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ABSTRACT Over-the-horizon radar (OTHR) is an important equipment for the ultralong-range early warn-
ing in the military, but the use of constant false-alarm rate (CFAR), which is a traditional detection method,
makes it difficult in multi-aircraft formation recognition. To solve this problem, a multi-aircraft formation
recognition method based on deep transfer learning in OTHR is proposed. First, the range-Doppler images
of aircraft formation in OTHR are simulated, which are composed of four categories of samples. Secondly,
a recognition model based on Convolutional Neural Network (CNN) and CFAR detection technology is
constructed, whose training method is designed as a two-step transfer. Finally, the trained model can well
distinguish the spectral characteristics of aircraft formation, and then recognize the aircraft number of a
formation. Experiments show that the proposed method is better than the traditional CFAR detection method,
and can detect the number of aircraft more accurately in the formation with the same false alarm rate.

INDEX TERMS Multi-aircraft formation, range-Doppler image, OTHR, deep transfer learning.

I. INTRODUCTION
Due to its long detection distance and unique detection mech-
anism, over-the-horizon radar (OTHR) plays an irreplaceable
role in strategic early warning and stealth target detection and
has become an important part of early warning and detection
system [1]. However, whenmultiple targets are locatedwithin
OTHR antenna beamwidth and the same range unit, their
number is not easy to identify [2]. In modern warfare, fighters
often fly in a dense formation to interfere with the accurate
judgment of radar on their target characteristics [3]. So, the
multi-aircraft formation recognition of OTHR is very impor-
tant for commanders to recognize the battlefield situation,
which has important practical significance in future war.

At present, the multi-aircraft formation recognition of
OTHR mainly depends on the difference in target Doppler
frequency [4]. After receiving the target echo, the radar
obtains the range-Doppler-amplitude spectrum of the target
through range-Doppler processing and then uses constant
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false-alarm rate (CFAR) processor to detect and recognize
the multi-aircraft formation [5]. The wide aperture receiving
antenna array of OTHR can obtain high azimuth resolution,
but the horizontal range and vertical range of the detection
region reach the same order of magnitude due to its long
detection distance. When there are multiple targets in the
same distance unit, the noise estimation in the reference win-
dow is high due to the spectral peak broadening and spec-
tral peak adhesion caused by multi-target aggregation, which
reduces the ability to find adjacent weak targets and makes it
difficult to detect and recognize multi-aircraft formation only
by Doppler velocity resolution [6].

To solve the above problems in multi-aircraft formation
recognition, a lot of research has been done in two aspects.
One is to improve CFAR detection method, the other is to
extract spectral characteristics of aircraft formation. In terms
of CFAR detection method, in addition to the improved tra-
ditional cell averaging CFAR (CA-CFAR), ordered statistics
CFAR (OS-CFAR), and adaptive CFAR methods, the use of
neural network and support vector machine (SVM) classifica-
tion algorithm is studied to classify and distinguish the clutter
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background and then select the appropriate CFAR method
according to the classification results [7], [8], [9], [10], [11].
However, in practical application, these methods still need
to estimate the distribution of clutter in advance, which is
related to the selection of the distribution model and the
setting of the reference cell, and result in many disadvan-
tages for multi-aircraft formation recognition. In terms of
the spectral characteristics of aircraft formation, the method
of increasing the dimensions of the target characteristic is
proposed to increase the multi-target detection accuracy [12].
A multi-target detection method and adaptive waveform
design algorithm are studied, which significantly improves
the performance of multi-target detection [13]. The cluster-
ing algorithm of density-based spatial clustering of applica-
tions with noise and k-nearest neighbor (k-NN) are used to
classify targets after the multi-target features extraction [14].
A method to decompose the multi-targets information on
the RV plane for effective multi-target classification is pro-
posed [15], and so on. However, due to the inherent defects
of the low-resolution radar itself, the methods in the litera-
tures mentioned above still have some limitations in the target
detection of OTHR, such as the difficulty of target spectrum
feature extraction, the great influence of subjective factors on
the feature extraction rules, and the difficulty in ensuring the
effectiveness of feature extraction.

Target detection and recognition technology based on deep
learning is a target detection technology developed from
convolutional neural network technology. Compared with
traditional target detection technology, it shows greater per-
formance advantages and has been widely used in themilitary
and civil fields. Due to the unique advantages of deep learning
technology in image feature extraction, relevant studies have
adopted the method of deep learning to detect and recog-
nize many sorts of targets such as airplanes, ships, and soon
on [16], [17]. Using deep learning technology can automat-
ically extract multi-level target spectrum features, and avoid
the interference and information loss caused by human fac-
tors. But its disadvantage is also prominent, which is that it
needs a large number of tens of thousands of labeled data
to train the model [18]. In the practice of air defense early
warning, acquiring and labeling aircraft formation spectrum
data are difficult, which means it is also hard to recog-
nize multi-aircraft formation by directly using deep learning
method.

In this paper, a multi-aircraft formation recognitionmethod
based on range-Doppler image and deep transfer learning is
proposed, which realizes multi-target formation recognition
of OTHR. Specifically, the contributions of this paper are as
follows:

1) A recognition model based on Convolutional Neural
Network (CNN) and CFAR is designed. If the CFAR
detector is used alone, the multi-target is not easy
to recognize. To solve this problem, CNN is added
after CFAR processing to overcome the problem of
low accuracy of traditional CFAR detection methods
in multi-target formation recognition.

2) The model training method is designed as a two-step
transfer, which not only solves the problem that it is
difficult to apply deep learning technology with insuf-
ficient real measured data but also further improves the
recognition accuracy of the model. Compared with the
one-step transfer method, the two-step transfer method
uses a dataset closer to the real measured data to train
the recognition model and achieves better results.

3) According to the characteristics of multi-target forma-
tion, we propose a special data augmentation method,
which expands the scale of real measured data and lays
a foundation for model training. Compared with the
traditional augmentation method in the training process
of deep learning, the proposed method is more suitable
for this task.

The rest of this paper is organized as follows. Section 2
introduces the framework of the method and some con-
cepts involved. Section 3 describes the dataset generating
and model turning in detail. Section 4 illustrates and ana-
lyzes experimental results, and the conclusions are given in
Section 5.

II. METHODOLOGY
The multi-aircraft formation is not easy to distinguish from
one target by the traditional CFAR detection method. How-
ever, practical experience shows that there are some differ-
ences in the characteristics of the echo spectrum between
multi-aircraft and single target, and experienced operators can
effectively distinguish these differences. Deep learning tech-
nology has a good application in the visual application [19],
so applying deep learning technology to multi-aircraft recog-
nition will achieve good results. There is no need to calcu-
late statistics or other parameters in the recognition based on
deep learning method, while only need the classifier network
trained to automatically recognize the subtle differences of
spectral features in the range-Doppler image. But a large
number of labeled data is needed to achieve better results in
deep learningmethod. In the practice, it is difficult to collect a
large number of measured data. Luckily, deep transfer learn-
ing technology can solve the problem with small sample size
well.

A. THE METHOD FRAMEWORK
Amulti-aircraft formation recognition method based on deep
transfer learning is proposed in this section. In this method,
a model combining CFAR and CNN is designed to extract
the deep features of target relevant cells and classify them,
so as to realize the recognition of multi-aircraft formation and
avoid various problems caused by CFAR detection method
and manual interpretation. The method framework is shown
in Fig.1.

According to the signal flow ofOTHR for themulti-aircraft
formation recognition shown in Fig.1, when receiving the tar-
get echo, an OTHR will generate a range-Doppler-amplitude
image (also called range-Doppler image) after signal
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FIGURE 1. Framework of the proposed method.

processing, which includes digital conversion, pulse com-
pression, and 2D fast Fourier transforms (FFT) [20]. Then,
the range-Doppler image is sent into CFAR processing chan-
nel, in which the target will be detected through typical CFAR
detection and the target position will be used to determine
target relevant cells, which are the cells around the target
position. Next, the target relevant cells are inputs to the deep
learning model for classification and recognition, and the
recognition result of the target number in the aircraft forma-
tion is obtained. Finally, the recognition results acquired from
the CFAR and deep learningmodel are respectively sent to the
data processing unit for subsequent processing and the output
terminal for track display.

In Fig.1, the deep learning model is pre-trained by the
training dataset. The model training method of the two-step
transfer is designed to solve the small sample size problem
of real measured data. This training method is also helpful to
improve the accuracy of multi-aircraft formation recognition.
The training process of the deep learning model is shown in
Fig.2.

FIGURE 2. Flow of deep-learning model transferring.

The training process of the deep-learning model includes
two steps, that is, first-step transfer stage and second-step
transfer stage. In the first-step transfer stage, the model
trained in ImageNet dataset is loaded into the deep-learning
network as a pre-trainedmodel, and then trained to obtain new
model parameters as the pre-trained model for the second-
step training. In the second-step transfer stage, the real data
is first augmented to increase its diversity and avoid model
overfitting. Then, the network model parameters obtained
by first-step transfer are loaded as a pre-training model for
training, the desired deep learning model is obtained after

training, which can be used for real-time multi-aircraft for-
mation recognition by deploying it in the framework of Fig.1.

B. DEEP TRANSFER LEARNING
Transfer learning is a machine learning method that uses
existing knowledge to solve the task in different but related
fields [21]. Transfer learning using deep neural networks is
called deep transfer learning [22]. Compared with traditional
transfer learning, deep transfer learning can automatically
extract more expressive features and can realize end-to-end
applications [23].

Transfer learning involves the concept of the domain,
which include the source domain and target domain. The
domain transfer is the source domain, denoted byDs, and the
domain to be learned is the target domain, denoted by Dt.
Given a source domain Ds and a target domain Dt, the pur-
pose of transfer learning is to learn the conditional probability
distribution P(yt |xt ) in the domain Dt from the domain Ds.
It also is called the target prediction function ft (·).

Given the source domain Ds = {(xsi , ysi )}
ns
i=1, ns is the

total number of samples in the sample space Xs of the source
domain, xsi ∈ Xs is the i-th sample, and ysi is the correspond-
ing label. For the target domain Dt = {(xti , yti )}

nt
i=1, nt is the

total number of samples in the sample space Xt of the target
domain, xti ∈ Xt is the i-th sample, and yti is the correspond-
ing label. f ∈ H is the target prediction function, and H
is all the hypothesis spaces that satisfy the target prediction
function. Then, followed structural risk minimization (SRM),
the objective function of transfer learning can be formally
expressed as below [24],

f ∗ = argmin
f ∈H

1
ns

ns∑
i=1

`
(
f (xsi ), ysi

)
+ λR (T(Ds),T(Dt))

(1)

where ` (·, ·) is the loss function, λ is the weight coefficient
to measure the two parts, R (·, ·) is the transfer regularization
term that is the complexity measure of the model, which
formally equals the regularization term of SRM. T(·) is the
feature transformation function acting on the source domain
and the target domain. For the network-based deep transfer
learning method used in this paper, the transfer regularization
term can be described as

R (T(Ds),T(Dt))R (Dt; fs) (2)

and the goal is using the prediction function fs induced from
Ds to regularize and fine-tune the target domain samples.
In this paper, the regularization term adopts ‖f ‖2t , which is
squared norm of f in Dt.

Transfer learning does not require the same distribution of
the source domain and the target domain. When the model
is trained in the target domain, the knowledge that has been
extracted from the data and features of the source domain
can be used to achieve reuse and transfer between similar or
related domains [24]. Transfer learning makes the traditional
learning from scratch becomes cumulative learning, which
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reduces model training overhead and improves the effect of
deep learning. Transfer learning enables the large-scale appli-
cation of deep learning even when lacking sufficient available
labeled data, which is suitable for multi-aircraft formation
recognition of OTHR. In the first-step transfer stage of pro-
posed method, the ImageNet dataset is the source domain and
the simulated dataset is the target domain, in the second-step
transfer stage, the simulated dataset is the source domain and
the real measured dataset is the target domain.

In the framework of the multi-aircraft formation recog-
nition method proposed, the ‘pre-training + fine-tuning’
paradigm, which is commonly used in the network-based
deep transfer learning method, is used to realize the transfer.
Network-based deep transfer learning reuse part of the net-
work pre-trained in the source domain, including its network
structure and connection parameters, then transfers it to the
deep neural network used in the target domain [25]. The
sketch map of network-based deep transfer learning is shown
in Fig.3.

As can be seen from Fig.3, firstly, the deep learning net-
work model is trained using a large-scale training dataset in
the source domain. Then, the pre-trained part of the network
in the source domain is transferred to the target domain, that
is, the trained deep learning model can be used in the target
domain.

FIGURE 3. The sketch map of network-based deep transfer learning.

In general, transfer learning via multi-source data sets is
necessary. It can reduce time consumption and be helpful
to enhance and enrich the ability of feature extraction on
target data set. But traditional transfer learning is difficult
to do it. To solve this issue, Huang et al. [26] proposed a
transitive transfer-based method with domain adaptation to
decrease the discrepancy between the source and target tasks.
Zhao et al. [27] proposed a framework named multi-source
deep transfer learning (MS-DTL) that performs better than
the benchmarks on the classification tasks of the small-scale
hyperspectral images (HSIs).

At present, many excellent CNN models have been reused
to complete many applications of deep transfer learning, such
as LeNet, AlexNet, VGG, ResNet, etc.

III. DATA AND MODEL
Generating a training dataset and constructing a network
model are two important steps of deep learning, and deep
transfer learning is no exception.

A. DATASET ESTABLISHING
The range-Doppler images of aircraft formation are simulated
according to the signal processing flow of OTHR, and then
the simulation dataset is established.

1) RANGE-DOPPLER IMAGE SIMULATION
OTHR adopts frequency modulated continuous wave
(FM/CW) system. The signal processing mainly includes
pulse compression, Doppler processing, target detection, and
so on [28]. The proposed method is based on the radar
range-Doppler image and applies image recognition technol-
ogy, so only the process of frequency mixing, pulse pressure,
and coherent accumulation is required.

In a single chirp, the transmit signal is expressed as fol-
lows [17].

St (t) = At exp
(
j2π

(
fct +

B
2Ts

t2
))

(0 ≤ t < Ts) (3)

where At is the transmit signal amplitude, fc is the signal
carrier frequency, B is the bandwidth of the chirp, and Ts is
the time of the chirp.

The signal will be reflected when it meets a target. Once
the reflected signal is received, after mixing and ignoring the
special small items, the received signal can be expressed as

Sm(t) ≈ Am exp
(
j2π

(
fc
2R0
c
+

(
2BR0
Tsc
−

2fcv
c

)
t
))

(0 ≤ t < Ts) (4)

where Am is the amplitude of the mixing signal, R0 is the
distance between the target and the radar at time t = 0, c
is the speed of light, and v is the radial running speed of the
target relative to the radar.

The transmitter repeatedly sends outM chirp signals, then
the echo signal after mixing can be written as

Sm(t̂, tm) ≈ Am exp
(
j2π

(
fc
2(R0 + vtm)

c

+

(
2B(R0 + vtm)

Tsc
−

2fcv
c

)
t̂
))

(0 ≤ t̂ < Ts, 0 ≤
tm
Ts
< M ) (5)

where t̂ is the fast time, measuring the transmission time of
the signal, and tm is the slow time, measuring the start time
of each chirp signal.

Sampling a chirp signal, the number of sampling points is
N , then the mixed signal can be expressed as a N×M matrix,
and the matrix elements are

Sm(n,m) ≈ Am exp
(
j2π

(
fc
2(R0 + vmTs)

c

+

(
2B(R0 + vmTs)

Tsc
−

2fcv
c

)
Ts
N
n
))

(0 ≤ n < N , 0 ≤ m < M ) (6)

where n is the fast time sample index, andm is the chirp signal
index.
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FIGURE 4. Simulated range-doppler image.

The range-Doppler response of the target can be obtained
by two-dimensional Fourier transform of the N ×M matrix,
and the range-Doppler image can be obtained by visualiz-
ing. Fig.4 is a simulated range-Doppler image. The spectrum
of the aircraft formation composed of three multi-aircraft
formations.

2) MULTI-AIRCRAFT FORMATION SIMULATION
In the process of aircraft formation simulation, the multipath
effect is a problem that must be considered.

Because of the special detection mechanism of OTHR, the
real measured data often has the multipath effect [29]. In the
radar range-Doppler image, such as Fig.5(a), there are adja-
cent spectrum color blocks around the same or similar speed
(Doppler) unit of the target. The area and shape of the color
block are similar to the target color block, but the color is
slightly light. The appearance of themultipath effect is related
to the location of the target, the reflection ability of the iono-
sphere, and other factors. It is difficult to eliminate through
the signal processing method, and it cannot be completely
avoided. In the process of image-based processing, it is very
easy to misjudge the target, so it must be taken into account
when producing training datasets.

Because the ionospheric factors closely related to mul-
tipath are difficult to simulate, it is not realistic to simu-
late the target range-Doppler image with the multipath effect
through signal processing. Considering that in this scenario,
the research is based on images, so the complex mechanism
is not discussed. In order to simplify the problem, only the
statistical characteristics of the target multipath effect in the
range-Doppler image are simulated here. According to the
observation of the real measured data, the characteristics of
the target multipath effect are extracted, and then the feature
is statistically analyzed to simulate the multipath effect of the
target.

In this paper, the two main features of spectral color block
caused by multipath in the range-Doppler image, that is, the
color block number Xe and color block amplitude Xa are
extracted. The probability of random variable Xe is

P(xe) =


0.36, xe = 1
0.42, xe = 2
0.21, xe = 3

(7)

where xe is the value of Xe, 1, 2, and 3 represent the number
of color blocks respectively. When xe = 1, it means that there
is no multipath effect and the color block belongs to the real
target.
Assuming that Xa1 is the amplitude of the real target spec-

tral color block, Xa2 is the amplitude of the spectral color
block adjacent to the real target spectral color block in the
multipath effect, and Xa3 is the amplitude of the spectral color
block far away from the real target spectral color block.When
Xa1 = xa1, the conditional probability densities of Xa2 is

f (xa2 |xa1 ) =


1
xa1
, 0 < xa2 < xa1

0, otherwise
(8)

where xa1 is given by the real measured data.
When Xa2 = xa2, the conditional probability densities of

Xa3 is

f (xa3 |xa2 ) =


1
xa2
, 0 < xa3 < xa2

0, otherwise
(9)

In this paper, the spectral color block of the target is shifted
on the front and rear range unit of the target according to the
probability of equation (7), and the color intensity is simu-
lated by Monte Carlo method according to equation (8) and
equation (9). Fig.5 (b) is the multipath effect simulation of
two targets in a range-Doppler image.

FIGURE 5. Multipath Effect. (a) The real measured image. (b) The
simulated image.

The multi-aircraft formation data is generated according to
themethods ofmultipath effect simulation and range-Doppler
image simulation, and then the generated data is labeled to
establish the simulation dataset. For multi-aircraft formation
recognition, identifying the specific number of aircraft in a
formation is the most ideal result. Due to the large range
measurement error of OTHR, the difference between different
targets in the range dimension can be ignored. According
to the statistical analysis of target radial velocity difference
in the measured multi-aircraft formation data and combined
with radar technique parameters, four classes of data are gen-
erated by simulation. Each class of data is marked with digital
labels 1, 2, 3, and 4, representing a formation of one, two,
three and more than four aircrafts respectively.

The dataset consists of 20000 images simulated. Each
image belongs to one of 4 classes. The number of images per
class is 5000.
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B. DATA AUGMENTATION
In the process of generating the real measured dataset, it is
very important to do data augmentation.

The most important problem in the establishment of real
measured datasets is that the amount of data is too small.
The reason is that the collection and labeling of real mea-
sured data require manual participation, and the experience
requirements of operators are high, so it is extremely difficult
to collect a large amount of labeled real data. In order to
avoid the problem of model overfitting in the case of a small
sample size, data augmentation must be performed on the real
measured data to improve the generalization ability of the
model [30]. For the data of target relevant cells cut from the
range-Doppler image, the data augmentation methods mainly
include amplitude transformation, size transformation, and
position transformation.

The amplitude transformation is to raise and lower the
target spectrum amplitude to simulate the influence of target
RCS, range, radar parameter setting, and other factors on the
range-Doppler spectrum of OTHR. Only the influence of the
target RCS is considered here.

At the same distance R, radar transmitting power Pt,
antenna gain G, and receiving area Ae, the receiving power
is

Pr =
PtGAeσ
(4π )2R4

(10)

where σ is used to represent the target RCS. According to
equation (10), the target RCS is directly proportional to the
echo power. The echo power is related to the spectral ampli-
tude of the target in the range-Doppler image. so, by adjusting
the amplitude of the target spectrum, the influence caused by
the change of the target RCS can be simulated and the amount
of data can be expanded.

Because the size of the general air target is close to the
wavelength of OTHR. Thismeans that they are in the resonant
scattering region, the RCS of the target is greatly affected by
working frequency, azimuth, pitch, and polarization. Accord-
ingly, the target spectrum amplitude also changed greatly in
the range-Doppler image. In this paper, the amplitude change
is set between −5 and 5 times, and the simulation data is
generated by sampling according to the uniform distribution
in this interval.

The size transformation is to appropriately expand and
stretch the target spectrum to simulate the influence of radar
parameter setting and other factors on the range-Doppler
spectrum of OTHR.

In the practical application of OTHR, according to the mis-
sion requirements and ionospheric changes, radar parameters
such as pulse accumulation number need to be continuously
adjusted to improve the detection rate. Accordingly, the target
spectrum image size changed in the range-Doppler image.
By widening and stretching, the influence caused by the
change of radar parameters can be simulated and the amount
of data can be expanded.

Assuming that the target spectrum Doppler-dimension
transformationmagnification is a random variableXd, and the
target spectrum range-dimension transformation magnifica-
tion is a random variable Yr. D is a bounded region formed
by the ranges of Xd and Yr. The two-dimensional random
variable (Xd,Yr) has a probability density function

f (xd, yr) =


1

S (D)
, (xd, yr) ∈ D

0, otherwise
(11)

where S(·) is the function for calculating area. Through statis-
tical analysis, the bounded areaD : 0 ≤ xd ≤ 3, 0 ≤ yr ≤ 3 is
set.

The position transformation is to offset the target spectrum
image to simulate the cutting deviation of the target spectrum
image caused by the measurement error. Due to measurement
error and other factors, the real target is often not in the center
of the target relevant cells.

Let the target spectrum Doppler dimension position off-
set magnification be a random variable Xw, and the target
spectrum distance dimension position offset magnification as
a random variable Yh. When E(Xw) = µ1, E(Yh) = µ2,
D(Xw) = σ 2

1 and D(Yh) = σ 2
2 , two-dimensional random

variable (Xw,Yh) have the probability density function

f (xw, yh)=
1

2πσ1σ2
exp

(
−
1
2

(
(xw−u1)2

σ 2
1

+
(yh−u2)2

σ 2
2

))
(12)

According to the actual data, we can get µ1 = 0.1,
µ2 = 0.2, σ1 = 0.3 and σ2 = 0.5.

Using Monte Carlo simulation method, 50 sample images
of each class of original data be expanded to 200 through
amplitude transformation, size transformation, and position
transformation. Data augmentation is programmed by calling
OpenCV Library in Python language.

C. MODEL TUNING
Two steps of transfer learning are adopted in the algorithm of
this paper, both of which are network-based transfer methods.

In deep transfer learning, the network-based transfer usu-
ally adopts a ‘pre-training and fine-tuning’ paradigm [31].
This paradigm refers to training a model with strong general-
ization ability on a large data set and training it as the initial
parameter value of the downstream task model, so as to make
the downstream task obtain a good classification effect. The
‘pre-training and fine-tuning’ paradigm determines whether
the model structure needs to be changed according to the
downstream task. In view of the fact that the source domain
training dataset and the target domain training dataset are
of different classes and different distributions in the first-
step transfer stage, the rear layer of the original model is
redesigned to make the model better for the deep-level fea-
tures of the aircraft formation spectrogram. Meanwhile, the
number of output categories of the output layer is made con-
sistent with the classification number of the real measured
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dataset. Since the source domain training dataset is the same
as the target domain training dataset during the second-step
transfer period in this paper method, no changes are made to
themodel structure here. Only the values ofmodel parameters
obtained by the first-step transfer period are used as the initial
values, and the model is fine-tuned and trained with a small
learning rate. The second-step transfer mode is simple and
easy to use. Therefore, this paper mainly introduces the tun-
ing process of the networkmodel during the first-step transfer
stage.

The deep transfer learning model can be adjusted and con-
structed based on the existing common models [18]. Because
of its balanced performance, fewer parameters, and faster
response speed, Resnet18 model is applied to the method
in this paper. Retain the front layer of the model to extract
the shallow features of the image, reconstruct the back two
layers of the convolution layer and full connection layer, and
classify these features through the full connection layer to
distinguish the target echo image. Fig.6 shows the model
structure.

FIGURE 6. Deep transfer learning model structure.

As shown in Fig.6, the output of the bottleneck layer of
the model is the feature extracted by the new transfer learn-
ing model, and the ‘bottleneck feature’ position is the out-
put position of the image feature. After the reconstructed
convolutional neural network obtains deep-level features, the
feature vector is input into a fully connected layer for classifi-
cation. The model of the fully connected layer of the transfer
learning model is shown in Fig.7. We can see that there are
512 neurons on the left, corresponding to the feature vectors
output by the bottleneck layer of the model, and four outputs
on the right, corresponding to four classes of results: one
target, two targets, three targets, and multiple targets in a
formation.

FIGURE 7. Fully connection layer structure.

IV. EXPERIMENTAL VERIFICATION
In order to verify the effectiveness and practicability of the
proposed method, the two stages of transfer and two learning
modes are tested and compared. Finally, we compare the pro-
posed method with the traditional CFAR detection method.

A. EVALUATION INDICATORS
After the CFAR processing of the range-Doppler image, the
preliminary detection of the target is obtained, and then the
spectrum characteristics of the target area are identified by
CNN, which is a classification problem.

The evaluation indexes of the classification task include
accuracy rate, recall rate, precision rate, F1-score, etc., which
could be intuitively expressed by drawing a confusion matrix.
The recall rate, accuracy rate, and F1-score can be calculated
by using the confusion matrix.

Accuracy rate (accuracy) is the ratio of the number of all
correctly classified samples to the number of all samples. This
is expressed as follows.

Accuracy = (TP+ TN )
/
(P+ N ) (13)

where TP is the number of samples that are classified as
positive in the positive samples, TN is the number of samples
that are classified as negative in the negative samples, P is the
number of positive samples, and N is the number of negative
samples. Accuracy is generally used to evaluate the global
accuracy of the model.

Precision rate (precision) indicates how many of the pre-
dicted positive samples are real positive samples. Recall rate
(recall) is the proportion of all positive samples correctly
identified as positive samples. For a binary classification
problem, there are

Precision = TP
/
(TP+ FP) (14)

Recall = TP
/
(TP+ FN) (15)

where FP is the number of samples that are classified as
positive in the negative samples, FN is the number of samples
that are classified as negative in the positive samples.

F1-score (F1) is the harmonic mean value of precision and
recall [31], which is calculated according to the expression

F1 = (2× Pr×Re)
/
(Pr+Re) (16)

where Pr and Re are respectively referring to precision and
recall. F1-score can comprehensively evaluate the recognition
effect of the model.

Multi-classification problems are often transformed into
binary classification problems to calculate the precision,
recall, and F1-score of a specific class step by step.

B. FIRST-STEP TRANSFER LEARNING
In the framework of the method proposed, the first-step trans-
fer mainly solves the problem of model training speed and
efficiency, and lays the foundation for the second-step trans-
fer. The target domain of first-step transfer is the simulated
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FIGURE 8. Comparison of the two learning modes (first-step transfer). (a) The result of learning
from scratch. (b) The result of deep transfer learning (the training dataset is the simulated
dataset).

range-Doppler images, whose generation method is intro-
duced in Section 3.1. During the experiment, the training set
and the test set were divided at 8:2 ratio. The typical Resnet18
model is used, the hyperparameters are set as learning rate
is automatic, the batch size is selected as 16, the number of
training epochs is set as 30. The training set data is input into
the model, and the learning from scratch and transfer learning
methods are used for training and comparison. The change
in the cross-entropy loss value and recognition accuracy of
the network model with the number of iterations is shown in
Fig.8.

During learning from scratch, it can be seen that as the
number of training epochs increases, the training and test-
ing accuracy rates increase. After nine epochs of training,
the training accuracy finally reaches 95.73%, and the testing
accuracy is about 93.01%. No matter the training loss or
testing loss, they all gradually decrease with the increase of
the number of training epochs. When the network hyperpa-
rameter settings remain same as the learning from scratch,
the deep transfer learning model in Section 3.3 is adopted
and the dataset established in Section 3.1 is used to train
the model. It’s shown that the recognition accuracy and loss
change with the number of training epochs as shown in
Fig.8(b).

It can be seen that the training accuracy has reached
90.13% at the second epoch of training. After five epochs
of training, the training accuracy has reached 94.56%,
and the testing accuracy is about 92.90%, which are near
the training effect of the learning from scratch at the
ninth epoch. The training loss and testing loss all gradu-
ally decrease with the increase of the number of training
epochs.

The final recognition accuracy of the two training methods
is not much different. The training method based on transfer
learning converges faster than learning from scratch, and the
time to achieve the same recognition effect nearly is 0.5 times
that of learning from scratch.

C. SECOND-STEP TRANSFER LEARNING
In the framework of this paper method, the second-step of
deep transfer learning is mainly to improve the recognition

accuracy. The networkmodel obtained by first-step transfer is
used as a pre-training model for second-step transfer, so as to
improve the accuracy of multi-aircraft formation recognition.
In the experiment, the first thing we do is data augmenta-
tion. The training set and test set division and model hyper-
parameter settings are the same as in the previous section.
Then, the learning from scratch and transfer learning meth-
ods are used for training and comparison. The changes in
the cross-entropy loss value and recognition accuracy of the
network model with the number of epochs are shown in
Fig.9.

In the process of fine-tuning the network model obtained
by the first-step transfer, it can be seen that the testing accu-
racy has gradually increased from 85.6% to 94.9%. The test-
ing loss gradually decreases with the number of epochs. In the
finally, the testing accuracy and loss are all very close to
the training values. Fig.9(b) shows the change in the recog-
nition accuracy and loss of the learning from scratch with
the number of epochs. We can see that the training accuracy
quickly increased to more than 90%, but the testing accuracy
increased slowly with the number of epochs, and the oscil-
lation was violent. The maximum recognition accuracy rate
only is 86%. The loss gradually decreased with the epochs,
and the oscillation was also violent. This is because the size of
real measured data is small, and when learning from scratch,
it is easy to overfit, resulting in the result of high training
accuracy but low testing accuracy.

We plot the confusion matrices resulting from the recog-
nition of the two learning modes. In Fig.10, it can be seen
that when mode learning from scratch is adopted, the rec-
ognize effects of category 2 and category 4 are very low.
The model obtained by the transfer learning training has a
relatively balanced recognition effect for each category, and
the recognition effect of category 2 and category 4 has been
greatly improved.

By calculating the precision, recall, and F1-score of the
models trained in the two modes, we can obtain the result
in Table.1.

From the comparison of the evaluation indicators in
Table.1, it can be seen that the F1-score is significantly higher
in the second-step transfer than the learning from scratch, that

115418 VOLUME 10, 2022



F. Liang et al.: Multi-Aircraft Formation Recognition Method of OTHR Based on Deep Transfer Learning

FIGURE 9. Comparison of the two learning modes (second-step transfer). (a) The result of deep
transfer learning (the training dataset is the real measured dataset). (b) The result of learning
from scratch.

FIGURE 10. Confusion matrices of the two learning modes. (a) The result
of learning from scratch. (b) The result of deep transfer learning.

TABLE 1. Comparison of the two learning modes.

is, themodel obtained by the second-step transfer learning has
strong recognition ability and good effect.

When we adopt the ImageNet dataset as the source domain
and the real measured dataset as the target domain, the trans-
fer process is a one-step transfer. The result of the one-step
transfer experience is shown in Fig.11. We can see that the
best testing accuracy only reaches 87.8%, which is far lower
than the second-step transfer result shown in Fig. 9(a).

Compared with one-step deep transfer learning, the
two-step deep transfer learning proposed in this paper has
stronger practicability under the condition of a small sample
size.

FIGURE 11. The result of one-step deep transfer learning.

D. COMPARATION WITH THE TRADITIONAL CFAR
To test the effect of the proposed method, we compare it with
the typical CA-CFAR detection method.

Fig.12(a) is a simulated range-Doppler image including
three multi-aircraft formations. At the distance of 895 km,
there is an aircraft formation of two targets, of which Doppler
frequencies are 21 and 23 respectively. At the distance of
980 km, there is an aircraft formation of three aircrafts. Their
Doppler frequencies are−16,−17, and−18. At the distance
of 1180 km, there is an aircraft formation of two aircraft
targets with Doppler frequency of 17 and 18. Fig.12(b) is a
simulated range-Doppler image including two multi-aircraft
formations with multipath effect. At the distance of 920 km,
there is an aircraft formation of two targets, of which Doppler
frequencies are 21 and 23 respectively. At the distance of
990 km, there is an aircraft formation of two aircrafts. Their
Doppler frequencies are −19 and −21.

By using the classic CA-CFAR detection method, when
Pfa = 10−6, the target detection effect is shown in Fig.13.
As can be seen from Fig.13, all of the aircraft formations
are incorrectly judged as only one target. To achieve effec-
tive recognition of multi-aircraft formation, it is necessary to
reduce the detection threshold and increase the probability
of false alarms, so that interference, clutter, and outliers can-
not be effectively eliminated, which made the performance
of the CFAR processor became lower. When Pfa = 10−5,
the detection effect of the target is shown in Fig.14. It can
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FIGURE 12. Range-Doppler image including multi-aircraft formation. (a) The image including
three multi-aircraft formations. (b) The image including two multi-aircraft formations with
multipath effect.

FIGURE 13. Detection effect of CA-CFAR detection method (when Pfa = 10−6). (a) The
image including three multi-aircraft formations. (b) The image including two multi-aircraft
formations with multipath effect.

FIGURE 14. Detection effect of CA-CFAR detection method (when Pfa = 10−5). (a) The image
including three multi-aircraft formations. (b) The image including two multi-aircraft
formations with multipath effect.

be seen from Fig.14(a) that two aircraft formations at dis-
tance of 980 km and 1180 km couldn’t be recognized, and
only a batch of two targets at distance of 895 km is cor-
rectly detected. In the Fig.14(b), all of multi-aircraft forma-
tion are recognized as one aircraft. We continue to adjust
the false alarm rate, when Pfa = 10−3, the detection effect
of the target is shown in Fig.15. As can be seen from the
Fig.15(a), two aircraft formations are correctly detected. But
at the same time, two noises were falsely detected as ‘tar-
gets’, and a two-aircraft formation were falsely detected as

one aircraft. In the Fig.15(b), only one multi-aircraft forma-
tion is correctly detected. But at the same time, one noises
were falsely detected as ‘targets’ and a two-aircraft forma-
tion were falsely detected as three-aircraft formation because
of multipath effect. It’s shown that multi-aircraft forma-
tion recognition through traditional CFAR detection is very
difficult.

By using the proposed method of this paper, when
Pfa = 10−6, we can see from Fig.16 that all multi-aircraft
formations are accurately detected.
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FIGURE 15. Detection effect of CA-CFAR detection method (when Pfa = 10−3). (a) The
image including three multi-aircraft formations. (b) The image including two multi-aircraft
formations with multipath effect.

FIGURE 16. Detection effect using the proposed method. (a) The image including three
multi-aircraft formation. (b) The image including two multi-aircraft formation with
multipath effect.

When it comes to target recognition, the recognition speed
is very important. The faster recognition speed of the model
is, the better recognition ability of the model is [32]. Because
the recognition model is usually trained in the spare time, it is
of no practical significance to discuss the training time, which
is why we only discuss the classification time of the model
using different deep learning networks. As we all know, the
classification time of CNN is affected by the complexity of
the network structure, the input image size, computing power,
and so on. We adopt the CA-CFAR as the CFAR detector and
use the different CNNmodels to recognize the detected result.
Under the same computational power and input image size,
we compared the classification time and recognition accuracy
of the different models.

As shown in Fig.17, when only using CA-CFAR to recog-
nize the formation target, the classification time is 0.0311 s,
and the recognition accuracy is 39.0%.

After adding the deep learning network to the model, such
as VGG16, Inception-V3, ResNet18, and so on [33], the
recognition accuracies all pass 90.0%, and the classification
time is only 1 to 5milliseconds longer than that of CA-CFAR.
The proposed method CA-CFAR + ResNet18 has a lower
classification time than those of CA-CFAR + VGG16, CA-
CFAR + Inception-V3 and CA-CFAR +MobileNet-V2 and
higher recognition accuracy than all other methods.

FIGURE 17. The classification time and the accuracy comparison of the
different models in the proposed recognition method under the same
condition.

The above comparison with the traditional CA-CFAR pro-
cessor shows the superiority of the proposed method in multi-
aircraft formation recognition.

V. CONCLUSION
In this paper, a recognition method of multi-aircraft forma-
tion of OTHR based on deep transfer learning is proposed.
After experimental verification, the following conclusions are
drawn.
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1) The designed recognition model combining CNN and
CFAR has greatly enhanced the recognition ability of
multi-aircraft formation compared with the traditional
CFAR detection method, especially for multi-aircraft
formation with multipath effect.

2) The model training method of two-step transfer greatly
improves the performance of the model compared
with learning from scratch. In the recognition of
four classes of targets, the accuracy of the model
is 95%, which is 9% higher than learning from
scratch.

3) The simulation and data expansion of multi-target for-
mation are effective, which solves the problem that it is
difficult to apply deep learning technology due to the
lack of real measured data.

However, we should recognize the limitation of the pro-
posed method, that is, the method is mainly affected by the
setting parameter and the detection ability of the radar. If the
resolution of range-Doppler image generated by radar is too
low, the recognition results will be poor.

In the future work, in addition to improving the recognition
accuracy of the model continuously, we will explore the end-
to-end method for aircraft formation recognition by using
deep detectors such as YOLO, SSD, and so on, and will
establish an end-to-end deep learning framework to predict
and trace the aircraft formation.
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