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ABSTRACT PID control is widely applied in industry. However, it is classified as a classical control
technique, in that transfer function method is used to represent the ideal and/or practical PID controller.
Modern control concepts, such as state feedback, observer, are seldom found in PID research. This
paper proposes a state-space PID structure to fill the gap. The classical ideal PID is first shown to be
a state-feedback control structure with the plant output and its derivative and integral as the states, and
then a model-independent observer is proposed to estimate the states, thus approximate the ideal PID as
an observer-based state feedback control structure (state-space PID). Then it is shown that the proposed
state-space PID structure is the dual of the linear active disturbance rejection control structure, and it is
a general-purposed control structure in that any strictly-proper linear controller with integration can be
implemented via the proposed structure. The design of the state-space PID can be done via the well-known
pole placement algorithm in modern control. Simulation and experiment results show that state-space PID
structure is a practical implementation of ideal PID, which naturally integrates the noise reduction that is
separated from PID tuning, and it is a natural generalization of the classical PID to high-order cases.

INDEX TERMS PID control, control structure, observer, active disturbance rejection control, pole
placement.

I. INTRODUCTION
Proportional-Integral-Derivative (PID) loops are by far the
most common feedback control mechanism for industrial
processes [1], [2], [3]. The three parameters of a PID con-
troller have a very clear connection with the performance of
the system, so it can be easily tuned online. However, with the
increasing complexity of industrial processes and the increase
of various uncertainties in the plants, the control performance
of classical PID control may not be satisfactory due to its
specific structure [4].

On the other hand, many modern control techniques were
tried to replace the PID control, e.g., LQG [5], H∞ [6],
adaptive control [7]. Although the advanced control tech-
niques have contributed to the improvement of the con-
trol performance, they are seldom found in practice due to
the implementation, tuning and maintenance issues. When
a process is already up and running, the trial-and-error
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design can be more convenient than the advanced control
alternatives that require taking the process offline for tests.
And even when the advanced control technique theoreti-
cally would provide improved performance, the extra effort
and expense required may not be worth it. Therefore, more
than 90% of the controllers in feedback control are still of
PID type [1], [8].

PID control has been investigated thoroughly in the
past. The first practical PID controller tuning method was
proposed by Ziegler-Nichols [9]. Since then, hundreds
of PID tuning methods have been proposed, e.g., gain-
phase margin [10], [11]; internal model control (IMC)
[12], [13], [14]; stabilizing parameter space [15]; direct syn-
thesis [16], [17]; relay feedback [18]; see [19] for a recent
review of PID tuning methods.

The tuning of PID controllers are most based on the
ideal PID structure. However, due to the measurement noise,
the ideal PID cannot be directly used in practice, and fil-
ters have to be added to reduce the effect of noise, thus
additional filter constant has to be tuned together with the
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PID parameters, which makes the tuning of PID more com-
plex [20]. Though filters are very important for PID control,
there are not many references on the tuning of the PID filters.
Reference [21], [22] considered measurement noise filtering
for common PID tuning rules; [23], [24] discussed the opti-
mization of PID controller with noise filter.

It is well-known that PID control is a restricted-structure
controller, which has a second-order transfer function with
special structure. High-order PID are proposed to improve
the performance of the classical PID. A PID+lead structure
was proposed in [25] and it was shown that the structure
is effective for unstable process with time delay [26], [27].
PID plus second-order derivative controller (PIDD2) was
applied in automatic regulator system and its effectiveness
over classical PID was shown. Fractional-order PID (FOPID)
is in fact a high-order PID form that was used to improve the
performance of the classical PID [28], [29].

It is strange to note that although modern control has been
developed since 1970s, PID is seldom tuned in the state-space
framework. The main problem is that a PID controller is a
fixed control structure with derivative of the plant output. If it
is to be realized in the state space, it is of a special control
structure and generally has a smaller order than the controlled
plant, thus designing a PID controller in state space amounts
to finding the parameters for a fixed-order controller. The
design can be solved with numerical method such as linear
matrix inequality (LMI) [30], [31] but the essential tools
in modern control such as state feedback and observer are
lost.

Recently, active disturbance rejection control (ADRC)
technique was proposed in [32]. ADRC treats the controlled
plant as a cascaded integral model, and lumps all the model
uncertainties and external disturbances into a single dis-
turbance (called total disturbance in ADRC framework).
An extended state observer (ESO) is used to estimate the
total disturbance, and the estimated disturbance is rejected
via a state-feedback control law. ADRC does not rely on the
plant model, and the linear version of ADRC (LADRC) can
be tuned via the bandwidth idea [33], [34], thus LADRC
is a potential control structure to replace PID in practice.
It was shown that a second-order LADRC is a PID+filter
structure [35], and the PID parameters can be converted from
second-order LADRC [36], [37]. It is also found that the well-
known Ziegler-Nichols tuning for PID controller can be inter-
preted in ADRC framework [38] via the disturbance-rejection
PID idea. However, as a disturbance observer based
control (DOBC) method [39], the control structure is dif-
ferent from the classical PID form, and most of the con-
trol engineers are not familiar with the design and tuning
idea.

This paper proposes an implementation of the classical PID
with a state-space structure. The state-space PID (SS-PID)
has the same structure as the classical PID with the deriva-
tive of the plant output estimated via a model-independent
observer, thus retains themodel-independence property of the
classical PID. The idea is then extended to high-order case

and the relation with LADRC is investigated. It is also proved
that the state-space PID is a general-purposed control struc-
ture in that any linear finite-dimensional strictly-proper con-
troller with integration can be implementedwith the structure.
A state-space pole placement method is proposed to design
(high-order) PID controller, and the state-space PID structure
can thus be tuned with two parameters. Simulation examples
and experiment results show that the state-space PID can
achieve better performance for some complex systems than
the classical PID.

The main contributions of the paper can be summarized as
follows:

1) A state-space PID structure is proposed so that PID
controller can be expressed in the state-space form. The
output and its derivative are estimated with a cascaded
integral model instead of the true plant model, thus the
state-space PID retains the structure independence on
the plant as the classical PID.

2) The state-space PID structure is shown to be the dual
of the LADRC structure when the observer (controller)
gain of the SS-PID is chosen as the transpose of the con-
troller (observer) gain of the LADRC, which reveals
the fact that SS-PID and LADRC are using the same
canonical model as the controlled plant but design via
different viewpoints.

3) The state-space PID is shown to be a general-purposed
control structure in that any finite-dimensional strictly-
proper linear controller with integration can be imple-
mented with the structure, thus removes the structural
limitations of classical PID.

4) A pole placement method is proposed to design (high-
order) PID control and the state-space PID can be
tuned via two parameters. It is also demonstrated that
higher-order state-space PID can achieve better control
performance than the classical PID, thus higher-order
PID can be used to improve the control performance
for complex systems.

The rest of the paper is arranged as follows: Section 2 pro-
poses a state-space PID implementation of the ideal PID
controller, and extends it to high-order PID in Section 3.
The relation between the state-space PID structure and
the LADRC structure is discussed in Section 4. Then
the generality of state-space PID structure is proved in
Section 5. Section 6 proposes a PID design method via
the state-feedback pole-placement idea. Section 7 verifies
the proposed structure on a temperature control lab. Finally
conclusions are given in Section 8. All the simulations
are performed in MATLAB/SIMULINK with variable-step
ODE45(Dormand Prince) method, and the experiment is per-
formed with fixed-step ODE4(Runger-Kutta) method with
sampling time 0.5 second.

II. STATE-SPACE FORM OF PID
PID controllers are widely used in industry due to its simple
structure and easy tuning procedure. An ideal PID controller
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has the following transfer function:

KPID(s) = Kp +
Ki
s
+ Kd s (1)

where Kp,Ki,Kd are the proportional, integral, and deriva-
tive gain, respectively. PID control can be written as a
state-feedback control law:

u(t) = Kd (ṙ(t)− ẏ(t))+ Kp(r(t)− y(t))

+Ki

∫ t

0
(r(τ )− y(τ ))dτ

=: K̄o(r̄(t)− x(t)) (2)

where y(t) is the controlled variable, u(t) is the manipulated
variable, and r(t) is the reference signal,

r̄(t) = [ṙ(t) r(t)
∫ t

0
r(τ )dτ ]T (3)

and the state vector is

x(t) = [ẏ(t) y(t)
∫ t

0
y(τ )dτ ]T (4)

with state-feedback gain

K̄o = [Kd Kp Ki] (5)

In practice ẏ(t) is usually computed from y(t) via a practical
differentiator. An alternative method to obtain the derivative
of y(t) is to estimate it with an observer. Consider the follow-
ing double integral system:

ÿ(t) = u(t) (6)

Let

x1 = ẏ, x2 = y (7)

then it can be written in the state-space form:

[
ẋ1
ẋ2

]
= Ā

[
x1
x2

]
+ B̄u

y = C̄

[
x1
x2

] (8)

where

Ā =
[
0 0
1 0

]
, B̄ =

[
1
0

]
, C̄ =

[
0 1

]
(9)

thus the following observer can be used to estimate [ẏ y]T .[
˙̄x1
˙̄x2

]
= (Ā− L̄C̄)

[
x̄1
x̄2

]
+ B̄u+ L̄y (10)

where L̄ is the observer gain

L̄ = [β̄1 β̄2]T (11)

If L̄ is chosen such that Ā− L̄C̄ is asymptotically stable, then
x̄1→ ẏ and x̄2→ y.

Define a new state x̄3, where

˙̄x3 = x̄2 (12)

Since x̄2 → y, we have x̄3 →
∫ t
0 y(τ )dτ when Ā − L̄C̄ is

asymptotically stable.
Combine (10) and (12), we have an estimation of the

state (4) with the following extended state observer:

˙̄x = (Āe − L̄oC̄e)x̄ + B̄eu+ L̄oy (13)

where

x̄ = [x̄1 x̄2 x̄3]T (14)

is the estimated state vector,

Āe=

0 0 0
1 0 0
0 1 0

 , B̄e=

10
0

 , C̄e=[0 1 0
]

(15)

and

L̄o = [L̄ 1]T = [β̄1 β̄2 1]T (16)

is the observer gain.
So an ideal PID controller can be implemented with the the

following state-space controller.{
˙̄x = (Āe − L̄oC̄e)x̄ + B̄eu+ L̄oy
u = K̄o(r̄ − x̄)

(17)

Its structure is shown in Figure 1.

FIGURE 1. Block diagram of state-space PID.

Remark 1: It is noted that the state x(t) (4) is esti-
mated using the system (6) instead of using the true model
of the controlled plant. The idea is similar to high-gain
observers [40] and extended state observers [32], [34].
Of course, the plant model can be used in estimating the
state x(t) [41], [42], however, if the plant model is used,
then the resulting PID will depend on it, and the model-
independence property of the PID control structure will be
lost.

It is easy to show that the state-space PID (17) is equivalent
to the control structure shown in Figure 2, where the setpoint
filter is

C1(s)= (1− K̄o(sI − Āe+B̄eK̄o + L̄oC̄e)−1B̄e)Fr (s) (18)

where Fr (s) is the transfer function from the reference r(t) to
the extended reference r̄(t) (3), so

Fr (s) = K̄o[s 1
1
s
]T =

Kd s2 + Kps+ Ki
s

(19)
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FIGURE 2. Feedback control structure with setpoint filter.

and the feedback controller is

C2(s) = K̄o(sI − Āe + B̄eK̄o + L̄oC̄e)−1L̄o (20)

It is clear that the internal stability, robustness, and the
disturbance-rejection performance of the structure is only
related to the feedback controller C2(s).
To show that the state-space PID is an approximation of

the ideal PID, consider the feedback controller C2(s) of the
state-space PID (17), which has the the following transfer
function from y to u:

(Kd β̄1 + Kpβ̄2 + Ki)s2 + (Kpβ̄1 + Kiβ̄2)s+ Kiβ̄1
s[s2 + (Kd + β̄2)s+ (β̄1 + Kd β̄2 + Kp)]

(21)

Divide both the numerator and the denominator of the transfer
function (21) by β̄1, it can be concluded that if

β̄1 � 1,
β̄2

β̄1
� 1 (22)

then C2(s) of the state-space PID (17) will approximate the
ideal PID (1).

In practice, an ideal PID is implemented as the following
practical PID controller:

Kc(s) = Kp(1+
1
Tis
+

Td s
Td/Ns+ 1

) (23)

where Ti =
Kp
Ki

is the integration time constant and
Td =

Kd
Kp

is the derivative time constant. N is the filter con-
stant to attenuate the high-frequency noise in the derivative.
It can be shown that if

β̄1 � 1,
β̄2

β̄1
=
Td
N

(24)

then the feedback controller C2(s) of the state-space PID (17)
will approximate the practical PID (23).

For simplicity, the observer gain L̄ (11) can be tuned via the
bandwidth idea, i.e., the poles of Ā − L̄C̄ in (10) are placed
at the same location −ω̄o, then

β̄1 = ω̄
2
o, β̄2 = 2ω̄o (25)

so the observer gain L̄o for the state-space PID (17) is

L̄o = [ω̄2
o 2ω̄o 1]T (26)

thus when ω̄o is large enough, the feedback controller C2(s)
of the state-space PID (17) will approximate the ideal PID (1),
and when ω̄o = 2N/Td , it will approximate the practical
PID (23).

It can be shown from (21) that the state-space PID (17)
is like an ideal PID cascaded with a second-order filter. The
filter introduces roll-off at high frequencies thus reduces the
sensitivity to measurement noise. So state-space PID is a
practical implementation of ideal PID. It is an observer-based
state feedback controller that has a special state-space
(cascaded integral) model. So it has a fixed control structure
as the ideal PID but with a model-independent observer to
estimate the derivative and integral of the controlled variable.
Example 1: Consider a first-order plus deadtime (FOPDT)

process

P1(s) =
1

s+ 1
e−0.4s (27)

The parameters of an ideal PID controller tuned by AMIGO
method [43] is:

Kp = 1.325, Ti = 0.768, Td = 0.1786 (28)

The response of the process under the ideal PID is shown
in Figure 3(a) when a unit step reference signal is inserted
at t = 1s and a unit step input disturbance is inserted at
t = 10s, together with the responses of the practical PID
with N = 20 and the state-space PID (17) with ω̄o = 40/Td .

FIGURE 3. Responses and bode plots of various PID for Example 1 (solid:
state-space PID; dashed: ideal PID; dashdotted: practical PID).
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The response of the state-space PID is very close (indistin-
guishable in the figure) to the ideal PID for both setpoint and
disturbance responses. (Figure 3(a) only shows the controller
output u(t) within the range from 0 to 5, otherwise u(t) for
the disturbance response will be too small to be visible in the
figure).

The Bode plots for the ideal PID, the practical PID
(N = 20), the feedback controllers C2(s) of the state-space
PID (ω̄o = 40/Td ) are shown in Figure 3(b). It is clear
that the three controllers differ only at high frequencies and
only the state-space PID rolls off at high frequencies, thus
the state-space PID has the best noise attenuation perfor-
mance. For example, suppose there is a white noise with
variance 0.001 added to the output of the plant, the variances
of the output for the state-space PID, the ideal PID, and the
practical PID are 0.1061, 0.2015, and 0.1076, respectively,
which verifies the claim from the Bode plots.

III. HIGH-ORDER EXTENSION
The state-space PID idea can be easily extended to higher-
order case, thus it extends the classical PID control and is
applicable for complex systems where high-order deriva-
tives of the plant output are needed to improve the control
performance.

The pth-order state-space PID (SS-PID) has the form:
˙̄x = (Āe − L̄oC̄e)x̄ + B̄eu+ L̄oy

u = K̄o(
1
b0
r̄ − x̄)

(29)

where the state vector is defined as

x̄ = [x̄1 x̄2 · · · x̄p x̄p+1]T (30)

and the state-space data are

Āe =


0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...
...
. . .

...
...

0 0 · · · 1 0


(p+1)×(p+1)

, B̄e =


1
0
0
...

0


(p+1)×1

,

C̄e =
[
0 · · · 0 b0 0

]
1×(p+1) (31)

It is clear that the state-space PID can be regarded as
an observer-based state feedback control for the following
extended system (where Āe, B̄e, C̄e are given in (31)){

ẋ = Āex + B̄eu
y = C̄ex

(32)

with the observer gain L̄o, where

L̄o = [β̄1 β̄2 · · · β̄p 1]T /b0 (33)

and the controller gain K̄o, where

K̄o = [k̄1 k̄2 · · · k̄p k̄p+1] (34)

It is clear that the states and the output of the extended
model (32) are related by:

ẋ1(t) = u(t), ẋ2(t) = x1(t), · · · , ẋp(t) = xp−1(t),

ẋp+1(t) = xp(t), y(t) = b0xp(t) (35)

So xi(t)(i = 1, · · · , p) have clear physical meaning, i.e.,

xp(t)=
1
b0
y(t), xp−1(t)=

1
b0
ẏ(t), · · · , x1(t)=

1
b0
y(p−1)(t)

(36)

and

xp+1(t) =
∫ t

0
xp(τ )dτ =

1
b0

∫ t

0
y(τ )dτ (37)

thus x(t) is composed of y(t), its integral and its derivatives
of various order divided by b0.
When L̄o is chosen properly, Āe − L̄oC̄e is asymptotically

stable, we have

x̄1(t) →
1
b0
y(p−1)(t), · · · , x̄p(t)→

1
b0
y(t),

x̄p+1(t) →
1
b0

∫ t

0
y(τ )dτ (38)

so the elements k̄p−j
b0

(j = 0, 1, · · · , p − 1) are the gains

of the jth-order derivative of y(t), and k̄p+1
b0

is the gain of
the integral of y(t), thus the pth-order state-space PID is a
practical implementation of high-order PID

K (s)=Kp+
Ki
s
+Kd1s+Kd2s2 + · · · + Kd,p−1sp−1 (39)

with gains

Kp = k̄p/b0, Ki = k̄p+1/b0,

Kdj = k̄p−j/b0, (j = 1, 2, · · · , p− 1) (40)

In other words, the state-feedback gain of the pth-order SS-
PID is related to the gains of the high-order PID (39) by

K̄o = [Kd,p−1 · · · Kd2 Kd Kp Ki]b0 (41)

Remark 2: The transfer function of the extended
system (32) is

y(p)(t) = b0u(t) (42)

thus for the pth-order state-space PID, the output y(t) and
its derivatives are estimated from the cascaded integral
model (42) instead of the true plant model. Thus model-
independent control structure of PID is retained.
Remark 3: b0 is a parameter that scales the estimation of

the output y. Its effect is to change the overall controller gain.
This can be verified by the transfer function from y to u of
the state-space PID. For example, when p = 2, the feedback
controller from y to u becomes

(k̄1β̄1 + k̄2β̄2 + k̄3)s2 + (k̄2β̄1 + k̄3β̄2)s+ k̄3β̄1
b0s[s2 + (k̄1 + β̄2)s+ (β̄1 + k̄1β̄2 + k̄2)]

(43)
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When k̄1, k̄2, k̄3 and β̄2, β̄2 are fixed, 1/b0 varies the gain of
the controller.
Remark 4: To approximate the ideal PID controller (1) with

gains Kp, Ki, and Kd , the controller gain of the second-order
SS-PID can be chosen as

K̄o = [Kd Kp Ki]b0 (44)

then the transfer function from y to u of the second-order
state-space PID becomes

(Kd β̄1 + Kpβ̄2 + Ki)s2 + (Kpβ̄1 + Kiβ̄2)s+ Kiβ̄1
s[s2 + (Kdb0 + β̄2)s+ (β̄1 + Kpb0 + Kdb0β̄2)]

(45)

In this case b0 can be set to a small value so that the
second-order SS-PID can approximate the ideal PID with a
small observer bandwidth, which is useful since the observer
bandwidth should not be too large in practice under noisy
environment.

The diagram of the pth-order state-space PID (SS-PID) is
shown in Figure 4, where the derivatives of the signal r are
set to zero for step-like reference, and α is a setpoint weight
to reduce the overshoot when necessary (e.g., for integrating
and unstable processes). By default α = 1.

FIGURE 4. Block diagram of pth-order state-space PID.

IV. RELATION WITH ADRC
Consider the dual system of (32), i.e.,{

ż = Âez+ B̂eu
y = Ĉez

(46)

where z = [z1 · · · zp zp+1]T is the state vector, and

Âe = ĀTe =


0 1 0 · · · 0
0 0 1 · · · 0
...
...
...
. . .

...

0 0 0 · · · 1
0 0 0 · · · 0


(p+1)×(p+1)

,

B̂e = C̄T
e =

[
0 · · · 0 b0 0

]T
(p+1)×1 ,

Ĉe = B̄Te =
[
1 0 0 · · · 0

]
1×(p+1) (47)

We can construct an observer-based state-feedback controller
for (46) as {

˙̂z = (Âe − L̂oĈe)ẑ+ B̂eu+ L̂oy

u = K̂o(r̂ − ẑ)
(48)

where the extended referece signal is

r̂(t) = [r(t) ṙ(t) · · · r (p)(t) 0]T (49)

K̂o is the controller gain vector,

K̂o = [k̂1 k̂2 · · · k̂p 1]/b0 (50)

and L̂o is the observer gain vector.

L̂o = [β̂1 β̂2 · · · β̂p β̂p+1]T (51)

Compare (29) and (48), if

K̂o = L̄T0 , L̂o = K̄T
o (52)

then

Âe − L̂oĈe − B̂eK̂o = (Āe − B̄eK̄o − L̄oC̄e)T (53)

thus (29) and (48) are dual systems if the reference signal
is not considered. So the feedback controller of (48) is the
transpose of the feedback controller of (29). As they are
single-variable systems, the feedback controller of (48) is
exactly equal to the feedback controller of (29).
It is noted that the observer-based state-feedback controller

designed for the extended plant (46) is just the linear active
disturbance rejection controller (LADRC) [44]. The idea of
LADRC is to model the controlled plant as

y(p)(t) = b0u(t)+ f (54)

where f is a combination of the unknown dynamics and the
external disturbances of the plant, and denoted as the total
disturbance. A linear extended state observer (ESO) is used
to estimate the unknown total disturbance f and the deriva-
tives of y, and the estimated disturbance is rejected with a
linear state-feedback control law. The final pth-order LADRC
has the same form as (48). The structure of a second-order
LADRC is shown in Figure 5.

FIGURE 5. Block diagram of second-order LADRC.

When (52) holds, LADRC (48) is the dual of SS-PID (29)
if reference signal is not considered, thus the feedback con-
troller of LADRC (48) is equivalent to the feedback controller
of SS-PID (29), thus it has the same disturbance rejection
performance and robust stability as the SS-PID. However,
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their setpoint responses are different since the setpoint filters
are different, as is shown in the following example.
Example 2: (Continue from Example 1) The response of

the closed-loop system for the controlled plant in Example 1
under a second-order LADRC with the following parameters
is shown in Figure 6, together with the state-space PID in
Example 1. It is shown that the disturbance response of the
second-order LADRC is the same as that of the state-space
PID but the setpoint response is different (Figure 6 shows only
part of the controller output u(t) of the second-order LADRC
as its initial output is too large).

b0 = 1, Ko = [1600 80 1], Lo = [Kd Kp Ki]T (55)

FIGURE 6. Responses for Example 2 (solid: state-space PID; dashed:
second-order LADRC (55).

Remark 5: It is clear that both state-space PID and
LADRC use the same model (42) in the design: LADRC
extends the model with an observable state-space system (46)
with the extended state treated as the total disturbance,
while state-space PID extends the model with a controllable
state-space system (32) with the extended state as the integral
of the plant output. The final designed controllers are dual if
reference tracking is not considered and the parameters are
related as in (52).

V. GENERALITY OF STATE-SPACE PID
It is well-known that the classical PID controller is a restricted
complexity controller and general linear controllers may have
to be used to achieve better performance. In this section
we will show that the state-space PID (29) can serve as
a general-purposed linear control structure, i.e., for any
(p+1)th-order linear finite-dimensional strictly-proper trans-
fer function Kc(s) with integration, we can always find
the process gain b0, the observer gain L̄o (33), and the
state-feedback gain K̄o (34) so that the feedback controller
of the pth-order SS-PID (29) is equal to Kc(s), i.e.,

K̄o(sI − Āe + B̄eK̄o + L̄oC̄e)−1L̄o = Kc(s) (56)

For the pth-order SS-PID (29), the transfer function of the
feedback controller C2(s) is

C2(s) =
cpsp + cp−1sp−1 + · · · + c0
sp+1 + apsp + · · · + a1s

(57)

where the numerator coefficients can be computed from
cp
cp−1
...

c1
c0

 =
1
b0


β̄1 β̄2 · · · β̄p 1
0 β̄1 · · · β̄p−1 β̄p
...

...
. . .

...
...

0 0 · · · β̄1 β̄2
0 0 · · · 0 β̄1




k̄1
k̄2
...

k̄p
k̄p+1

 (58)

and the denominator coefficients can be computed from
ap
ap−1
...

a2
a1

 =

β̄p 1 0 · · · 0 0
β̄p−1 β̄p 1 · · · 0 0
...

...
. . .

. . .
...
...

β̄2 β̄3 · · · β̄p 1 0
β̄1 β̄2 · · · β̄p−1 β̄p 1




1
k̄1
...

k̄p−1
k̄p

 (59)

So the state feedback gain K̄o (34) and the observer gain
L̄o (33) can be solved numerically from Eqs.(58) and (59) if
the numerator and denominator of the given controller Kc(s)
are available. However, the existence of the solution depends
on the chosen numerical nonlinear equation solver and the
initial guess. It is not always possible to solve the nonlinear
equations (58) and (59).

A procedure will be proposed in this section to solve the
problem. The procedure only involves finding the roots of
polynomials, which is always possible for a polynomial with
rational coefficients, thus it is guaranteed that solutions can
be found for (58) and (59), thus the existence of a solution is
guaranteed. The procedure depends on the following result.
Proposition: Denote the numerator and denominator poly-

nomials of the feedback controller C2(s) of the pth-order
SS-PID as X (s) and Y (s), respectively, i.e.,

C2(s) =
X (s)
Y (s)

(60)

Assume Y (s) is monic, i.e., the coefficient of the highest term
is unity. Then we have

spY (s)+ b0X (s) = Mst (s)Mob(s) (61)

where

Mst (s) = sp+1 + k̄1sp + · · · + k̄ps+ k̄p+1 (62)

is the characteristic polynomial of the state feedback law, and

Mob(s) = sp + β̄psp−1 + · · · + β̄2s+ β̄1 (63)

is the characteristic polynomial of the observer.
Proof. It is observed that the pth-order SS-PID (29) is an

observer-based state-feedback controller for the plant (32).
So the closed-loop system for the plant (32) controlled by (29)
with a negative feedback is then{

ẋ = Āex − B̄eK̄ox̄
˙̄x = (Āe − B̄eK̄o)x̄ + L̄oC̄e(x − x̄)

(64)
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Let

e = x − x̄ (65)

then the closed-loop system becomes(
ė
˙̄x

)
=

[
Āe − L̄oC̄e 0
L̄oC̄e Āe − B̄eK̄o

](
e
x̄

)
(66)

So the poles of the closed-loop system are determined by
the eigenvalues of Āe − L̄oC̄e and Āe − B̄eK̄o. The result is
well-known for an observer-based state-feedback controller.

It is easy to verify that

|sI − Āe + B̄eK̄o|

= sp+1 + k1sp + · · · + kps+ kp+1 = Mst (s) (67)

|sI − Āe + L̄oC̄e|

= s(sp + β̄psp−1 + · · · + β̄2s+ β̄1) = sMob(s) (68)

So the poles of the closed-loop system for plant (32) con-
trolled by (29) is composed of the roots of Mst (s) and
Mob(s), and s = 0 is canceled since it is a pole and a zero
simultaneously.

Now if we consider the transfer function of the plant (32)
and the feedback controller C2(s). Since the plant model is

Pm(s) =
b0
sp

(69)

and the controller is

C2(s) =
X (s)
Y (s)

(70)

then the poles of the closed-loop system will be the zeros of
1+ Pm(s)C2(s). Since

1+ Pm(s)C2(s) = 1+
b0
sp
X (s)
Y (s)
=
spY (s)+ b0X (s)

spY (s)
(71)

So if there are no pole-zero cancellation between Pm(s) and
C2(s), i.e., there are no zeros at the origin in C2(s), the zeros
of spY (s) + b0X (s) will be equal to the poles of closed-
loop system, i.e., the roots of Mst (s) and Mob(s). Thus the
proposition is proved.

This proposition relates the poles of the transfer function
of the closed-loop system to the poles of the state-space
realization of the closed-loop system. It is quite simple and
straightforward. However, this proposition guarantees that
any strictly-proper (p+1)th-order controller with integration
can be realized with a fixed structure controller C2(s), or in
other word, can be implemented as a feedback controller of a
pth-order state-space PID (29).

The following gives the solution procedure. For any
strictly-proper (p + 1)th-order linear controller Kc(s) with
integration,

1) Find the numerator polynomial X (s) and the denomi-
nator polynomial Y (s) of Kc(s). Let Y (s) be monic.

2) Find the roots of the polynomial spY (s) + b0X (s) and
denote them by mi, i = 1, · · · , 2p+ 1.

3) Divide the roots of spY (s) + b0X (s) into two groups,
the first contains p roots (m1, · · · ,mp) and the second

has p + 1 roots (mp+1, · · · ,m2p+1). Make sure that
conjugate roots are grouped into the same group.

4) Form a polynomial with the first group of roots by
(s−m1) · · · (s−mp) and expand the polynomial to get
the coefficients.

(s− m1) · · · (s− mp)=sp+β̄psp−1 + · · · + β̄1 (72)

Then

L̄o = [β̄1 β̄2 · · · β̄p 1]T /b0 (73)

5) Form a polynomial with the second group of roots by
(s− mp+1) · · · (s− m2p+1) and expand the polynomial
to get the coefficients.

(s− mp+1) · · · (s− m2p+1)

= sp+1 + k̄1sp + · · · + k̄ps+ k̄p+1 (74)

Then

K̄o = [k̄1 · · · k̄p k̄p+1] (75)

With the parameters b0, K̄o, and L̄o, the feedback controller
C2(s) of the SS-PID (29) is exactly equal to Kc(s).
Example 3: Consider the PID controller (28) discussed

in Example 1. To reduce the effect of noise in the mea-
surement, a second-order filter is usually used together with
the ideal PID, i.e., the controller is of the following form
(hereafter referred as PIDF controller).

Kc(s) = Kp(1+
1
Tis
+ Td s)

1

T 2
f s

2/2+ Tf s+ 1
(76)

Tf is chosen as Tf = 0.22Td as recommended in [21].
The PIDF is a third-order strictly-proper controller with

integration, thus can be implemented with a second-order
SS-PID. Let b0 = 1. Follow the proposed procedure, the roots
of s2Y (s)+ b0X (s) are

p1,2 = −25.3609± 25.3363j, p3 = −0.9064

p4,5 = 0.3596± 1.3379j (77)

Choose the first two roots p1, p2 as the roots of Mob(s) and
the last three roots p3, p4, p5 as the roots of Mst (s), then we
get a second-order SS-PID with gains:

L̄o = [1285.105 50.722 1]T

K̄o = [0.1872 1.2674 1.7397] (78)

It is easy to verify that solution (78) satisfy (56).
Figure 7 shows the responses of the plant (27) under the

control of the PIDF controller (76) and the SS-PID (78) with
a step setpoint at t = 1s and a step input disturbance at
t = 10s. It is shown that the SS-PID (78) has the same
disturbance rejection responses as the PIDF controller (76)
as expected, but they have different setpoint and initial con-
troller responses.
Remark 6: It is shown that any linear finite-dimensional

strictly-proper controller with integration can be imple-
mented via the SS-PID structure, thus it can serve as a

VOLUME 10, 2022 116547



W. Tan et al.: State-Space PID: A Missing Link Between Classical and Modern Control

FIGURE 7. Responses for Example 3 (solid: second-order SS-PID (78);
dashed: PIDF controller with parameter (28)).

general-purposed linear control structure that has a fixed
structure and only parameters are needed to tune to meet
the desired control performance. If a linear strictly-proper
controller has already been designed by another linear con-
trol method, it can be implemented using the SS-PID struc-
ture via the proposed procedure. In other words, any linear
strictly-proper controller with integration is a (high-order)
‘PID’ controller. State-space PID is thus a control struc-
ture that fills the gap between classical and modern control
theory.

VI. STATE-SPACE PID DESIGN
Any PID design or tuning method can be used to get the
parameters of an ideal PID, and then an observer (13) can
be used to get the state-space PID. State feedback design is
a convenient and useful control design method in modern
control theory. Is it possible to apply the state feedback
design in PID design? The extended model (32) can be
used to design a PID controller, however, since the inter-
nal dynamic information of the controlled plant is not used
in design, it cannot guarantee the stability of the actual
plant. Model information may be used to design a stabilizing
PID control.

Suppose the controlled plant has a minimal state-space
realization as follows:{

ẋm = Amxm + Bmu
y = Cmx

(79)

A state feedback control law u = Kmxm can be obtained
using well-known pole-placement method. However, since
the state vector xm is not necessarily composed of y and
its derivatives, thus Km is not a PID control gain. To solve
the problem, consider the observable canonical form of the
controlled plant: {

ξ̇ = Aoξ + Bou
y = Coξ

(80)

where ξ = [ξ1 ξ2 · · · ξp]T is the state vector, and

Ao =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0 − a1 − a2 · · · − ap−1

 , Bo =


d1
d2
d3
...

dp

 ,
Co =

[
1 0 · · · 0 0

]
(81)

The state transformation matrix is To, where To is the observ-
ability matrix of (79), and

Ao = ToAmT−1o , Bo = ToBm, Co = CmT−1o (82)

In this canonical form, the elements of the state vector ξ
are related by

ξ̇1 = ξ2 + d1u

ξ̇2 = ξ3 + d2u
... (83)

ξ̇p−1 = ξn + dp−1u

Since y = ξ1, we have

ξ2 = ξ̇1 − d1u = ẏ− d1u

ξ3 = ξ̇2 − d2u = ÿ− d1u̇− d2u
... (84)

ξp = ξ̇p−1 − dp−1u

= y(p−1) − d1u(p−2) − · · · − dp−1u

Define a new state as

ξ̇p+1 = ξ1 = y (85)

so ξp+1 is the integral of y, and the extended state-spacemodel
of the controlled plant is

[
ξ̇

ξ̇p+1

]
=

[
Ao 0
Co 0

] ξ

ξp+1

+ [Bo
0

]
u

y =
[
Co 0

] [ ξ

ξp+1

] (86)

Suppose a state-feedback control law has been designed
for (86):

u = k1ξ1 + k2ξ2 + · · · + kpξp + kp+1ξp+1
= k1y+ k2(ẏ− d1u)+ · · ·

+ kp(y(n−1) − d1u(p−2) − · · · − dp−1u)

+ kp+1

∫ t

0
y(τ )dτ (87)

Ignore the derivatives of u, we have

u =
k1y+ k2ẏ+ · · · + kpy(p−1) + kp+1

∫ t
0 y(τ )dτ

1+
∑p

i=2 kidi−1
(88)
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So u is a combination of the derivatives and integral of y,
a high-order PID control. For second-order system (p = 2),
(88) is the classical PID control, with

Kp=
k1

1+ k2d1
, Ki =

k3
1+ k2d1

, Kd =
k2

1+ k2d1
(89)

For third-order system (p = 3), (88) is PIDD2, with

Kp=
k1

1+ k2d1 + k3d2
, Ki=

k4
1+ k2d1 + k3d2

,

Kd1=
k2

1+ k2d1 + k3d2
, Kd2=

k3
1+ k2d1 + k3d2

(90)

The state-feedback law (87) can be designed by the well-
known pole-placement method. For simplicity, the poles can
be chosen as:

s1,2=−ω̄c(ζ̄ ±
√
1−ζ̄ 2j), si=−ᾱω̄c(i = 3, · · · , p) (91)

From extensive simulations, the damping ratio (ζ̄ ) of the
dominant poles can be chosen as 0.8 and ᾱ can be chosen
as 2 for other poles so that the disturbance rejection response
has good damping and fast settling time. So we need only
one parameter ω̄c to tune K̄o (34) and one parameter ω̄o to
tune L̄o (33) with

βi = C i−1
p ω̄p−i+1o (i = 1, · · · , p) (92)

For processes with time delay, delay can be approximated
using first-order Pade approximation. The following exam-
ples show that this approximation is good enough for the
design of state-space PID.
Example 4: Consider the FOPDT plant (27) in Example 1.

To tune a state-space PID for this plant, choose ω̄c = 1.8 and
we get a PID with the following gains:

Kp = 1.6082, Ki = 1.9085, Kd = 0.1819 (93)

With ω̄o = 20 we get a second-order SS-PID with the
following gains:

K̄o = [0.1819 1.6082 1.9085],

L̄o = [400 40 1]T , b0 = 1 (94)

Figure 8(a) shows the responses of the plant (27) under the
control of the SS-PID controller (94) with a step setpoint at
t = 1s and a step input disturbance at t = 10s. For compari-
son, the responses of the PIDF controllers with Tf = 0.22Td
are also shown in the figure. The parameters of the two PIDF
controllers are from (93) and (28). It is shown that the SS-
PID (94) has almost the same disturbance rejection responses
as the PIDF controller with parameter (93) (indistinguish-
able in the figure), and better disturbance rejection than the
PIDF controller with parameter (28). The total variations
(TV =

∑
∞

1 |ui+1 − ui|) of the control input u(t) for the
SS-PID (94), the PIDF with (93) and (28) are 4.8155,
13.2344, and 11.2804, respectively, so the SS-PID (94) has
the smallest TV thus has the best control effort [45].

The Bode plots for the feedback controllers C2(s) of the
SS-PID (78), the PIDF controllers with parameters (93)

FIGURE 8. Responses and bode plots of various PID for Example 4 (solid:
SS-PID (94); dashed: PIDF (93); dashdotted: PIDF (28)).

and (28) are shown in Figure 8(b). It is clear that all the
three controllers roll off at high frequencies thus can attenuate
measurement noise as expected. The SS-PID (94) has the
largest roll-off rate thus the SS-PID has the best performance
against high-frequency noise.

The proposed method is not only suitable for stable pro-
cesses but also for integrating and unstable processes.
Example 5: Consider an unstable plant with large time

delay

P2(s) =
1

s− 1
e−1.2s (95)

It is very difficult to control with a PID controller considering
the instability property and the large time delay. A modified
internal model control (IMC) control structure is designed
in [46] with

K0 = 2, K1 =
s+ 1
2s+ 1

, K2 = 1.1(1+ 0.49s) (96)

and a PID+lead controller is designed in [26] with

K = 0.0317(1+
1

0.8s
+ 0.3s)

29.7476s+ 1
0.2709s+ 1

,

fR =
1

29.7476s+ 1
(97)

where fR is the setpoint filter.
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To tune a state-space PID for this plant, choose
ω̄c = 0.42 and we get a PID with the following gains:

Kp = 1.1806, Ki = 0.0322, Kd = 0.6373 (98)

The extended observer gain can be tuned with the observer
bandwidth ω̄o = 50, thus a second-order SS-PID with the
following parameters can be obtained:

K̄o = [0.6373 1.1806 0.0322], b0 = 1

L̄o = [2500 100 1]T , α = 0.05 (99)

Here a setpoint weight α = 0.05 is used to reduce the large
overshoot of the setpoint response.

Figure 9 shows the responses of the plant (95) under
the control of the SS-PID controller (99), PID+lead con-
troller (97), and modified IMC (96) with a step setpoint at
t = 1s and a step input disturbance at t = 40s. It is
shown that the SS-PID (99) has almost the same distur-
bance rejection responses as the modified IMC controller.
Though the disturbance rejection response of the PID+lead
controller is the best among the three controllers, however,
the controller response is oscillatory. In fact, the PID+lead
controller (97) is not internally stable for plant (95) though
the response is stable within the simulation period. How-
ever, as the simulation time becomes longer, the response
will become unstable. The total variations of the control
input u(t) for the SS-PID (99) and the modified IMC are
3.27 and 3.70, respectively, so the SS-PID (99) has better
control effort.

FIGURE 9. Responses of various controllers for Example 5 (solid:
SS-PID (99); dashed: PID+lead (97); dashdotted: modified
IMC (96)).

The next example shows that a high-order PID can achieve
better performance than a classical PID.
Example 6: Consider an integrating plant with non-minimum

phase zero

P3(s) =
−0.2s+ 1
s(s− 1)

e−0.2s (100)

A PID controller is designed in [47] with

K = 0.4451(1+
1

5.218s
+ 4.33s),

fR =
1.3s+ 1

21.9s2 + 5.0833s+ 1
(101)

where fR is the setpoint filter.
To tune a state-space PID for this plant, choose ω̄c = 0.8

and we get a PIDD2 controller with the following gains:

Kp=0.5742, Ki=0.1618, Kd=1.8894, Kd2=0.0814

(102)

The extended observer gain can be tuned with the observer
bandwidth ω̄o = 15, thus a second-order SS-PID with the
following parameters can be obtained:

K̄o = [0.0814 1.8894 0.5742 0.1618], b0 = 1

L̄o = [3375 675 45 1]T , α = 0 (103)

Figure 10 shows the responses of the plant (100) under
the control of the SS-PID controller (103) and the PID con-
troller (101) with a step setpoint at t = 1s and a step input
disturbance with magnitude 0.5 at t = 30s. It is shown
that the SS-PID (103) has much better disturbance rejection
response than the PID controller (101). The total variations of
the control input u(t) for the SS-PID (103) and the PID (101)
are 4.48 and 5.73, respectively, so the SS-PID (103) has better
control effort.

FIGURE 10. Responses of various controllers for Example 6 (solid:
SS-PID (103); dashed: PID (101)).

VII. EXPERIMENT VALIDATION
Consider the temperature control lab (TClab) [48] shown
in Figure 11. The temperature control lab is an application
of feedback control with an Arduino, an LED, two heaters,
and two temperature sensors. The heater power output (mV)
is adjusted to maintain a desired temperature setpoint (◦C).
Thermal energy from the heater is transferred by conduc-
tion, convection, and radiation to the temperature sensor.
TCLab, as a hardware benchmark device, is widely used
in process control teaching. The Arduino microcontroller is
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FIGURE 11. Temperature control lab.

programmed in advance as a safety measure to turn off the
heater when the temperature exceeds 100◦C . The difficulty
of this experiment is that it is easily affected by the noisy
environment, such as ambient temperature, power output and
airflow (near the computer fan), and the controller is quite
sensitive to the noise.

Consider the single heater case. A first-order plus deadtime
(FOPDT) model can be identified from the step response of
the temperature control system [49] as:

P(s) =
0.836

161.3s+ 1
e−23.4s (104)

An ideal PID controller for the temperature control system
can be designed via the proposed pole-placement method
with ω̄c = 0.025.

Kp = 4.685, Ki = 0.0615, Kd = 24.8635 (105)

The ideal PID can be implemented with the proposed
SS-PID (29) with parameters

b0 = 0.0001, K̄o = [24.8635 4.685 0.0615]b0,

L̄o = [0.09 0.6 1]T /b0 (106)

and a second-order LADRC (48) is implemented with the
following parameters (dual of SS-PID)

b0 = 0.0001, K̂o = [0.09 0.6 1]/b0
L̂o = [24.8635 4.685 0.0615]T b0 (107)

Figure 12 shows the Bode plots of the feedback controller
of the SS-PID (106), the ideal PID (105) and its practical
form (23) with (N = 20). It is shown that the SS-PID
approximates the ideal PID up to frequency 0.2rad/s and
then rolls off at the high frequency. The Bode plot of
the second-order LADRC (107) is the same as that of the
SS-PID (105) thus not shown in the figure. Compared with
the practical PID, the proposed SS-PID has a larger roll-off
rate thus will be more insensitive to noise.

FIGURE 12. Bode plots of various PID for TClab.

FIGURE 13. Responses of the temperature control lab (solid: SS-PID;
dashed: LADRC; dash-dotted: practical PID).

Figure 13 shows the responses of the proposed
SS-PID (106), the LADRC (107), and the practical PID
when there is a step temperature setpoint change at t = 0s
from 30◦C to 50◦C and a step input disturbance of mag-
nitude 40 at t = 450s. The SS-PID has similar response
as the practical PID, but the SS-PID has smaller initial and
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smoother controller output compared with the practical PID.
The controller output of the practical PID oscillates rapidly
between 0 (minimum) and 100 (maximum). The disturbance
response of the LADRC is similar to that of the SS-PID (they
should be the same without noise) but the tracking responses
are different. The total variants (TV) of the control input u(t)
for the SS-PID, the LADRC, and the practical PID are 831.8,
968.5, and 35875, respectively, so the SS-PID has the best
control effort.

VIII. CONCLUSION
A state-space PID control structure was proposed to imple-
ment the ideal PID. The state-space PID adopts a cascaded
integral model to estimate the plant output and its deriva-
tives, thus it retains the model-independence property of
the classical PID. Compared with the PID control, a state-
space PID has roll-off at high frequencies thus it is more
insensitive to measurement noise. The state-space PID idea
was also extended to high-order cases, and it was shown that
the state-space PID structure is a general-purposed control
structure in that any linear finite-dimensional strictly-proper
controller with integration can be implementedwith the struc-
ture. A state feedback pole-placement method was proposed
to design the PID gains and thus the state-space PID can
be tuned with two parameters. Simulation and experiment
results showed that state-space PID is a practical implemen-
tation of the ideal PID with roll-off at high frequencies,
thus measurement noise can be simultaneously considered in
PID tuning.

It is interesting to observe that the proposed state-space
PID structure is the dual of LADRC structure, and they both
use the same canonical model in controller design. The differ-
ence is that state-space PID extends the model with the inte-
gral of the output as the extended state and LADRC extends
the model with the total disturbance as the extended state.
In the future research the two design methods will be further
investigated and the relationship between the state-space PID
and the LQG and H∞ controllers will be investigated to fill
the gap between PID and modern control.
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