other than pioneers adopted them. Thus, the initial influ-
ence of pioneers on an overall population remained weak
when they were concentrated in one area, but they were
still likely to influence nearby agents. A sharp increase in
the curve occurred when the pioneer proportion exceeded
20%. As shown in Fig. 13, the curve for scattered pioneers
increased much more rapidly than the curve for concentrated
pioneers, indicating that the former was more successful in
terms of spreading their influence. Thus, the figure shows
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FIGURE 14. Comparison of regular and small world network simulation results for low-controversy products

(u_threshold = 30%).
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FIGURE 15. Comparison of regular and small world network simulation results for high-controversy products

(u_threshold = 50%).

that diversifying the geographic locations of pioneers is a
better strategy for building initial product popularity once the
proportion of pioneers reaches a sufficiently high level.

D. CHANGE IN INTERPERSONAL NETWORK STRUCTURE

The focus of the above-described experiment was on small
world network connections featuring high clustering, low
separation, and normal agent degree distributions. We mod-
ified the experiment to better observe the impacts of social
networks on the spread of controversial products. A regular
network with high clustering and high separation character-
istics was established; this type of model has been used to
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simulate the effects of various epidemic isolation policies,
home-and-work movement and lifestyle changes, and degree
of isolation (i.e., interactions limited to those occurring at
home). Individuals in this type of network only interact with
adjacent neighbors.

Our motivation was to observe the impacts of interpersonal
relationship separation on product diffusion. According to the
results shown in Figs. 14 and 15, similar curve trends were
produced whether the threshold was high or low. At a low ini-
tial percentage of pioneers, the eventual number of adopters
from the population of all potential adopters was higher than
that produced by the small world network, indicating greater
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FIGURE 17. Comprehensive comparison chart for high-controversy products (u_threshold = 50%).

influence from higher concentrations of pioneers. But when
the initial pioneer proportion was high, both the size and geo-
graphic spread of influence via interpersonal relationships in
a regular network remained low. In brief, the low-separation
characteristic of the small world network was more conducive
to spreading positive influence to other areas.
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E. COMPARATIVE ANALYSIS OF IMPACT DEGREE

The red bars in Figs. 16 and 17 indicate differences in the total
numbers of adopters between normal threshold distributions
and benchmark constant threshold values. Blue bars indicate
differences between total number of adopters in a regular
network and a benchmark small-world human relationship
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network. Green bars show differences between total num-
bers of adopters according to pioneer concentrations and a
benchmark scattering of pioneers throughout a network. The
Fig. 16 chart is for low-controversy products (30% external
pressure threshold). According to these data, threshold distri-
bution was the most important factor determining the number
of adopters, and the presence or absence of a regular network
was the least important—the latter even exerting a negative
effect when the pioneer proportion was large.

According to the Fig. 17 comparison chart for high-
controversy products (50% external pressure threshold),
when the percentage of pioneers was small (<20%), the
influence of a control group on product adoption was consis-
tently positive. The greatest influence occurred with a normal
distribution of adoption threshold value (red bar). We also
observed a negative control group effect on the number of
product adopters at an initial pioneer level of >20%. The
blue bar shows the strongest negative effects of pioneer
concentration.

Two conclusions can be derived from these charts:

1. In normal distribution cases, the external pressure
threshold exerted the greatest positive impact on product
adoption.

2. For high-controversy products, pioneer concentration
exerted a strong negative impact on product proliferation
when the number of pioneers was large.

V. CONCLUSION

The main study motivation was to clarify issues involved
in getting support for controversial ideas or products.
Sociologists and marketing researchers have previously
emphasized the importance of pioneers during the initial
introduction stage. We combined social simulation meth-
ods taken from information science with a dynamic opinion
dissemination model to identify key processes and factors
in product adoption. Our results indicate that traditional
marketing activities were ineffective, especially the practice
of concentrating influential pioneers to influence the pur-
chase/adoption decisions of specific groups of consumers—
in other words, product or idea pioneer scattering may be a
more successful strategy for influencing acceptance behavior.
A combination of the two approaches may have the greatest
potential for success—that is, concentrating pioneers in spe-
cific areas at the very beginning of a marketing or dissemina-
tion effort, but distributing them across a larger geographic
area (or number of media platforms) when the proportion
of pioneers begins to show positive growth. In this manner,
product or idea adoption can be monitored in greater detail.

This study makes three contributions to the fields of com-
puter information, marketing, and communications:

1. The experimental results under different social condi-
tions help explain how certain factors affect the acceptance
of controversial products or ideas. The main benefit for mar-
keting and communications researchers and practitioners is
support for building a better understanding of the internal atti-
tudes of consumers. Our proposed model simulates changes
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not only in attitudes triggered by exchanges of agent opinions,
but also changes in agent attitudes over time. The study
data also support an understanding of how dynamic public
opinion processes clarify the diffusion dynamics underlying
innovative product adoption.

2. We believe our proposed model can be modified for
purposes of using computer simulations to predict inter-
nal changes of opinion—for example, changes in attitudes
regarding vaccines and consequent effects on willingness to
be vaccinated. It is our hope that the model can be used
in public health scenarios in support of increasing public
acceptance of disease prevention and mitigation policies.

3. Based on our effort to accurately simulate real-world
opinion exchanges, we believe our proposed model is capable
of simulating four kinds of social networks corresponding
to topologies reflecting the actual characteristics of inter-
personal networks. Computer information scientists may be
interested in expanding our model to enhance the practical
reference value of simulation results.

Our goals of supporting improvement in existing opinion
dynamics models and identifying interaction mechanisms
involving opinion and diffusion dynamics models demands
consideration of a complex mix of societal factors requiring
simplification. After clarifying basic model characteristics,
our next task is to identify and add features for purposes of
making the model more realistic. Three areas for expansion
and improvement stand out:

1. The addition of media communication and opinion
leader model factors to reflect their respective influences on
real-world opinion formation and exchanges. Whereas past
opinion leaders generally consisted of celebrity endorsers of
products and ideas, today the category also includes mass and
niche media figures such as social media-based influencers
[75], [76]. Researchers have identified three primary charac-
teristics of opinion leaders [76], the first being the potential
for their innovative behaviors and normative influences to
affect adoption rates via social pressure and social support
[77]. A second group of opinion leaders exerts influence by
providing advice and directions to other consumers, thereby
increasing the speed and range of information diffusion via
sources such as Facebook, Twitter, and TikTok, among others.
Third, opinion leaders can share their experience, expertise,
and involvement when evaluating products, thereby translat-
ing marketing messages presented in newspapers, magazines,
and videos into word-of-mouth recommendations that many
recipients perceive as more reliable sources of information
compared to paid advertisements [78].

2. In simulations, social network edges can be modified and
used as a ““strength attribute.” Real-world opinion strengths
for individual connections vary widely, with close friends and
professionals exerting the strongest influences in their roles
as consultants. Researchers can use the strength attribute in
their models to reflect the degree of importance of friends,
acquaintances, and specialists.

3. Scale-free networks [69], [70] can be modified to
reflect one-to-many and one-way relationships such as those
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between internet celebrities/social media influencers and
their fans. Future researchers may be interested in adding a
“contrarian” factor to scale-free networks to consider the
effects of anti-mainstream thinking. There are numerous
examples of contrarian views regarding computer, communi-
cation and consumer (3C) electronics products. The numbers
of contrarians are far below those of supporters of individual
brands, yet it remains unclear how much influence they exert
on product popularity and acceptance.
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