
Received 10 October 2022, accepted 26 October 2022, date of publication 1 November 2022, date of current version 8 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3218703

Efficient Biometric Identification on the Cloud
With Privacy Preservation Guarantee
LINLIN YANG1, CHENGLIANG TIAN 1, GONGJING ZHANG1, LEIBO LI2, AND HUANLI WANG3
1College of Computer Science and Technology, Qingdao University, Qingdao, Shandong 266071, China
2Shandong Institute of Blockchain, Ji’nan, Shandong 250101, China
3School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, Shandong 266520, China

Corresponding author: Chengliang Tian (tcl0815@gmail.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61702294, in part by the Natural
Science Foundation of Shandong Province under Grant ZR2022MF250, and in part by the Applied Basic Research Project of Qingdao City
under Grant 17-1-1-10-jch.

ABSTRACT Benefited from its reliability and convenience, biometric identification has become one of the
most popular authentication technologies. Due to the sensitivity of biometric data, various privacy-preserving
biometric identification protocols have been proposed. However, the low computational efficiency or the
security vulnerabilities of these protocols limit their wide deployment in practice. To further improve
the efficiency and enhance the security, in this paper, we propose two new privacy-preserving biometric
identification outsourcing protocols. One mainly utilizes the efficient Householder transformation and
permutation technique to realize the high-efficiency intention under the known candidate attack model. The
other initializes a novel random split technique and combines it with the invertible linear transformation to
achieve a higher security requirement under the known-plaintext attack model. Also, we argue the security of
our proposed two protocols with a strict theoretical analysis and, by comparing them with the prior existing
works, comprehensively evaluate their efficiency.

INDEX TERMS Biometric identification, privacy-preserving, householder transformation, cloud
computing.

I. INTRODUCTION
Biometric identification uses a person’s unique physical traits
such as their iris, voice, face, fingerprints or behavioral
features-such as gait, voice, keystrokes to authenticate, verify
and identify them. Compared to traditional authentication
methods (such as passwords or smart cards), biometrics can-
not be lost, forgotten or stolen. As Schneier has said: ‘‘You
are your key’’ [18]. Therefore, biometrics are easy to use
and empower a seamless, frictionless user experience. Cur-
rently, biometric identification is widely used in government
agencies and private enterprises, as well as organizations
requiring access control and employee identification such as
electronic health [11], industrial internet of things [12], wire-
less sensor networks [15], assistive robots [16]. Noteworthily,
as Research andMarkets Ltd. reported, the use of contactless
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biometric systems has greatly increased due to the spread of
COVID-19 [21].

Generally, the biometric identification involves a dataset
of biometrics and a query. The data owner (DO) performs a
search task over the dataset to match the query data. However,
in the current big data era, the quantity of biometric data
is growing in an exponential speed, which causes heavy
storage and computational burdens on the DO. Therefore,
outsourcing the storage and the identification task to a cloud
server has become a popular computing diagram. Within this
diagram, a resource-constrained DO can enjoy the abundant
storage and computational resource on a pay-as-you-demand
manner. Although cloud-assisted biometric identification has
been shown a promising application foreground in practice,
it also faces several serious security challenges. On the DO
side, due to the sensitivity of biometrics, the leakage and
abuse of these data may lead to inestimable loss of life
and properties [17]. On the cloud side, for outside financial
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incentives, it may be curious about DO’s privacy information
and deliberately reveal these data to malicious attackers.
Therefore, a well-designed biometric identification outsourc-
ing protocol should ensure the privacy of DO’s sensitive
data. Meanwhile, since DO needs to spend additional cost
to protect the privacy information, the privacy-preservation
approach must be efficient. That is, compared with achieving
the identification task by the DO itself (without outsourcing),
the designed outsourcing protocol also should ensure the DO
to gain decent computational savings. Consequently, design-
ing efficient and privacy-preserving biometric identification
outsourcing protocols becomes a hot topic.

A. RELATED WORK
In the past few years, many different privacy-preserving bio-
metric identification protocols [1], [2], [3], [4], [5], [6], [7],
[8], [9], [10], [13], [14], [19], [20], [22], [29], [30], [31],
[32], [33] have been proposed. However, some of the existing
protocols are inefficient or vulnerable to known attacks.

In the secure two-party computation model, the database
owner (DO) and the user (QU) privately execute a biomet-
ric recognition algorithm while keeping their biometric data
information blind to each other. Within this two-party setting,
many privacy-preserving methods [5], [6], [7], [8], [9] have
been brought forward. Erkin et al. [7] presented the first pow-
erful privacy-enhanced biometric face recognition system.
Sadeghi et al. [8] pointed out that Erkin et al.’s protocol [7]
required costly online communication and computationally
expensive operations on homomorphically encrypted data
and thus could not be widely deployed in practical appli-
cations. Also, they designed a new privacy-preserving face
recognition protocol that combining homomorphic encryp-
tion and garbled circuits [27], which somewhat improved the
communication and computation efficiency. Later, Osadchy
et al. [6] noted that both of these two protocols were designed
with the classical eigenface recognition algorithm [28] which
was inaccurate in recognizing some images. Hence, they
developed a SCiFI system based on a novel face recognition
algorithm which was very robust under unseen conditions.
However, Barni et al. [5] claimed that face images were
known to be fairly weak biometric traits and put forward a
privacy-preserving protocol for fingerprint-based authentica-
tion. Subsequently, Huang et al. [9] pointed out protocols [5],
[6], [7] did not support the computation of global minimum
and, to address this issue and reduce the computation and
bandwidth costs, they developed a protocol that used a new
backtracking technique and an improved privacy-preserving
Euclidean-distance technique. Then, Lagendijk et al. [29] and
successive works [30], [31], [32] proposed solutions based
on cryptographic primitives such as homomorphic encryption
techniques. However, homomorphic encryption-based proto-
cols, although secure enough, are not suitable for the real
world due to their heavy complexity. In addition, most of
these protocols are not designed under a cloud environment
and thus cannot be directly applied to the outsourcing model.

The closely related work to the theme of our paper is
the design of efficient and privacy-preserving cloud-assisted
biometric identification protocols. In this setting, the DO
outsources the database and related query operations to a
resource-abundant cloud server. Wong et al. [20] developed
an efficient asymmetric scalar-product-preserving encryp-
tion (APSE) to construct secure ciphertext database and
query operations. Later, Yuan and Yu [1] pointed out that
the protocol [20] did not take into account the collusion
between the cloud server and malicious users. Once this
collusion happens, the encrypted biometric database could
be compromised. To avoid collusion attacks, they presented
a new outsourcing protocol that could resist known-plaintext
attacks and allowed the cloud server to collude with attack-
ers. Subsequently, Wang et al. [2] proved that the pro-
tocol [1] could be cracked by eliminating randomness or
exploiting Euclidean distance results, and thus it did not
achieve the claimed security. To amend this security flaw,
Wang et al. [2] developed an improved protocol CloudBI-
II. However it involved multiple large matrix multiplications
and was inefficient in practice. Moreover, this protocol was
also proven to be insecure in [13] and [14]. For the sake
of higher level of security, Zhang et al. [22] put forward a
new protocol PTBI-II with perturbation technique. In their
protocol, the central limit theorem was used to construct
disturbance terms, which made the sum of these terms obey
normal distribution so as to eliminate the influence of these.
However, the protocol needs to add enough disturbance terms
to achieve high accuracy, which causes a lot of redundancy.
Following Wang et al.’s step, Zhu et al. [10] also aimed to
remedy the security weakness of Yuan and Yu’s protocol [1].
Meanwhile, on the basis of the protocol [1], Hu et al. [19]
proposed a privacy-preserving biometric identification out-
sourcing protocol with somewhat homomorphic encryption
technique. Nevertheless, Liu et al. [3] pointed out that Zhu
et al.’s and Hu et al.’s designs had inherent defects and
could not resist known-plaintext attack. Thus, they presented
a secure protocol by inserting the threshold value into the
encryption algorithm. Unfortunately, Kim et al. [4] proposed
a statistical-inference attack algorithm which could gener-
ate a false fingerprint vector passing through the identifica-
tion process in protocol [3]. To sum up, designing a secure
and efficient privacy-preserving biometric identification out-
sourcing protocol remains to be further studied.

B. OUR CONTRIBUTION
In this paper, we reinvestigate the study of privacy-preserving
biometric identification outsourcing protocols and, to better
balance the security and efficiency and provide more alterna-
tives, we propose two new cloud-assisted biometric identifi-
cation protocols. One mainly focuses on high efficiency with
decent security model and the other seeks high security with
admissible efficiency. Precisely, our main contribution can be
summarized as follows.
• Firstly, we propose a high-efficiency privacy-preserving
biometric identification outsourcing protocol. The
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TABLE 1. Notations and their meanings.

key technique ingredient underlying our design
is the employment of the efficient Householder
transformation, which can reduce the time-consuming
matrix-matrix multiplication to efficient matrix-vector
multiplication and make our first protocol highly effi-
cient. Also, we argue the security of the protocol under
the known candidate attack model.

• Secondly, we propose a high-security biometric identi-
fication outsourcing protocol. Through a newly raised
random split technique and the invertible matrix trans-
formation, we realize the privacy preservation of the
dataset and the query under the KPA model. Also, the
efficiency of this protocol is comparable to the prior
works.

• Finally, we present a comprehensive evaluation on our
two proposed outsourcing protocols by theoretically and
experimentally comparing them with the prior exist-
ing works. Our theoretical and experimental analysis
demonstrates that (1) both of our proposed protocols
enable the DO to gain decent computational savings,
(2) our protocol I is most efficient among these protocols
and (3) our protocol II is more efficient in most of the
stages than prior arts.

II. MODELS AND DESIGN GOALS
In this part, we will introduce the system model, threat model
and our design goals. For ease of description, throughout
the paper, we use lowercase bold letters to represent column
vectors and use uppercase bold letters to denote matrices. The
main symbols used in the paper are listed in the following
Table 1.

A. SYSTEM MODEL
Our model is essentially the same as that of the afore-
mentioned work [1], [2], [3], [4], [10], [13], [19], [20],
[22], which involves three participants: the database owner
(DO), the cloud server (CS), and the user (QU). As shown
in FIGURE 1, DO owns a large-scale database B =

{(id1, b1) (id2, b2) · · · (idm, bm)} where bi refers to the
index idi’s biometric data. To realize the secure database
query operations with the assistance of the resource-abundant
CS, DO sends the encrypted biometric data C to CS

FIGURE 1. System model.

(i.e. steps 1 and 2 in the FIGURE 1). When QU issues a query
request to DO, DO further encrypts the query data q and sends
its ciphertext q′ to CS (i.e. steps 3, 4 and 5 in the FIGURE 1).
Then CS finds the best match with q′ in C and returns the
index of thismatch toDO (i.e. steps 6 and 7 in the FIGURE1).
Finally, DO finds the plaintext data corresponding to the
index returned from CS, and checks the distance between
this data and the query data with the similarity threshold.
According to the calculation result, DO sends ‘‘True’’ or
‘‘False’’ to QU (i.e. steps 8 and 9 in the FIGURE 1).

Here, as illustrated in Yuan and Yu’s protocol [1],
we assume the data stored by DO and the query of QU are
FingerCodes extracted from fingerprint images by using the
Filterbank-based approach [23]. Usually, each FingerCode is
an n-dimensional vector (n is generally equal to 640), and
each entry is an 8-bit integer. The similarity of two Finger-
Codes x = (x1, x2, · · · , xn)T and y = (y1, y2, · · · , yn)T is
measured with Euclidean distance:

distxy =

√√√√ n∑
j=1

(xj − yj)2.

If the distance is less than a predefined threshold τ , the two
FingerCodes can be considered from the same user and the
match is successful.

B. THREAT MODEL
Following prior arts [1], [2], [3], [4], [10], [13], [19], [20],
[22], in our system, we treat the CS as ‘‘honest but curious’’.
That is, it will honestly conduct the specified computation
task. However, for financial intention, it may try to spy the
privacy information of other participants as much as pos-
sible. Based on this concern, we assume that the (internal
or outside) attacker knows the encryption algorithm apart
from the secret key, and, according to the attacker’s ability
and knowledge in practical applications, we consider the
following three attack scenarios.

1) ATTACK SCENARIO 1
The attacker can only capture the encrypted database and the
encrypted queries. This exactly is the well-known ciphertext-
only attack (COA) model in cryptography [25].
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2) ATTACK SCENARIO 2
In addition to the encrypted database and the encrypted
queries, the attacker can also obtain some plaintext data
points, but does not know the ciphertext corresponding to
these plaintext data points. This is similar to the known
candidate attack model in database literature [26].

3) ATTACK SCENARIO 3
Besides the ability in attack scenario 2, the attacker can
obtain a subset of plaintext data points and their correspond-
ing encrypted data points. In real world, this scenario could
correspond to the scenario that the CS are curious and can
obtain many QUs’ query points. This is consistent with the
known-plaintext attack (KPA) model in cryptography [25].

Obviously, the attacker in the scenario 3 is more powerful
than that in scenarios 1 and 2. In other words, a scheme is
secure under the attack scenario 3 is surely secure under the
attack scenarios 1 and 2.

C. DESIGN GOALS
On basis of the above-mentioned system and threat models,
we aim to design privacy-preserving and efficient biometric
recognition protocols under the cloud environment.More pre-
cisely, our design should fulfill the following requirements.
• Correctness. This is a least requirement that the design
should enable the DO to correctly identify the QU’s bio-
metric data if the CS perform the assigned computational
task honestly and without outside attacker.

• Privacy preservation. In the designed protocol, the DO’s
biometric database and QU’s query request should be
kept privacy from the CS and the attacker under some
decent threat model.

• High-efficiency. The computation overhead on the DO
side should be substantially smaller than that of perform-
ing the identification task by the DO itself (i.e., without
the assistance of the CS).

III. PRELIMINARIES
Before presenting the details of our designs, some relevant
background knowledge andmathematical tools are necessary.

A. HOUSEHOLDER TRANSFORMATION
Householder transformation, also known as the elementary
reflection, is a linear transformation first proposed by A.C
Aitken in 1932 [24]. It transforms a vector into the mirror
image of a hyperplane reflection, out of which, the transfor-
mation matrix is called Householder matrix, and the normal
vector of the hyperplane is called Householder vector. For-
mally, given a Householder vector m ∈ Rn, the Householder
transformation induced by m is a mapping over Euclidean
space Rn defined as below

Hm(x) = Hmx,∀x ∈ Rn,

where the Householder matrix Hm = E − 2mmT /(mTm)
and E denotes the identity matrix. the Householder transfor-
mation schematic is shown in Figure 2.

FIGURE 2. Householder transformation.

Geometrically, as illustrated in Figure 2, to obtain the
mirror image Hmx of any vector x reflected on a hyperplane
perpendicular to m, we first consider the orthogonal projec-
tion of x onto m, and get the orthogonal decomposition of x:

x = xm + xm⊥ ,

where xm =
〈x,m〉
〈m,m〉m =

xTm
mTmm and xm⊥ = x − xm = x −

xTm
mTmm. Then

Hmx =
(
E− 2

mmT

mTm

)
x = x− 2

mT x
mTm

m

= x− 2xm = −xm + xm⊥ .

Now, we present a simple property of Householder transfro-
mation.
Lemma 1: Let Hm be a Householder matrix induced by

an n-dimensional vector m, Then, HT
m = Hm and, for any x,

y ∈ Rn, we have

‖Hmx−Hmy‖ = ‖x− y‖.
Proof: Clearly, HT

m = Hm. For any x, y ∈ Rn, since
HT
mHm = HmHT

m = H2
m = E, we have

‖Hmx−Hmy‖2 = ‖Hm(x− y)‖2

= 〈Hm(x− y),Hm(x− y)〉

= (x− y)THT
mHm(x− y)

= (x− y)T (x− y)

= ‖x− y‖2,

which implies ‖Hmx−Hmy‖ = ‖x− y‖. �

B. PERMUTATION MATRIX
Let π be an n-order permutation over the set {1, 2, · · · , n}
which is usually denoted as(

1 2 · · · n
π (1) π (2) · · · π (n)

)
.

The n× n permutation matrix Pπ induced by π is

Pπ =


eπ (1)
eπ (2)
...

eπ (n)
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where eπ(i) = (0 · · · 0 1 0 · · · 0) denotes the row vector that
the entry located in the π(i)-th position is 1 and the rest are
0s. Clearly, left-multiplying amatrix by a permutationmatrix,
the π (i)-th row of the original matrix will be adapted to the
i-th row of the new matrix. Right-multiplying a matrix by
permutation matrix, the i-th column of the new matrix will be
the π−1(i)-th column of the original matrix. Also, a random
permutation can be efficiently constructed with the famous
Knuth-Durstenfeld Shuffle algorithm (Algorithm 1) and has
the following trivial property.
Lemma 2: For any n× n permutation matrix Pπ , we have

‖Pπx− Pπy‖ = ‖x− y‖, ∀x, y ∈ Rn

IV. OUR OUTSOURCING DESIGNS
To achieve our design goals stated in Section II-C, the key
obstacle standing in front of us is to come up with an effi-
cient and secure encryption technique that can preserve the
order of the distances. According to different threat scenarios,
in this section, we design two protocols to resist the attacks
in scenario 2 and scenario 3, respectively.

A. OUR PROTOCOL I
First, we design a secure protocol under the attack scenario 2.
Detailedly, the workflow of our first protocol proceeds as
follows.
• Key generation stage. In this stage, DO generates
an (n + 2)-order random permutation π with Algo-
rithm 1, an (n + 2)-dimensional random vector v =
(v1 · · · vn vn+1 vn+2)T and two reals r1, r2, where each
entry vi, r1, r2 are all randomly and uniformly chosen
with λ bits and λ denotes the maximum bit size of the
entries in the biometric data.

• Data encryption and upload stage. In this stage, the
DO first extends each data point bi = (bi1, · · · , bin)T to
an (n+2)-dimensional point b′i = (bi1, · · · , bin, r1, r2)

T .
Then, DO permutes b′i with P, and subsequently applies
the Householder transformation Hv to the permuted
vector. That is, DO calculates

ci = Hv × P × b′i, (1)

where Hv = E − 2vvT /(vT v). Finally, DO uploads
the blinded database C = {(id1, c1), (id2, c2), · · · ,
(idm, cm)} to the cloud server CS. After that, to save the
storage, the DO can delete the databases B = {(id1, b1),
(id2, b2), · · · , (idm, bm)} and C.

• Query encryption stage. When QU issues a query
request qu = (qu1, qu2, · · · , qun)T to DO, DO first
extends qu to an (n+ 2)-dimensional data point

q′u =
(
qu1, qu2, · · · , qun, s

(qu)
1 , s(qu)2

)T
,

out of which, s(qu)1 and s(qu)2 are two secret numbers that
are randomly and uniformly selected reals with κ bits
and re-selected for different queries. Then DO calculates
cqu = Hv × P × q′u and sends cqu to CS.

• Biometric data matching stage. After receiving the
encrypted query data point cqu , for i = 1, · · · ,m,
the cloud CS calculates the distance disti,qu = ‖ci −
cqu‖

2 and finds the minimum in the set {disti,qu | 1 ≤
i ≤ m}. Let distk,qu = min{disti,qu | 1 ≤ i ≤ m}. Then,
CS returns (idk , distk,qu ) to DO.

• Result confirmation stage. After receiving the result
(idk , distk,qu ), DO calculates distqu = distk,qu − (r1 −
s(qu)1 )2−(r2−s

(qu)
2 )2. Then it compares this distance with

the threshold τ . If distqu < τ , DO confirms the QU is
the person with identification idk .

Algorithm 1 P(B, 1λ)
Input: A matrix B ∈ Zn×m of rank m and a security param-

eter λ.
Output: A random permutation matrix P ∈ Zn×n
1: Set π=En(identical permutation)
2: for i = n to 2
3: Set j to be a random integer with 1 ≤ j ≤ i
4: Swap π [j] and π [i]
5: for i = 1 to n
6: for j = 1 to n
7: pij = δπ (i),j (δπ (i),j = 1 whenπ(i) = j, otherwise
δπ (i),j = 0).

8: Return P = (pij)1≤i,j≤n

B. ANALYSIS OF PROTOCOL I
Now, we present a strict analysis on the correctness and the
security of our protocol I.
Correctness analysis.According to the correctness require-

ment in our design goals, we need to prove that, if the QU
is with the identification idk , it will pass the confirmation.
Mathematically, we need to prove ‖bk − qu‖

2 < τ . Equiv-
alently, we need to explain that the value distqu calculated in
our design is exactly ‖bk − qu‖

2. In fact, in our design,

distqu = distk,qu − (r1 − s
(qu)
1 )2 − (r2 − s

(qu)
2 )2

= ‖ck − cqu‖
2
− (r1 − s

(qu)
1 )2 − (r2 − s

(qu)
2 )2

= ‖Hv × P × bk′ −Hv × P × q′u‖
2
− (r1 − s

(qu)
1 )2

−(r2 − s
(qu)
2 )2.

By Lemma 1 and Lemma 2, the above formula is

= ‖P × bk′ − P × q′u‖
2
− (r1 − s

(qu)
1 )2 − (r2 − s

(qu)
2 )2

= ‖bk′ − q′u‖
2
− (r1 − s

(qu)
1 )2 − (r2 − s

(qu)
2 )2

=

∥∥∥∥∥∥∥
bkr1
r2

−
 qu
s(qu)1

s(qu)2


∥∥∥∥∥∥∥
2

− (r1 − s
(qu)
1 )2 − (r2 − s

(qu)
2 )2

= ‖bk − qu‖
2
+ (r1 − s

(qu)
1 )2 + (r2 − s

(qu)
2 )2

−(r1 − s
(qu)
1 )2 − (r2 − s

(qu)
2 )2

= ‖bk − qu‖
2
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Attack scenario 2. That is,
Theorem 1: Our protocol I is secure under the Attack

scenario 2.
Proof: According to the settings of the Attack sce-

nario 2, the attacker can obtain 1) ciphertexts C =

{(id1, c1), (id2, c2), · · · , (idm, cm)}, cqu and (idk , distk,qu ),
and 2) some plaintexts in the biometric database whose corre-
sponding ciphertexts are unknown. We know ci = Hv× P ×
b′i, cqu = Hv × P × q′u and distk,qu = ‖ck − cqu‖. Precisely,

ci = Hv × P ×

bir1
r2

 , cqu = Hv × P ×

 qu
s(qu)1

s(qu)2

 , (2)
distk,qu =

∥∥∥∥∥∥∥
bkr1
r2

−
 qu
s(qu)1

s(qu)2


∥∥∥∥∥∥∥ . (3)

However, if bi and qu satisfy the above equation (2), then,
at least for any n× n permutation matrix P̄, P̄bi and P̄qu also
satisfy the equation (2). Consequently, the attacker can not
distinguish the correct plaintext. �
Vulnerability Although our protocol I is secure under the

Attack scenario 2, it can not resist the Attack scenario 3.
In fact, without loss of generality, assuming the attacker

obtains ` plaintext-ciphertext pairs {〈bi, ci〉 | i = 1 · · · , `}
with bi = (bi1 · · · bin) and ci = (ci1 · · · cin ci(n+1) ci(n+2)),
then, by the encryption equation (1), the attacker can con-
struct a system consisting of `(n+ 2) equations:

π (h11)b11 + · · · + π (h1n)b1n + π (h1(n+1))r1
+π(h1(n+2))r2 = c11
π(h21)b11 + · · · + π (h2n)b1n + π (h2(n+1))r1
+π(h2(n+2))r2 = c12

...

π (h(n+2)1)b11 + · · · + π (h(n+2)n)b1n + π (h(n+2)(n+1))r1
+π(h(n+2)(n+2))r2 = c1(n+2)

...

π (h11)b`1 + · · · + π (h1n)b`n + π (h1(n+1))r1
+π (h1(n+2))r2 = c`1
π (h21)b`1 + · · · + π (h2n)b`n + π (h2(n+1))r1
+π (h2(n+2))r2 = c`2

...

π (h(n+2)1)b`1 + · · · + π (h(n+2)n)b`n + π(h(n+2)(n+1))r1
+π (h(n+2)(n+2))r2 = c`(n+2)

,

(4)

where

Hv =

 h11 · · · h1(n+1) h1(n+2)
... · · ·

...
...

h(n+2)1 · · · h(n+2)(n+1) h(n+2)(n+2)

 (5)

is the (n + 2) × (n + 2) Householder matrix, the per-
mutation matrix P is induced by the permutation π and

π (hij) = hiπ (j). We can solve the above system with the
linearized method which regards π (hij) as an unknown and
treats π (hi(n+1))r1 and π (hi(n+2))r2 as two unknowns xi and yi
respectively. Since hij = hji and r1 and r2 are chosen same for
each plaintext vector bi, the number of unknowns is 0.5n(n+
1)+2n+2(n+2). As long as ` ≥ (0.5n+4)(n+1)/(n+2), the
attacker can recover Hv × P, r1 and r2 by solving the linear
system. Thus, the protocol I is broken.
Efficiency analysis.As an outsourcing design, our protocol

should make the local client achieve decent computational
savings. Now, we theoretically compare the DO’s compu-
tation overhead of our protocol I with that of the algorithm
without outsourcing.
Let tKeyGen+DataEnc, tQuEnc, tDataMa, and tReCon denote the

time overhead for the key generation and data encryption
stage, the time overhead for the query encryption stage, the
time overhead for the biometric data matching stage and the
time overhead for the result confirmation stage, respectively.
It should be noted that, in the data encryption and upload
stage, the ciphertext data points can be efficiently calculated
by the associativity of matrix multiplications. That is, for a
biometric dataset B, HvPB = PB− 2vvTPB/(vT v) = PB−
2v(vTPB)/(vT v). DO only needs to execute a vector-matrix
multiplication, which costsO(mn). That is tKeyGen+DataEnc =
O(mn). Also, this is a one-time work independent of the num-
ber of query requests. Similarly, due to the efficiency advan-
tage of the Householder transformation in query encryption
stage, the calculation of cqu costs tQuEnc = O(n). In the result
confirmation stage, DO needs to calculate distqu , which costs
tReCon = 2 multiplications. Therefore, if the number of query
requests is k , the DO’s total overhead in our protocol I is
ttotal = tKeyGen+DataEnc + k(tQuEnc + tReCon) = O(mn) +
O(kn) = O(mn+ kn).
WhenDOperforms the identification task by itself, it needs

to perform mn multiplications for one query and the total
computational overhead is O(kmn) for querying k times.

Overall, in case that the number of query requests k >

O( mn
mn−n ), the time overhead of DO in our protocol I is much

lower than that of DO performing the query task by itself.

C. OUR PROTOCOL II
To circumvent the above attack and seek a higher security
under theAttack scenario 3, we further propose an improved
privacy-enhanced protocol II. Through our analysis on the
protocol I, the key flaw is that, in the encryption stage of
protocol I, each biometric data point bi is padded with the
same random numbers r1 and r2, which incurs the num-
ber of unknowns is independent of the number ` of known
plaintext-ciphertext pairs in system (4). Therefore, our new
design must ensure that the number of unknowns always
surpass the number of equations. That is, we should add
more randomness in the encryption stage. Here, instead of
encrypting the biometric data by padding random numbers,
we split each bi and qu to two random vectors.More precisely,
our protocol II specifies as follows.
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• Key generation stage. In this stage, DO generates
a random invertible matrix M = (mij)1≤i,j≤n+1 ∈
R(n+1)×(n+1) and its inverse M−1, and a random real
vector r = (r1 r2 · · · rm)T , where the entry mij (1 ≤
i, j ≤ n + 1) in the matrix M and r1, · · · , rm are all
uniformly and randomly chosen with λ bits. Also, for
each 1 ≤ i ≤ m, DO constructs an (n+ 1)-dimensional
point b?i = (b?i1, b

?
i2, · · · , b

?
i(n+1))

T , where each entry b?ij
is randomly and uniformly selected from {0, 1,−1}.

• Data encryption and upload stage. In this stage,
DO extends each data point bi = (bi1, · · · , bin)T to
an (n + 1)-dimensional point b̂i = (bi1, · · · , bin,
−

1
2

∑n
j=1 b

2
ij)
T , and calculates b′i = ri×b?i and b

′′
i = b̂i

−b′i. Finally, the ciphertext data point

ci = MT
× b′′i (6)

and the blinded database C = {(id1, c1), (id2, c2), · · · ,
(idm, cm)} is uploaded to the cloud CS.

• Query encryption stage. When QU issues a query
request qu = (qu1, qu2, · · · , qun)T to DO, DO first
extends qu to an (n + 1)-dimensional data point q̂u =
(qu1, qu2, · · · , qun, 1)T . Then, DO generates a random
(n+1)-dimensional point q?u = (q?u1, q

?
u2, · · · , q

?
u(n+1))

T ,
where q?uj is selected randomly at random from
{0, 1,−1}. Also, DO calculates q′′u = k (qu)q?u and q

′
u =

q̂u − q′′u , out of which, k
(qu) is secret number that is

randomly and uniformly selected reals with λ bits and
re-selected for different queries. Finally, DO sends CS
the encrypted query cqu=M

−1
× q′u.

• Biometric data matching stage. After receiving cqu ,
for i = 1, · · · ,m, the cloud CS calculates the inner
product inpr ′i,qu = 〈ci, cqu〉 and returns the set S =
{(idi, inpr ′i,qu ) | 1 ≤ i ≤ m} to DO.

• Result confirmation stage. After receiving the set S,
DO first updates the inpr ′i,qu with inpri,qu = inpr ′i,qu +

〈b̂i, q′′u〉 + 〈b
′
i, q
′
u〉, and finds the maximum inprk,qu =

max{inpri,qu | 1 ≤ i ≤ m}. Then, it compares this dis-
tance with the threshold τ . If inprk,qu < τ , DO confirms
the QU is the person with identification idk .

D. ANALYSIS OF PROTOCOL II
Correctness analysis. For correctness, we need to explain
why the maximum distk,qu captures the truth that bk is the
closest data point to the query qu. In fact, according to our
design, for any 1 ≤ i ≤ m,

inpri,qu = inpr ′i,qu + 〈b̂i, q
′′
u〉 + 〈b

′
i, q
′
u〉

= 〈ci, cqu〉 + 〈b̂i, q
′′
u〉 + 〈b

′
i, q
′
u〉

= 〈MT
× b′′i ,M

−1
× q′u〉 + 〈b̂i, q

′′
u〉 + 〈b

′
i, q
′
u〉

= 〈b′′i , q
′
u〉 + 〈b̂i, q

′′
u〉 + 〈b

′
i, q
′
u〉

= 〈b̂i, q′u〉 + 〈b̂i, q
′′
u〉 = 〈b̂i, q̂u〉

=

n∑
j=1

bijquj −
1
2

n∑
j=1

b2ij.

Then, for two different data points bi1 and bi2 with 1 ≤
i1, i2 ≤ m, i1 6= i2,

inpri1,qu − inpri2,qu =
n∑
j=1

bi1jquj −
1
2

n∑
j=1

b2i1j

−(
n∑
j=1

bi2jquj −
1
2

n∑
j=1

b2i2j)

= −
1
2
(‖bi1 − qu‖

2
− ‖bi2 − qu‖

2).

(7)

Clearly, by the above equation (7), if inpri1,qu− inpri2,qu > 0,
then ‖bi1 −qu‖

2 < ‖bi2 −qu‖
2. In other words, the larger the

value of inpri,qu , the closer the Euclidean distance between bi
and qu. Consequently, the maximum inprk,qu means that bk is
the closest data point to the query qu.
Security analysis. Now, we argue the robust security of

the protocol II under the Attack scenario 3. That is, we will
prove
Theorem 2: Our protocol II is secure under the Attack

scenario 3.
Proof: Similar with the vulnerability analysis of pro-

tocol I, in Attack scenario 3, the attacker can obtain `
linearly independent plaintext-ciphertext pairs, without loss
of generality, {(bi, ci) | i = 1, · · · , `}. By equation (6), ci =
MT
×b′′i = MT

×(b̂i−ri×b?i ). That is, the following system
consisting of `(n+ 1) equations can be derived:

m11(b̂11 − r1b?11)+ · · · + m1(n+1)(b̂1(n+1) − r1b?1(n+1))

= c11
m21(b̂11 − r1b?11)+ · · · + m2(n+1)(b̂1(n+1) − r1b?1(n+1))

= c12
...

m(n+1)1(b̂11 − r1b?11)+ · · · + m(n+1)(n+1)

(b̂1(n+1) − r1b?1(n+1)) = c1(n+1)
...

m11(b̂`1 − r`b?`1)+ · · · + m1(n+1)(b̂`(n+1) − r`b?`(n+1))

= c`1
m21(b̂`1 − r`b?`1)+ · · · + m2(n+1)(b̂`(n+1) − r`b?`(n+1))

= c`2
...

m(n+1)1(b̂`1 − r`b?`1)+ · · · + m(n+1)(n+1)

(b̂`(n+1) − r`b?`(n+1)) = c`(n+1)

.

(8)

Clearly, in above system, cij(1 ≤ i ≤ `, 1 ≤ j ≤ n + 1)
and b̂ij(1 ≤ i ≤ `, 1 ≤ j ≤ n + 1) are known coefficients
and mij(1 ≤ i, j ≤ n + 1), ri(1 ≤ i ≤ `) and b?ij(1 ≤
i ≤ `, 1 ≤ j ≤ n + 1) are unknowns. With linearization
technique, treating rkb?kjmij, (1 ≤ k ≤ `, 1 ≤ i, j ≤ n+ 1) as
an unknown, there are at least `(n + 1)2 unknowns in above
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system. However, there are only `(n+1) equations. In fact, for
each new plaintext-ciphertext pair, (n+1) new equations and
at least (n + 1)2 new unknowns are introduced. The number
of unknowns is always more than that of equations, and thus
there exist at least exponentially many solution vectors. Thus,
the probability that the attacker can uniquely determine theM
is negligible.

For the case that the adversary can obtain different query
data points and their corresponding ciphertext pairs {(q(i)u ,
cq(i)u ) | i = 1, · · · , `}, the analysis is essentially the same as
above, we omit it here.

Finally, we consider the relative distance result
{inpr ′i,qu | i = 1, · · · ,m}. The adversary may attempt to
derive some sensitive information such as bi or qu by explor-
ing the relationship among the distances inpr ′i,qu (1 ≤ i ≤ m).
In our protocol II,

inpr ′i,qu = 〈ci, cqu〉 = 〈M
T
× b′′i ,M

−1
× q′u〉

= 〈b′′i , q
′
u〉

= 〈b̂i − ri × b?i , q̂u − k
(qu) × q?u〉

= 〈b̂i, q̂u〉 − ri〈b
?
i , q̂u〉 − k

(qu)〈q?u, b̂i〉

+rik (qu)〈b?i , q
?
u〉 (9)

Suppose that the adversary can know (b̂i, inpr ′i,qu ) for i =
1, · · · , ` and the query q̂u. The number of unknowns is
far more than that of equations according to equation (9).
Thus, there exist at least exponentially many solution vectors
and the probability of the adversary recovering the correct
(ri, k (qu), b?i , q

?
u) for i = 1, · · · , ` is negligible. Even if

the adversary can recover them, since the random number
(ri, b?i , ) (resp. (k

(q), q?u)) are variant with different data point
(resp. query point), the probability that the adversary can
recover other bis for i ∈ {` + 1, · · · ,m} (resp. other query
point) is also negligible.

Overall, based on the above analysis, the attacker with the
abilities described in Attack scenario 3 cannot break our
protocol II. �
Efficiency analysis. Now, we argue that, comparing with

performing the query task by the DO itself, our protocol II
can make DO achieve decent computational savings as long
as the query scale is relatively large.

We first analyze the time overhead of DO in our proto-
col II. In the key generation stage, the most time-consuming
operation is the calculation of M−1, which costs O(n3).
In the data encryption and upload stage, since the encryption
matrix is an invertible matrix M rather than a Householder
matrix, it costs O(mn2). Also, the above two stages are
one-time work for DO. In the query encryption stage, it costs
O(n2). In the results confirmation stage, when DO updates
the inpri,qu , it needs to perform 2 multiplications and O(n)
additions. Since 1 ≤ i ≤ m, the total time overhead of this
stage is O(m) multiplications. Therefore, when QU queries
k times, the total time overhead of DO in our protocol II
is O(n3 + mn2 + k(m+ n2))

As presented earlier, the computational cost of DO per-
forming one query task by itself isO(mn). Thus, for querying
k times, the total computational overhead is O(kmn).
Overall, as long as the number of query requests k >

O( n3+mn2

mn−m−n2
), the time overhead of DO in our protocol II is

much lower than that of DO performing the query task by
itself.

V. THEORETICAL AND PRACTICAL PERFORMANCE
COMPARISON AND EVALUATION
In this section, we will present a comprehensive efficiency
evaluation on our proposed two protocols by comparing them
with the existing protocols in both theory and practice.

A. THEORETICAL COMPARISON ANALYSIS
We compare the theoretical complexity of our protocols with
four popular and representative protocols [1], [2], [3], [10],
[22]. As introduced in Section IV-B, we use tKeyGen+DataEnc,
tQuEnc, tDataMa, and tReCon to denote the time overhead for the
key generation and data encryption stage, the time overhead
for the query encryption stage, the time overhead for the
biometric data matching stage and the time overhead for
the result confirmation stage, respectively. Table 2 compares
the computational and communicational overhead of these
protocols. As we can see from Table 2, our protocol I has
lower computation and communication overheads than other
protocols, which greatly saves the costs of DO and CS.More-
over, our protocols II seeks high security at cost of some-
what communicational overhead. However, the efficiency of
the protocol II is still comparable with the protocol [3] of
the same security level. To illustrate this point explicitly,
we refine the comparison of the computational overhead
between our protocol II and Liu et al.’s protocol [3] in Table 3.
As seen from Table 3, our protocol II is more efficient in
most of the stages and outperforms the protocol [3] in the
total overhead. The following experimental evaluation part
also confirms our theoretical analysis.

B. EXPERIMENTAL EVALUATION
To evaluate the practical performance of our protocols,
we experimentally compares these privacy-preserving fin-
gerprint identification protocols. We simulate the DO on a
computer with an Intel Core i7-9700T 2.00GHz CPU and
16.0 GB RMA and set up the CS with 10 nodes, each with
the same hardware configuration. Additionally, following the
experimental settings in the protocols [1], [2], [3], [10], [13],
[22], we use randomly generated 640-entry vectors to repre-
sent the fingerprint database.

1) COMPARISON WITH THE ALGORITHM WITHOUT
OUTSOURCING
We firstly compare the DO’s time cost in our protocol I and
protocol II with that in the algorithm without outsourcing.
Set the size m = 1e5 of the fingerprint database and let
the number of queries change from 1 to 300. We depict the
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TABLE 2. Comparison on the computational and communicational overheads of the existing representative protocols.

TABLE 3. Refined comparison on the computational overheads between Liu et al.’s protocol and our proposed protocol II.

FIGURE 3. Comparison on the time costs of the DO.

experimental result in FIGURE 3. Clearly, without outsourc-
ing, the DO’s time cost increases linearly with the query size.
While, in our protocols I and II, although the one-time work
(i.e., the KeyGen + DataEnc stage) is time-consuming, the
DO’s time cost is substantially less than the former if the
number of the queries is relatively large. For the protocol I,
the number is about larger than 50 and, for the protocol II, the
number is about larger than 100. Furthermore, the more times
the QU queries, the higher computational savings the DO can
gain.

2) COMPARISON WITH THE EXISTING OUTSOURCING
PROTOCOLS
In the following, we present an extensive comparison
between our protocols with the protocols [3], [10] which have

FIGURE 4. Comparison on the time costs of the key generation and data
encryption stage.

been shown to be experimentally more efficient than the other
protocols [1], [2], [19].

a: KEY GENERATION AND DATA ENCRYPTION STAGE
FIGURE 4 shows the variance of the time cost of the key gen-
eration and data encryption stage for a single query with the
number of FingerCodes changing from 1e5 to 4e5. As demon-
strated in FIGURE 4, the time costs increase linearly for all
the four protocols. The time cost of Zhu et al.’s protocol [10] is
significantly higher than the other three protocols. Compared
with protocol [10], our protocol I can save about 58% of the
time cost and our protocol II can save about 55% of the time
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FIGURE 5. Comparison on the time costs of the query encryption stage.

FIGURE 6. Comparison on the time costs of the data matching stage.

cost. The time cost of the protocol [3] is slightly higher than
that of our protocol I as well as that of the protocol II. Our
experimental results show that, compared with protocol [3],
our protocol I can save about 10% of the time cost and our
protocol II can save about 4% of the time cost.

b: QUERY ENCRYPTION STAGE
FIGURE 5 shows the time costs of the query encryption stage
with the number of queries changing from 1 to 30 (m = 1e5).
As shown in FIGURE 5, both of our proposed protocols are
more efficient than the other two existing protocols. Also, the
computational cost of our protocol I is the smallest, which is
about 2% of that of Liu et al.’s protocol [3] and about 7% of
that of Zhu et al.’s protocol [10].

c: BIOMETRIC DATA MATCHING STAGE
For this stage, we measure the variance of the time cost for
a single query with the number of FingerCodes ranging from

FIGURE 7. Comparison on the time costs of the result confirmation stage.

FIGURE 8. Comparison on the total querying time costs.

1e5 to 4e5. Also, fixing the number of FingerCodesm = 1e5,
we measure the time costs of this stage with the number
of queries going from 1 to 30. The experimental results are
visualized as FIGURE 6. We can draw the conclusion from
FIGURE 6 that our protocol I and protocol II can reduce
the computational cost on the CS side compared with pro-
tocols [3] and [10].

d: RESULT CONFIRMATION STAGE
For this stage, we measure the variance of the time cost for a
single query with the number of FingerCodes ranging from
1e5 to 4e5. Moreover, fixing the number of FingerCodes
m = 1e5, we measure the time costs of this stage as the
number of queries goes from 1 to 30. FIGURE 7 depicts the
experimental results, which shows that, compared with pro-
tocols [3] and [10], the time consumption of our protocols I
is lower and the time consumption of protocol II is higher.
The reason is that, in protocol II, this stage needs to update
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the distance. However, even if the number of FingerCodes
achieves 4e5, the augmented time cost of our protocol II
processing a query is less than 0.04s compared with the time
costs of protocols [3], [10]. In the case that the number of
queries achieves 30 (the number of FingerCodes is 1e5), the
augmented time consumption of our protocol II is less than
0.31s compared with the time costs of protocols [3], [10].
Finally, the total time cost for a single querywhich includes

the time cost of query encryption stage, the time cost of
biometric data matching stage and the time cost of result
confirmation stage is an important index to evaluate the prac-
tical performance of an outsourcing protocol. To avoid the
accidental errors, FIGURE 8 shows the variance of the total
querying time cost with the number of queries ranging from
1 to 30 (m = 1e5). As seen from the FIGURE 8, our protocol
II saves about 89% time cost compared with the protocol [10]
and about 65% time cost compared with the protocol [3].
Specially, our protocol I’s time cost is far less than those
of other protocols. Therefore, our proposed protocols show
remarkable performance in practice.

VI. CONCLUSION
In this paper, we design two biometric identification out-
sourcing protocols for different security and efficiency
requirements. With rigorous theoretical argument and exten-
sive experimental analysis, we comprehensively evaluate the
security and efficiency of the proposed protocols. Our analy-
sis indicates that our protocols can achieve decent security or
efficiency advantages comparedwith the existing outsourcing
protocols.
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