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ABSTRACT Unmanned Aerial Vehicles (UAVs) have emerged as a flexible and cost-effective solution for
remote monitoring of the vital signs of patients in large-scale Internet of Medical Things (IoMT) Wireless
Body Area Networks (WBANs). This paper deals with the problem of using UAVs for real-time scheduling
of the transmission of vital signs in delay-sensitive IoMTWBANs. The main challenge for such a network is
to timely and reliably transmit the vital signs of patients to the remote monitoring center without interrupting
their daily lifestyles. To achieve this goal, we propose aQ-learning-based algorithm to optimize the trajectory
of each UAV, as the mobile Base Station (BS), to harvest vital signs of patients in outdoor applications,
especially in unreachable areas. In this algorithm, UAVs learn to reach the best 3D position by discovering
the network environment step-by-step. It stands for the position in which the covered patients by each
UAV have the highest transmission rate, the least delay and energy consumption. Moreover, we employ the
Non-Orthogonal Multiple Access (NOMA) technique to simultaneously schedule multiple transmissions
by accepting a degree of interference between them in order to enhance the spectrum efficiency of the
network. Eventually, the performance of our proposed scheme is evaluated via extensive simulations in
terms of throughput, energy consumption, and delay. The simulation results show that our proposed scheme
iteratively converges to the benchmark value of thementioned factors by increasing the information of cluster
environment through episodes.

INDEX TERMS IoMT WBAN, UAV, latency, trajectory, NOMA, Q-learning.

I. INTRODUCTION
A. BACKGROUND AND RELATED WORK
Expanding Internet of Things (IoT) devices everywhere
enables the real-time monitoring of vital signals of patients in
indoor/outdoor environments without interrupting their daily
lifestyles. In particular, in recent years, remotely tracking the
vital signs of patients has been gaining a lot of research inter-
ests in terms of 5G and 6G wireless networks and beyond.
These devices including smart phones and smart watches
should have the ability to connect to the internet via Base
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Stations (BSs) or cloud servers and transmit vital signs of
patients to the remote health-care center with high reliabil-
ity. The above characteristics have recently expanded the
traditional Wireless Body Area Networks (WBANs) to new
emerging Internet of Medical Things (IoMT)-based WBANs
in emergency situations for outdoor environments [1]. In par-
ticular, COVID-19 pandemic that has jeopardized the health
and safety of elderly resulted in significant dependence on
IoMT-based WBANs. Different from traditional healthcare
applications where controlling the vital signs of patients were
only possible inside the hospitals and by wired equipment,
in recent IoMT-based WBANs, there is no need for patients
to monitor their vital signs only by hospitalizing in a medical

115074 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-2608-6100
https://orcid.org/0000-0003-4511-1436
https://orcid.org/0000-0002-6646-6052
https://orcid.org/0000-0003-3647-5473
https://orcid.org/0000-0002-3299-0411


Z. Askari et al.: Q-Learning Approach for Real-Time NOMA Scheduling of Medical Data in UAV-Aided WBANs

center. Indeed, in the state-of-the-art IoMT-based WBANs,
the vital signs of patients are collected via their smartphones
or smartwatches and then transmitted to the remote monitor-
ing center, on a regular basis, without interrupting their every-
day life. In other words, these IoMT devices provide access
to the Internet everywhere for remotely monitoring of vital
signs. In these kinds of networks, a massive volume of traffic
load will be invariably generated by several patients. In this
regard, the most challenging issue in such an ultra-dense
E-health care network is aggregating data packets of these
patients in a timely and reliable manner. Moreover, this prob-
lemwill become far and away crucial when compulsive emer-
gency conditions occur to the patients located in unreachable
areas where static Base Stations (BSs) will not be able to pro-
vide efficient services. In these delay-sensitive applications,
using Unmanned Aerial Vehicles (UAVs), as mobile base
stations, will be a viable solution for real-time remote mon-
itoring of vital signs. As demonstrated in the literature [2],
[3], [4], UAVs provide an efficient and reliable data harvest-
ing system for wireless networks by hovering over outdoor
areas. In addition, UAVs can easily access data packets of
patients in unreachable areas by providing air-to-ground com-
munication links and enhance throughput and energy effi-
ciency of WBANs by adapting their horizontal locations and
altitudes.

Furthermore, optimizing the horizontal and vertical tra-
jectory of UAVs leads to a remarkable increase in the net-
work coverage area compared to employing static BSs on
the ground which further enhances the throughput, e.g., the
sum capacity, and quality of service of the network. It is
worth mentioning that the authors in [5] state that the use
of UAVs as BSs in future wireless communication networks
is currently gaining significant attention for its ability to
yield ultra-flexible deployments, in use cases like disaster
recovery scenarios. Moreover, in [6] it is asserted that future
mobile networks aim to realize larger coverage, support more
devices, and achieve higher throughput to meet the explo-
sive increasing demand for data. As a result, there has been
growing interest in hybrid cellular networks assisted byUAVs
as mobile BSs, due to their mobility and flexibility. In [7],
furthermore, UAVs are claimed to be capable of providing
wireless connectivity even without network infrastructure or
complementing the conventional BSs, whose coverage may
suffer from severe blockage due to tall buildings or the dam-
age caused by natural disasters.

Although UAVs considerably expand the coverage area of
the network, efficiently designing their trajectory is a major
challenge in IoMT-based WBANs, as we should reduce the
delay and the energy consumption along with increasing
the transmission rate of the network. In this regard, sev-
eral research attentions turned recently to employ Reinforce-
ment Learning (RL)-based algorithms to optimally find the
best location of UAVs in different wireless networks such
as wireless sensor networks, cellular systems, and vehicular
networks [7], [8], [9], [10], [11], [12], even though, to the
best of our knowledge, there is not any RL-based algorithm

in UAV-assisted WBANs. Generally, the relevant RL-based
algorithms are classified into two main categories i) model-
based, and ii) model-free RL schemes. In the model-based
class, the agent computes the transition probability distribu-
tion and reward function of all possible state-action pairs and
then uses this model to optimize the policy by predicting the
best actions that lead to higher rewards through interacting
with the environment. In contrast, in model-free algorithms
like Q-Learning (QL), the agent does not employ the transi-
tion probability to predict the best action, instead, it optimizes
the policy by making direct decisions via a trial and error
mechanism. Recently, QL algorithms have attracted remark-
able research attentions in finding an optimal trajectory of
UAVs. This algorithm is among the model-free RL category
and is based on the Markov Decision Process (MDP) to
sequentially find the best position of UAVs in each state in
order to achieve the highest reward in terms of optimizing the
aforementioned factors. In addition, in the QL class, the agent
has no prior knowledge about the environment and the reward
of each state-action transition. It is worth mentioning that due
to a great deal of time needed by complex machine learning
algorithms such as DQN, DDQN, and Rainbow schemes,
for collecting enormous datasets as a reply buffer and train-
ing procedure of neural networks, they are sort of slow in
terms of converging to the optimal value. Taking this issue
into account, we employ an efficient Q-learning scheme with
the modified state and action space to address the real-time
transmission of delay-sensitive data packets in the proposed
test-bed.

Although the problem of utilizing UAVs has been studied
in various wireless networks, to the best of our knowledge,
there exists a few research works on the applications of UAVs
in IoMT-WBANs [13], [14], [15], [16], [17], [18], [19], [20].
Authors in [13] and [14] identify open research issues and
challenges in UAV-assisted health-care intelligent systems
and explain some of the practical attempts that have been
made for employing UAVs in emergency medical services.
References [15] and [16] study the security issues in outdoor
health monitoring systems with the help of UAVs. Authors in
[17], [18], and [19] aim to improve the procedure of collecting
data from bio-sensors using UAVs. Finally, the authors in [20]
focus on optimizing the UAV placement over a serving area
where UAV is considered as a fog node to serve the IoMT
devices on the ground. In this regard, they propose a particle
swarm optimization-based algorithm to improve the commu-
nication coverage, energy consumption, exploration area, and
optimal number of UAVs.

The Non-Orthogonal Multiple Access (NOMA) scheme is
another promising technique in reducing delay and increasing
the transmission rate of vital signals to the remote monitor-
ing center. Using this scheme, multiple patients can simul-
taneously transmit their vital signals satisfying the limited
interference at the receiver side. NOMA achieves this goal
by utilizing Superposition Coding (SC) at the transmitter and
Successive Interference Cancelation (SIC) at the receiver.
Thus, the NOMA scheduling scheme can considerably

VOLUME 10, 2022 115075



Z. Askari et al.: Q-Learning Approach for Real-Time NOMA Scheduling of Medical Data in UAV-Aided WBANs

outperform conventional Orthogonal Multiple Access
(OMA) schemes in delay-sensitive and reliable applications.

This paper aims to address the problem of timely and
reliable transmission of vital signs of patients to the remote
monitoring center in outdoor applications, especially in
unreachable and emergency situations. This will be accom-
plished by simultaneously employing multiple UAVs as
mobile BSs and NOMA scheduling technique. To this end,
each UAV finds its best trajectory to harvest the vital signs of
covered patients in such a way that it increases the throughput
and reduces the delay and energy consumption. In this regard,
we propose a Q-learning-based algorithm that discovers the
environment to reach the best position step-by-step. Our pro-
posed algorithm reduces the computational complexity in
UAVs because it does not require all information of entire
environment. Additionally, to further increase the transmis-
sion rate and reduce the delay, the NOMA technique is
employed to schedule multiple transmissions at the same time
slot to each UAV.

B. MAIN CONTRIBUTIONS
The key contributions of this paper are briefly explained as
follows:
• This paper investigates, for the first time, the NOMA

scheduling of vital signs of patients in UAV-enabled
IoMT-WBAN for outdoor applications. The patients are
equipped with IoMT devices for sensing and gathering the
different vital signs and UAVs are responsible for gathering
the data packets of patients distributed in the city area which
includes unreachable locations.
• Our proposed scheduling algorithm comprises of two

levels. In the first level, we schedule the transmissions
of data packets of bio-sensors belonging to each patient,
to the corresponding hub. In order to eliminate the interfer-
ence between asynchronous transmissions of bio-sensors, the
Walsh Hadamard (WH) coding scheme is employed in which
the sensed data packets of each bio-sensor are multiplied by
one of the orthogonal codes extracted fromWHmatrix. Using
this scheme, transmissions of all bio-sensors of a patient can
be scheduled in the same time slot without occurring any
collision among them.
• In level two, the city area is partitioned into multi-

ple clusters and one UAV is assigned to each cluster. All
patients belonging to individual cluster are served by the
corresponding UAV. Under the circumstances, the transmis-
sions of hubs to UAVs are scheduled using NOMA tech-
nique. This technique schedules multiple hubs in the same
time slot by accepting a degree of interference between
them and satisfying the rate requirements of all these
hubs.
• Moreover, we optimize the 3D trajectory of UAVs by

jointly considering the transmission rate, energy consump-
tion, and delay. To achieve this goal, our proposed algorithm
numerically solves a multi objective problem by Q-Learning
method. Using this method, we train each UAV individually
for finding the best 3D location where it can achieve the

TABLE 1. List of notations used in this paper.

highest sum rate along with the least energy consumption and
delay.
• Different priority and emergency levels of vital signs are

other challenging issues in IoMT-WBANs. Because of the
existing wide variety of chronic diseases, the vital signs of
different patients have various delay sensitivity. Furthermore,
in disaster situations, unexpected emergency conditions may
occur to some patients where the vital signs of them need to be
timely transmitted to the monitoring center. In this regard, our
proposed algorithm takes the combined effect of data priority,
patient priority, and emergency conditions into account in
determining the total delay.

The rest of the paper is organized as follows. The pre-
liminaries of our work is introduced in Section II includ-
ing the system model, channel propagation model, and
NOMA-based uplink transmission model. In Section III,
we comprehensively express the procedure of our proposed
clustering andQ-learning-based trajectory optimization algo-
rithms. In Section V, the simulation results are shown to
verify the performance of our proposed scheme. Finally,
the results of our proposed algorithm are concluded in
Section VI.
Notation: In this paper, scalars are denoted by italic letters.

Boldface lower-case letters denote vectors.RM×1 denotes the
space of M -dimensional real-valued vector. For a vector x,
xT denotes its transpose and ||x|| represents the Euclidean
norm. Table 1 summarizes the notations that will be used in
this article.

II. HEALTH CARE SYSTEM MODEL
In this work, we consider a large-scale UAV-aided WBAN
consisting ofM UAVs, indexed by U = {u1, . . . , uM }, as fly-
ing BSs that form an adaptive multi-hop network to serve a
set of P = {p1, . . . , pK } patients randomly distributed in a
large geographical area of size (A × A) m2. Each patient
pi ∈ P is equipped with the set of N bio-sensors, indexed by
the set B = {bi1, . . . , biN }, for sensing and transmitting the
vital signals of patient’s body and one IoMT device as a hub
Hi to gather and transmit data packets of its corresponding
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bio-sensors to themonitoring center.We suppose that patients
can move in all directions independently with the velocity of
vtHi

, where t represents the current time slot. It should be
noted that the velocity of patients is much lower than the
velocity of UAVs. Throughout this paper, we occasionally
use the term hub Hi instead of the corresponding patient pi.
It is assumed that each UAV covers a cluster of terrestrial
hubs that satisfy the SINR threshold of the UAV. As it will
be fully described in Section III, we classify all patients in
the network area into M groups based on their locations and
horizontal coordinations by proposing a modified version of
one unsupervised machine learning-based method, namely
the Fast Global K-Means (FGKM) algorithm. Let CPuj be
the set of all hubs forming a cluster that is overlaid by UAV
uj ∈ U and C =

{
CPu1 , . . . , CPuM

}
be the set of all clusters

in the network, where CPum ∩ CPun = ∅, ∀m 6= n. In this
situation, because of the mobility of patients in the network
area, the location and the members of clusters are varied by
time, thus, the topology of the backbone adaptively changes
by flying the UAVs to the location of new clusters.

To get more insight into the aforementioned systemmodel,
Fig. 1 illustrates a practical IoMT-based WBAN architecture
proposed by research communities for timely and reliable
aggregating data packets of patients distributed in a smart city.
As illustrated in this figure, at first, the vital signs are sensed
by sticking different bio-sensors on the patients’ bodies or
using in-body implant devices, which communicate to a hub
for further processing via a star topology. This hub can be
an IoMT-based device like smart phones or smart watches
embedded in the human body. In this layer, since the com-
munication range is less than a meter, the path loss is just
considered the loss at the referenced distance which is far
and away less than the path loss of long-range communication
model WLAN and cellular networks and it can be neglected.
Thus, the channel propagation model of Tier I in the proposed
network model is totally different from that of WLANs and
cellular networks. Since patients are distributed in a smart city
area, some of them, located in unreachable areas, cannot be
covered by static access points. Therefore, they are not able
to transmit their data packets to the monitoring center. This
turns into a major when an unexpected emergency condition
occurs to the patients in hot spots. UAVs have remarkable
performance in terms of online and reliable tracking of the
vital signs of patients in outdoor applications. After aggre-
gating the vital signs at each hub, they are transmitted to the
corresponding UAV or any Access Point (AP) in proximity.
In this level, the city area is divided into different clusters
and a single UAV covers the patients located in each cluster.
This structure is really useful in unreachable areas where
cannot be covered by stationary base stations. Note that the
channel propagationmodel of Tier II is approximately similar
to the channel distribution of UAV-assisted cellular networks.
To be more precise, similar to cellular networks, Rician dis-
tribution has been employed to model the channel between
transmitters and receivers, which comprises LoS, NLoS, and
shadowing effect terms. However, LoS communication is the

dominant term in contrast to WLANs where the transmis-
sions mostly occur in indoor environments. Under the cir-
cumstances, thanks to existing walls, doors, and furniture in
indoor areas, NLoS links are commonly conducted among
transmitters and receivers in WLANs. Eventually, the UAVs
transmit data packets to a remote cloud server where medical
experts can access them, directly and track the vital signs of
patients in a real-time manner. In Tier III of the proposed sys-
temmodel, the collected vital signs are forwarded to the cloud
by UAVs and then the cloud server estimates the best path
for each data packet in line with its emergency condition and
bandwidth requirement. In this tier, transmitting data packets
occur via wired links, where the attenuation is relevant to the
thermal noise junctions, material, and electromagnetic field
of the link which is completely different from the transmis-
sion links in WLANs and cellular networks.

A. BIO-SENSORS’ SIGNALING MODEL
To enhance the spectral efficiency, we suppose that all
bio-sensors of one patient’s body use the same bandwidth
to transmit their sensed vital signs to the corresponding hub.
To mitigate the co-channel interference due to the simul-
taneous transmissions of different types of bio-sensors of
a patient, we assign a code from the Walsh Hadamard
(WH) code space to a bio-sensor that guarantees the use of
orthogonal codes for transmission. To this end, WHe =

[rw1, · · · , rwk+1]T ∈ Z(k+1)×2k is employed as the matrix
of the pre-specified rows extracted from the original WH
matrix:

WH2k =

WH2k−1 WH2k−1

WH2k−1 −WH2k−1

, k = 1, 2, . . . (1)

with WH1 = [1]. It is shown in [21] that the rows of WHe
represent the codewords which are two-by-two orthogonal
in every phase shift ψ = 0, · · · , 2k − 1. The orthog-
onality of each pair of rows rwi =

[
ci1, · · · , ci2k

]
and

rwj =
[
cj1, · · · , cj2k

]
, i 6= j, is calculated by the following

cross-correlation expression in the phase shift ψ :

8rwi,rwj (ψ)=
2k∑
`=1

cψi`×c
ψ
j` = 0, ∀ψ = 0, · · · , 2k − 1.

(2)

Taking this property into account, by the product of signal of
each bio-sensor bin to one of the rows rwi, we can guaran-
tee the collision-free transmissions of different signals from
bio-sensors in one patient, i.e.,

rw
ψ
i ⊥rw

ψ ′

j ⇒ sbin .rw
ψ
i ⊥sbim .rw

ψ ′

j , n 6= m, (3)

for all ψ,ψ ′ = 0, · · · , 2k − 1, where sbin and sbim are the
signal vectors of bio-sensors bin and bim, respectively.

B. UAV CHANNEL PROPAGATION MODEL
In order to model the channel characteristics between each
UAV uj ∈ U and a terrestrial hub Hi belonging to cluster
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FIGURE 1. Typical IoMT-based WBAN architecture equipped with UAV technology.

CPuj , we compute the 3D Euclidean distance between uj
and Hi. In this regard, the positions of hub Hi and UAV uj
are represented by pHi =

[
xHi , yHi

]T
∈ R2×1 and puj =[

xuj , yuj , auj
]T
∈ R3×1, respectively, where (xuj , yuj ) denotes

the coordinates of UAV uj on the horizontal plane and auj
indicates its altitude. Accordingly, the 3D distance between
hubHi and UAV uj is calculated by:

dHi,uj =

√
(xHi − xuj )

2 + (yHi − yuj )
2 + (auj )2. (4)

We also consider a well-known Air-To-Ground (ATG)
channel model [22], in which there are two main propagation
groups. Depending on the altitude of UAVs and the elevation
angle between the hub Hi and UAV uj, denoted by θHi,uj ,
these groups are categorized by Line-of-Sight (LoS) andNon-
Line-of-Sight (NLoS) communication links. In this regard,
the probability of LoS communication between UAV uj at the
altitude auj and hub Hi with the Euclidean distance between
them dHi,uj , is formulated by the sigmoid function as follows:

PLoSHi,uj
=

1

1+ α exp
(
β

(
180
π
θHi,uj − α

)) , (5)

where α and β are the environment constants that represent
the ratio of built-up area to the total land area multiplied by
the mean number of building per unit area, and buildings’
height distribution, respectively. Furthermore, the elevation
angle θHi,uj is defined as

θHi,uj = tan−1
(

auj
rHi,uj

)
, (6)

where rHi,uj =

√(
xHi − xuj

)2
+
(
yHi − yuj

)2. On the other
hand, the probability of NLoS propagation communication is

obtained as

PNLoSHi,uj
= 1− PLoSHi,uj

. (7)

The collected vital signals by the hubs propagate through
the network area where they experience shadowing and scat-
tering phenomena imposed by the sky scrapers and huge
obstacles, then, they enter the free space and reach the
corresponding UAVs. The shadowing effect, represented by
XHi,uj , imposes excessive loss to the ATG link which has a
Gaussian distribution. Under the circumstances, the LoS and
NLoS path loss expressions for given hubHi and UAV uj are
determined as

LLoSHi,uj
[dB] = L0 + 10ηLoS log

(
dHi,uj

)
+ X LoS

Hi,uj
, (8)

LNLoSHi,uj
[dB] = L0 + 10ηNLoS log

(
dHi,uj

)
+ XNLoS

Hi,uj
, (9)

where L0 = 20 log
(
4π fcd0
c

)
represents the path loss at a

reference distance d0, fc, and c denote the carrier frequency
and the speed of light, respectively.Moreover, ηLoS and ηNLoS

are the path loss exponents for LoS and NLoS links. Based on
the aforementioned definitions, the average path loss between
hubHi and UAV uj can be calculated as follows:

L̄Hi,uj = PLoSHi,uj
LLoSHi,uj

+ PNLoSHi,uj
LNLoSHi,uj

. (10)

In addition, the small scale channel fading coefficient for
transmitting a symbol from hub Hi to UAV uj, denoted by
C̃Hi,uj , is represented by a complexGaussian random variable
with the non-zero expected value and variance σ 2. Taking
the above definitions into account, the instantaneous channel
coefficient between hubHi and UAV uj is represented as

CHi,uj =
C̃Hi,uj√
L̄Hi,uj

. (11)
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Thus, the average channel gain between hubHi and UAV uj,

given E
[∣∣∣C̃Hi,uj

∣∣∣2] = 1, is computed as

ḡHi,uj = E


∣∣∣∣∣∣ C̃Hi,uj√

L̄Hi,uj

∣∣∣∣∣∣
2
 = E

[∣∣∣C̃Hi,uj

∣∣∣2]
L̄Hi,uj

=

(
L̄Hi,uj

)−1
. (12)

C. NOMA-BASED UPLINK TRANSMISSION MODEL
As previously mentioned, one of the responsibilities of hub
Hi is to transmit the collected vital signs of patient pi to
the corresponding UAV uj. In the situation of partitioning
hubs into different clusters, all the overlaid hubs by UAV uj,
i.e., ∀Hi ∈ CPuj , employ the NOMA signaling technique to
simultaneously transmit their data packets to UAV uj. In fact,
the signals of different Hi ∈ CPuj are superposed with dif-
ferent transmission powers and then those are sent to UAV
uj. The transmission power of each hub Hi ∈ CPuj is a
fraction of the total transmission power Ptotal supported by
UAV uj. Thus, the average channel gain is computed for all
the members of CPuj and then the members are indexed in
descending order, such as:

ḡH1,uj ≥ · · · ≥ ḡH|CPuj |
,uj , ∀Hi ∈ CPuj , (13)

which implies that the first and the last hubs in cluster CPuj
have the strongest and weakest condition, respectively. Based
on the criterion in (13), the NOMA technique assigns a frac-
tion of Ptotal to each Hi ∈ CPuj by employing power

coefficients ζ1 ≤ · · · ≤ ζ|CPuj |
, where

|CPuj |∑
i=1

ζi = 1. For

more clarification, the maximum coefficient is assigned to
the hub with the weakest channel condition to form its power
ζ|CPuj |

Ptotal = PH|CPuj |
, while the minimum coefficient

is allocated to the hub with the strongest channel condition.
Accordingly, the transmission power of all Hi ∈ CPuj is
arranged in the ascending order as follows:

PH1 ≤ · · · ≤PH|CPuj |
, ∀Hi ∈ CPuj . (14)

Based on the above power allocation technique, the trans-
mitted signal by eachHi ∈ CPuj is expressed as follows:

xHi =

√
PHisHi =

√
ζ|CPuj |

PtotalsHi , (15)

where sHi indicates the information of hub Hi with

E
[∣∣sHi

∣∣2] = 1. In addition, the received signal at UAV uj
can be expressed as

ruj =

|CPuj |∑
i=1

CHi,ujxHi + nuj

=

|CPuj |∑
i=1

√
ζiPtotal

LHi,uj
C̄Hi,ujsHi + nuj , (16)

where nuj denotes the zero-mean additive white Gaussian
noise with powerN0 at UAV uj. On the other hand, theNOMA
scheduling technique employs the SIC scheme at the receiver
UAV uj to detect the massage signal of each Hi ∈ CPuj
without co-channel interference. To this end, the SIC scheme
detects the signal of a hub with the strongest channel condi-
tion and treats the signals of other poorer hubs as interference.
Subsequently, this signal is subtracted from the total signal.
This procedure is repeated until the signals of all Hi ∈ CPuj
are detected separately. Under this circumstance, the received
SINR of hubHi at UAV uj, represented by γHi,uj , is obtained
as

0Hi,uj =
ζiPtotal ḡHi,uj

|CPuj |∑
k=i+1

ζkPtotal ḡHk ,uj + N0

, ∀Hi ∈ CPuj .

(17)

The data rate ofHi ∈ CPuj is computed as follows:

RHi,uj = W log2
(
1+ 0Hi,uj

)
, (18)

where W is the total bandwidth. In order to satisfy the reli-
ability of the received information, the transmitted SINR of
hubHi at UAV ui should satisfy the following constraint:

0Hi,uj ≥ 0th, (19)

where 0th is the minimum SINR of hubHi that is required to
achieve a satisfactory Bit Error Rate (BER) for all UAVs.

D. ENERGY CONSUMPTION AND DELAY MODEL
The total energy consumption of each hubHi for transmitting
Lb data bits to UAV ui consists of two following components:

EHi,uj = EelecHi
+ ETxHi,uj

, (20)

where EelecHi
and ETxHi,uj

represent the energy consumption of
electronic circuits of hub Hi and the energy consumption of
transmitting data packets on the channel, respectively. The
amount of ETxHi,uj

depends on the channel condition, distance,
transmission power, and length of packets, and it can be cal-
culated by:

ETxHi,uj
=

PHiLb
RHi,uj

=
ζiPtotalLb

W
log−12

(
1+ 0Hi,uj

)
.

(21)

Since the altitude of each UAV is optimized to maximize
the throughput of the network, the distance between each
UAV and the corresponding hubs fluctuates between short
and long ranges. For the case when the distance between
hubs and UAVs is sufficiently large, EelecHi

is considerably
smaller than ETxHi,uj

, thus, we ignore this term in determining
EHi,uj . Moreover, since UAVs are battery-powered with lim-
ited energy capacity, thus by reducing the remaining energy
of UAVs below a specified value, the vital signs will not be
forwarded in time. In this regard, parameter Eth is defined
as the remaining energy threshold of UAVs. In our proposed
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algorithm, the remaining energy of all UAVs must be higher
than Eth to satisfy the real-time and reliable transmission of
vital signs.

The total experienced delay by data packets of hubHi until
receiving by UAV uj is obtained by the sum of two terms as
follows:

DHi,uj = Dacc
Hi
+DTx

Hi,uj
, (22)

where Dacc
Hi

and DTx
Hi,uj

denote the requirement time for hub
Hi to access the channel and the time of transmitting one data
packet with the size Lb on the channel, respectively. In this
regard, DTx

Hi,uj
is obtained as

DTx
Hi,uj
=

Lb
RHi,uj

=
Lb
W

log−12

(
1+ 0Hi,uj

)
. (23)

E. 3D TRAJECTORY MODEL OF UAV
We assume that the initial and final locations of each UAV
uj are represented by p(0)uj =

[
x(0)uj , y

(0)
uj , a

(0)
uj

]T
and p(F)uj =[

x(F)uj , y
(F)
uj , a

(F)
uj

]T
, respectively. In order to show the time-

spatial changes of UAVs, we divide the time horizon T into
multiple equal-length time slots represented by the set T =
{t0, · · · , tZ }. The length of time slots is obtained by δ = T

Z .
The maximum horizontal (in x− y plane) and vertical speeds
of each UAV uj are indicated by v

uj
xy and v

uj
a where it is sup-

posed each UAV can independently control its horizontal and
vertical speeds [23]. Accordingly, the maximum horizontal
and vertical distances UAV uj spans during each time slot are
calculated by Sujxy = v

uj
xyδ and S

uj
a = v

uj
a δ, respectively. In this

regard, considering quj =
[
xuj , yuj

]T as the horizontal coordi-
nates of UAV uj, the distance between two consecutive coor-
dinates of UAV uj should satisfy the following constraints:∣∣∣∣∣∣q(t`+1)uj − q(t`)uj

∣∣∣∣∣∣ ≤ Sujxy,
∣∣∣a(t`+1)uj − a(t`)uj

∣∣∣ ≤ Suja . (24)

Moreover, to avoid the obstacles like buildings, each UAV
should fly above the minimum altitude denoted by amin, i.e.,
auj ≥ amin.

F. PROBLEM FORMULATION
Based on the aforementioned definitions, the main objective
of our proposed algorithm is to jointly maximize the total
effective throughput and minimize the total energy consump-
tion and total delay in each time slot. To this end, these factors
are defined as the sum of rates, the sum of energy consump-
tion, and the sum of delay of all hubs belonging to cluster
CPuj which allows connecting to the UAV uj, respectively.
These factors are determined by:

R(t`)
uj =

∑
∀Hi∈H(t`)

RHi,uj , (25)

E (t`)
uj =

∑
∀Hi∈H(t`)

EHi,uj , (26)

D(t`)
uj =

∑
∀Hi∈H(t`)

DHi,uj , (27)

where H(t`) is the set of all His connected to the UAV
uj in time slot t` based on the real time NOMA schedul-
ing technique. Accordingly, we aim to optimize these
three metrics, simultaneously, as mathematically expressed
below:

max{
q(`)uj

}
{
R(t`)
uj ,

1

E (t`)
uj

,
1

D(t`)
uj

}
. (28)

It is worth mentioning that there exists a correlation among
sum rates, sum energy consumption, and sum delays as the
main optimization objectives in the proposed IoMT-based
WBAN. Thus, if these objectives are separately optimized,
achieving the local optimum value of one variable leads
to inefficient values of the others. Accordingly, there is a
tradeoff between optimizing rate and delay values along
with a tradeoff between delay and energy consumption. For
more clarification, consider a situation in which an unex-
pected emergency condition would occur to a patient, but
the corresponding communications suffer from poor channel
conditions. In this case, the network experiences a delay-
sensitive situation, but at the cost of a lower transmission
rate (according to the Shannon capacity formula). Under the
circumstances, separately optimizing the delay value leads to
an inefficient transmission rate and vice versa. For another
example, consider two different transmissions to be sched-
uled in the current time slot, and assuming that the first trans-
mission has higher delay sensitivity and energy consumption
than the second one. In this situation, if the delay is opti-
mized locally, the first transmission is selected to access the
channel, in contrast, if the energy consumption value is only
considered in the optimization problem, the second trans-
mission is chosen by that metric. Moreover, based on (21),
there is a reverse relationship between energy consumption
and transmission rate. Consequently, by selecting the trans-
missions which have the highest data rate in each time slot,
the energy consumption will be decreased to the minimum
value. Taking the above considerations into account, our
objective is simultaneously optimizing all of these factors to
design an energy-efficient scheduling algorithm for timely
and reliably transmitting the vital signs to the monitoring
center. Aswill be shown in subsection III-A, to fairly combine
the impacts of these metrics in the aforementioned multi-
objective optimization problem, the computed value of each
metric would be normalized to its maximum value. Using this
method, the values of all metrics are mapped to the interval
of [0, 1].

III. THE PROPOSED Q-REDTO ALGORITHM
In this section, we propose a two-layer scheduling algorithm
for optimizing the trajectory of UAVs, namely Q-Learning-
based Rate- Energy- and Delay-aware Trajectory Optimizer
(Q-REDTO). The first layer is related to scheduling the trans-
mission of vital signs sensed by bio-sensors of one patient
to the corresponding hub, while the second layer schedules
the transmission of collected signals by each hub to the
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monitoring center via UAVs. The procedure of our proposed
Q-REDTO algorithm is explained in the following four
stages:
Stage 1 (Interference Avoidance Scheduling in Tier I): In

the first stage, the vital signals of different bio-sensors are
timely scheduled to transmit to the corresponding hub. Since
all bio-sensors of a typical patient share the same band-
width along with their asynchronous duty cycling mecha-
nism, the collision is not avoidable between transmissions of
these bio-sensors, without using any scheduling technique.
To solve this problem, we employ the WH coding scheme
in which sensed data of all bio-sensors are simultaneously
delivered to the hub by multiplying them to the cyclic orthog-
onal WH codes extracted from (1). This process mitigates
the interference between concurrent transmissions because
of the orthogonality of these codes in every phase shift. For
more clarification, consider sbin =

[
sbin(1), · · · , sbin (X )

]T
and sbim =

[
sbim(1), · · · , sbim(Y )

]T as the vital signs of bio-
sensors bin and bim, n 6= m. As described in the previous
section, since the cross-correlation of two different cyclic
orthogonal codes rw

ψ
i and rw

ψ ′

j , i 6= j, is equal to zero,

therefore, it can be proved that by multiplying sbin to rw
ψ
i

and sbim to rw
ψ ′

j , and denoting s̃bin = sbin .rw
ψ
i and s̃bim =

sbim .rw
ψ ′

j , the cross-correlation of these two signals will be
zero, i.e.,

8s̃bin ,s̃bim

(
ψ,ψ ′

)
=

X∑
x=1

Y∑
y=1

2k∑
κ=1

sbin(x)c
ψ
iκsbim (y)c

ψ ′

jκ = 0,

∀ψ,ψ ′ = 0, · · · , 2k − 1,

n 6= m, i 6= j. (29)

To highlight the benefit of the above interference avoid-
ance scheduling in practical WBAN, let consider four differ-
ent medical bio-sensors consisting of two MAX30100 chips
used for ECG and SpO2 signals, the MPS20N0040D sensor
for sensing the systolic blood pressure, MAX30205MAT
employed for measuring body temperature, and the
X2M200 chip exploited for sensing respiration rate. The dif-
ferent sampling frequencies of these bio-sensors are shown
in Fig. 2. As it can be realized from the figure, because
of the asynchronous sampling frequencies of bio-sensors,
interference is inevitable between the transmissions. To avoid
the interference, the cyclic orthogonal WH coding scheme is
employed which multiplies the vital signs to a set of codes
that are orthogonal in every phase shift. Besides, this simul-
taneous transmission of vital signs results in reducing the
transmission delay of the proposed algorithm which satisfies
the real-timemonitoring ofmedical in delay-sensitiveWBAN
applications.
Stage 2 (Patients Clustering Method): After transmit-

ting vital signs of bio-sensors to their corresponding hubs,
the hubs communicate to UAVs to deliver data packets to
the monitoring center. As depicted in Fig. 3, because of
employing multiple UAVs in the network, we classify the

hubs into different clusters using an unsupervised machine
learning-based scheme namely Fast Global K-Means
(FGKM) [24]. This algorithm establishes an incremental
deterministic global optimization method that optimally adds
one new cluster at each step until convergence. Assuming
a set of hubs Hi ∈ P distributed in the geographical area,
the FGKM algorithm partitions these hubs into M disjoint
clusters to optimize a specific criterion. In the first iteration,
the hub that optimizes the criterion is selected as the optimal
cluster center cc1 for the m = 1 clustering problem. Conse-
quently, in the second iteration, i.e., m = 2, one new optimal
cluster center cc2 is added by assuming that the previous
cc1 is the first optimal cluster center in the current itera-
tion. This procedure is repeated until the objective function
converges to its minimum value. We define this objective
function as the Mean Square Error (MSE) of the summation
of distances between each Hi and the corresponding cluster
center ccm, i.e.,

εM (cc1, · · · , ccM ) =
1
K

K∑
i=1

min
m=1,··· ,M

||ccm −Hi||
2 .

(30)

In each iteration, the FGKM algorithm adds the cluster that
minimizes the upper bound of MSE in the current iteration,
i.e., εm−1−�m, where εm−1 denotes the upper bound of MSE
in the previous iteration and

�m = arg max
H′i∈P

�H′i , (31)

in which,

�H′i =
1
K

K∑
i=1

max
(
||ccm−1 −Hi||

2
−
∣∣∣∣H′i −Hi

∣∣∣∣2 , 0).
(32)

For the above equations, H′i denotes the candidate hub for
being the new cluster center, and ||ccm−1 −Hi||

2 represents
the squared distance between hub Hi and its previous clos-
est cluster center ccm−1. Based on (32), if the squared dis-
tance between hub Hi and H′i in each iteration is smaller
than the distance of Hi to ccm−1, it is added to the set of
cluster members of H′i. Thus, regarding (31), this metric
selects the hub that has the most number of other hubs in its
proximity and its adjacent hubs are in the furthest location
from cc1, · · · , ccm−1, as the new cluster center ccm. In this
situation, it can be easily shown that εm ≤ εm−1 − �m.
Accordingly, this metric reduces the computational complex-
ity of the FGKM scheme and speeds up the convergence
of the objective function. We summarize the aforemen-
tioned procedure of the FGKM scheme as pseudocode in
Algorithm 1.
Stage 3 (Q-Learning-Based Solution for Trajectory Opti-

mization and Vital Signals Scheduling):After partitioning the
area into different clusters, all hubs belonging to the same
cluster are served by the same UAV. The optimal number of
UAVs is determined by the FGKM algorithm. By dividing
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FIGURE 2. Typical duty cycle of four practical medical bio-sensors MAX30100 chip, MPS20N0040D sensor, MAX30205MAT, and X2M200 chip.

Algorithm 1 Pseudocode of the Proposed FGKM Algorithm
1: Input: Positions of allHi ∈ P and number of UAVsM .
2: Output: {cc1, · · · , ccm} and C =

{
CPu1 , . . . , CPuM

}
.

3: for m = 1, · · · ,M do
4: if m == 1 then
5: for eachH′i ∈ P do
6: Calculate ε1 from (30).
7: end for
8: cc1← H′i ⇔ argmin ε1 over allH′i ∈ P.
9: else

10: Suppose cc1, · · · , ccm−1 as the existed optimal
cluster centers.

11: for eachH′i ∈ P do
12: Calculate �H′i according to (32).
13: end for
14: Compute �m using (31)
15: ccm← H′i ⇔ argmin(εm−1 −�m) overH′i ∈ P.
16: end if
17: end for

the total time frame into multiple time slots, we design the
Q-REDTO algorithm in such a way that the best vertical
and horizontal position of each UAV is determined in each
time slot. The objective function given in subsection II-F,
which refers to the best position in which each UAV can
achieve the highest sum rate along with the least energy
consumption and delay. The Q-REDTO algorithm employs
the QL-based framework to solve the multi-objective tra-
jectory optimization problem of UAVs to aggregate data
packets of their corresponding hubs in each cluster. The
Q-REDTO algorithm consists of four core elements, i.e.,
states, actions, reward, and Q-values which are described as
follows:
• States: Since the WBAN environment is generally a city

area, obviously, we encounter infinite states in our 3D tra-
jectory optimization problem which is not tractable because
of infinite decision space. In order to map the continuous

FIGURE 3. A typical city area partitioned into 10 clusters using FGKM
where the green star shows the UAV with the optimum value of altitude
serving patients in its corresponding cluster.

environment with a finite number of states, we discretize the
WBAN environment into the set of equal-space tiles denoted
by S = {st1, · · · , stI }. These tiles represent the available
states of the environment inwhichUAVs can only fly between
the central points of tiles.
• Actions: The procedure of the state transition of

UAVs is implemented by taking different actions. In this
work, all directions in which UAVs can fly indicate the
action space. Based on the aforementioned discrete state-
space model, our action space is limited to eight direc-
tions. In other words, each state is surrounded by eight
other states that each UAV can fly to. In this situa-
tion, the set A ={‘‘north’’,‘‘east’’,‘‘south’’,‘‘west’’, ‘‘north-
east’’, ‘‘north-west’’,‘‘south-east’’,‘‘south-west’’} denotes
the action space of a typical UAV.
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• Rewards: The consequence of each action is defined as
a reward. By selecting an action from the set A and transition
to the new state, each UAV can observe a new part of its
cluster environment and can achieve a new amount of sum
rate, energy consumption, and delay requirements. The com-
bination of these factors is considered as a reward gained by
UAV for observing the new state.
• Q-values: These values are calculated from the follow-

ing Q-function that is responsible for the convergence of our
proposed Q-REDTO algorithm:

Qnew(st, ac) ←− (1− λ)Qold (st, ac)

+ λ

(
<(st, ac)+ γ max

ac′∈A
Qold (st ′, ac′)

)
,

(33)

where λ, γ , and st ′ denote the learning rate, discount factor,
and the new observing state, respectively.Moreover,<(st, ac)
and Qold (st ′, ac′) represent the reward value of the current
state-action policy and the expected reward of the new state-
action policy. Each UAV keeps Q-values of all possible state-
actions in a Q-table in which its rows and columns stand for
actions and states, respectively. By observing the new state,
the Q-value of the current state is updated using (33).

A. UTILITY MAXIMIZATION
After describing the preliminaries of the QL-based method,
the procedure of the proposed Q-REDTO algorithm is pre-
sented to find the best position of UAV in each time slot.
As mentioned before, the Q-REDTO scheme aims at optimiz-
ing both vertical and horizontal trajectories of UAVs to gain
the best performance in terms of increasing the total sum rate
and reducing the energy consumption and delay. To this end,
we propose the following utility function to simultaneously
consider the effects of the aforementioned factors:

URED = ωrRns − ωeEns + ωiIns, (34)

where Rns, Ens, and Ins represent the normalized sum rate,
sum of the energy consumption, and sum of the emergency
index of all hubs covered by each UAV in the specific posi-
tion, respectively. In addition, ωr , ωe, and ωi denote the cor-
responding weighting coefficients. To this end, the proposed
optimization problem in (28) is converted to the following
optimization problem:

P1) max{
q(`)uj

} URED (35)

s.t. C1 : q(0)uj =
[
x(0)uj , y

(0)
uj

]T
= q(t0)uj , (36)

C2 : q(F)uj =

[
x(F)uj , y

(F)
uj

]T
= q(tZ )uj , (37)

C3 : γHi,uj > γth, ∀Hi ∈ H(t`), (38)

C4 :
∣∣∣∣∣∣q(t`+1)uj − q(t`)uj

∣∣∣∣∣∣ ≤ Sujxy, ∀tz ∈ T,
(39)

C5 : auj ≥ amin. (40)

TABLE 2. Data priority mapping in IEEE 802.15.6 standard.

The procedure for computing the normalized terms in (34)
is demonstrated in detail as follows.

As mentioned before, our Q-REDTO algorithm employs
NOMA technique to simultaneously schedule multiple hubs
to connect to the corresponding UAV. In this regard, the total
throughput achieved by each UAV is equal to the sum of the
rates of all hubs located in the coverage area of each UAV that
satisfy the constraint (19). According to this metric definition,
the proposed Q-REDTO algorithm computes the sum rate of
all hubs covered by each UAV in different states from (18)
and subsequently divides it to the largest value of sum rate to
calculate the normalizedmetricRns.With a similar argument,
our proposed algorithm obtains the energy consumption of
each hub using (20) and then, adds all the values together
to obtain sum of the energy consumption. Finally, to calcu-
late the normalized sum of the energy consumption, i.e., Ens,
in each state of the cluster area, the computed sum is divided
into the largest value of the sum of energy consumption.

The third effective factor in the utility function URED is the
normalized sum of the emergency indexes of all hubs covered
by each UAV uj that satisfy the constraint (19), based on
the NOMA power assignment. In the context of emergency
health care systems like WBANs, some vital signs or patients
have precedence over others which require a lower delay and
higher data rate. Under the circumstances, we should design
an appropriate mechanism to address the timely transmission
of life-critical vital signs to the monitoring center. The first
factor that is effective to design the emergency index of each
hubHi, is the data priority index denoted by Idp. This index is
defined as the priority of different vital signals to each other.
For instance, the vital signs of respiration rate bio-sensors
have priority over the vital signs of body temperature bio-
sensors. Our algorithm uses Table 2, categorized by IEEE
802.15.6 standard [25], to determine Idp for different bio-
sensors. The second influential parameter on the total emer-
gency index is the patient priority index Ipp that represents
the precedence of some patients to others. As an example,
the vital signs of patients who are under surgery or have
chronic illnesses, have precedence over other patients. In this
situation, the patient priority is mapped by Table 3 extracted
from the IEEE 802.15.6 standard, to distinguish between the
life-emergency patients and non-critical patients.

The most effective factor in computing the total emergency
index is the data severity index represented by Ids. This
parameter stands for checking the occurrence of unexpected

VOLUME 10, 2022 115083



Z. Askari et al.: Q-Learning Approach for Real-Time NOMA Scheduling of Medical Data in UAV-Aided WBANs

TABLE 3. Patient priority mapping in IEEE 802.15.6 standard.

emergency conditions. In practical health- care applications,
each vital sign has a normal range and if the sensed value
exceeds this range, it shows anomaly in the vital sign that
may be due to the patient’s life-critical condition. For more
clarification, consider the case when the value of the blood
pressure bio-sensor exceeds its normal range. Under this con-
dition, it has the privilege to ECG vital sign which is in the
normal range, although Idp of ECG is higher than Idp of the
blood pressure sensor. In order to model Ids, consider ϕbij
as the sensed vital sign by bio-sensor bij and [ϕlowj , ϕupj ] as
the pre-assigned value of that bio-sensor. In this regard, let
us define ϕ(ij)up,b , ϕupj − ϕbij and ϕ

(ij)
b,low , ϕbij − ϕlowj .

In this situation, we define the following indicator function
that models the normal and abnormal cases that occurred to
each patient:

I(ij)
n =

{
1, if ϕ(ij)up,b > 0 and ϕ(ij)b,low > 0 (Normal),

0, if ϕ(ij)up,b < 0 or ϕ(ij)b,low < 0 (Abnormal).

(41)

To this end, the data severity index of jth bio-sensor of patient
pi is formulated as follows:

I(ij)
ds =



1, if I(ij)
n = 1,

1+
|ϕ

(ij)
up,b|

ϕ
(j)
up,low

, if I(ij)
n = 0 and ϕ(ij)up,b < 0,

1+
|ϕ

(ij)
b,low|

ϕ
(j)
up,low

, if I(ij)
n = 0 and ϕ(ij)b,low < 0,

(42)

where ϕ(j)up,low , ϕupj − ϕlowj . From (42), we can realize that

in the abnormal case, i.e., I(ij)
n = 0, the normalized deviation

of ϕbij from the corresponding boundary is increased by 1.
According to these factors, the emergency index of each hub
Hi, represented by Iem, is determined as follows:

IHi
em =

ωdp IHi
dp

7
+ ωpp

IHi
pp

3

 IHi
ds , (43)

whereωdp andωpp represent the weighting coefficients of Idp
and Ipp, respectively. It is worth mentioning that IHi

em indi-
cates the delay sensitivity level of the hub Hi. Accordingly,
the higher value of IHi

em shows the lower tolerable access delay
of data packets belonging to the hubHi. Thus, in order tomin-
imize the access delay of each hub, the proposed Q-REDTO
algorithm should select the hubs with the maximum value of

Iem. Then, theQ-REDTO algorithm calculates the sum of Iem
of all covered hubs by each UAV uj in each state. Finally, Ins
of each state is computed by dividing its sum of Iem to the
maximum value of that summation between all states.

In order to optimize the vertical position of each UAV uj,
the Q-REDTO algorithm changes the altitude of uj in ascend-
ing order from amin to amax , and then at each specific altitude,
it calculates the Uuj

RED metric in (34) for all tails belonging to
each cluster. In the next stage, the algorithm computes the
average Uuj

RED over all the tails and eventually, the altitude

that maximizes Uuj
RED in each cluster is selected as the opti-

mal vertical position of each UAV uj. After determining the
optimal vertical position of each UAV uj, we optimize its
horizontal trajectory. To this end, the proposed Q-REDTO
algorithm employs the QL-based mechanism to train each
UAV uj for finding its best position in the corresponding
cluster area. According to the aforementioned definitions of
the elements in the QL-based mechanism, Q-REDTO runs
enough episodes to update values of theQ-table of each UAV
uj step by step until it converges to the optimum value. In this
regard, each episode is started by randomly selecting one
state in each cluster as the initial state of the corresponding
UAV. Then, each UAV uj selects an action from its avail-
able action space A to reach the next state. In this regard,
our proposed algorithm uses the following two different
policies:
•Rewardmaximizing action selection policy:Using this

policy, the Q-REDTO algorithm selects an action that maxi-
mizes the new Q-value of the current state, i.e.,

ac
uj
sel ← argmax

ac∈A
Q
uj
new (st, ac). (44)

According to (33), the Q-function of each UAV uj consists
of three factors. The first one is the previous Q-value of the
current state and the second one is the reward function which
has the most important role in identifying the optimal hori-
zontal trajectory of each UAV uj. In this regard, if U

uj
RED(st) <

Uuj
RED(st

′), the reward function is designed as <uj (st, ac) =
Uuj
RED(st

′)−Uuj
RED(st), otherwise, it takes zero value. To select

an optimal action, the reward function is computed for all
available actions of the current state. According to this reward
function, the states that cover the hubs with lower energy
consumption, higher data rate, and delay sensitivity are more
probable candidates to be selected as the next state for the
corresponding UAV. The third effective factor in (33) is the
future expected reward, denoted by maxac′∈A Qold (st ′, ac′),
which refers to the maximum Q-value of the future
state.

After calculating the above three factors, the corresponding
Q-values are obtained from (33) and consequently, the action
that has the maximum Q-value is selected as the optimal
action for each UAV uj.
• Random action selection policy: We use the random

action selection mechanism in early episodes to enable UAVs
to experience new actions and states. In this regard, we intro-
duce a policy selection variable4 that selects a random num-
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ber for each state from the interval [0, 1]. If this number

is higher than a pre-specified threshold epth =
(epi − 1)

κ
,

where epi represents the current episode and κ = |E| ,E =
{ep1, . . . , epκ} is the total number of episodes, the random
selection policy will be selected to reach the next state; other-
wise, the reward maximization policy is selected. It is worth
mentioning that the threshold differs in a ascending manner
in each episode.

We summarize the aforementioned procedure of the pro-
posed Q-REDTO algorithm as pseudocode in Algorithm 2.
Beyond WBAN Transmission Model: After collecting vital

signs of patients by UAVs, they must be transmitted to the
remote monitoring center by means of a cloud backbone as
is shown in Fig. 1. The cloud network consists of a cloud
server in addition to several routers forming a mesh network
for delivering vital signs to beyond theWBAN. These routers
have equivalent transmission ranges and all of them employ
the same channel for transmitting data packets. Due to the
limited transmission range of each router, we use multiple
routers to increase the coverage area of the network. After
forwarding vital signs to the cloud by UAVs, the cloud server
estimates the best path for each data packet in line with
its emergency condition and bandwidth requirement. To this
end, the shortest path tree (SPT) algorithm is run by the
cloud server to find the shortest path for each packet reaching
its destination, and the routing tables of the corresponding
routers are updated, simultaneously. Furthermore, a weight
representing the amount of traffic load is assigned to each link
between the routers, to prevent the congestion in the routes
and guarantee the load balancing. In this regard, by selecting
each path, the weights of the constituent links are increased
resulting in reducing the chance of selecting these links in the
future paths.

IV. COMPLEXITY ANALYZES
Proposition 1: The computational complexity of

Algorithm 1 is of order O (M |P|), in which M represents
the total number of UAVs needed after the convergence of
FGKM and P denotes the set of all patients in the network,
where | • | is the cardinality operator.

Proof: It is realized from the pseudo code of
Algorithm 1 that there are one main ‘‘for’’ loop (i.e.,
lines 3 − 17) and two inner ‘‘for’’ loops (i.e., lines 5 − 7
and 11−13). The computational complexity of the first inner
loop is O (|P− {cc1}|), and the complexity of second one is
O (|P− {cc1, · · · , ccm−1}|). Because the number of cluster
centers is much less than the number of patients, it can be
neglected in comparison to |P|. Thus, the complexity of these
two inner loops is of order O (|P|). Moreover, complexity
of the other lines and the main loop are O (1) and O (M),
respectively. Thus, the total complexity of the nested loops is
equal to O (M |P|).
Proposition 2: The computational complexity of Algo-

rithm 2 is of order O (|E|M |S| |A|), where |E|, |S|, and |A|
represent the number of episodes, available states, and actions
in the proposed Q-REDTO algorithm, respectively.

Algorithm 2 Procedure of the Proposed Q-REDTO
Algorithm

1: Input: U = {u1, . . . , uM }, C =
{
CPu1 , . . . , CPuM

}
,

S, A ={‘‘north’’,‘‘east’’,‘‘south’’,‘‘west’’,‘‘north-
east’’,‘‘north-west’’,‘‘south-east’’,‘‘south-west’’}.

2: Output: The optimal trajectory of UAVs.
3: for each CPui ∈ C do
4: Discretize the cluster environment into tails.
5: end for
6: for eachHi covered with uj do
7: CalculateRHi,uj from (18).
8: Calculate EHi,uj from (20).

9: Calculate IHi
em from (43).

10: end for
11: for each uj ∈ U do
12: for each amin < auj < amax do
13: for each sti ∈ S do
14: ComputeRns, Ens, and Ins.
15: Compute Uuj

RED(st) from (34).
16: end for
17: Determine the average value of Uuj

RED.
18: end for
19: aoptuj ← argmaxauj U

uj
RED.

20: end for
21: for each epi ∈ E do
22: for each uj ∈ U do
23: Randomly select the initial state of uj.
24: for sti do
25: Select a random number 4 ∈ [0, 1].

26: Calculate epth =
(epi − 1)
|E|

.

27: if 4 > epth then
28: Randomly select acuj ∈ A.
29: else
30: for each acuj ∈ A do
31: $ ← Uuj

RED(st)− Uuj
RED(st

′)
32: if$ < 0 then
33: <

uj (st, ac)←−$ .
34: else
35: <

uj (st, ac)← 0.
36: end if
37: Compute Q

uj
new(st, ac) from (33).

38: end for
39: ac

uj
sel ← argmaxac∈AQ

uj
new (st, ac).

40: end if
41: Update Q

uj
new(st, ac) using (33).

42: end for
43: end for
44: end for

Proof: Regarding the pseudo code of Algorithm 2, there
are four main ‘‘for’’ loops in this algorithm. Complexity of
the first and second loops (i.e., lines 3 − 5 and 6 − 10) are
O (1) and O (|P|), respectively. The third main ‘‘for’’ loop
(i.e., lines 11− 20) consists of three nested ‘‘for’’ loops. The
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computational complexity of the outer loop is O (M), then
the complexity of the first inner loop is of orderO (1) and for
the second loop is O (|S|). Therefore, the complexity of this
part is of order O (M |S|). The fourth main loop (i.e., lines
21−44) comprises of four nested ‘‘for’’ loops. The computa-
tional complexities of these loops from outer on to inner one
are O (|E|), O (M), O (|S|), and O (|A|), respectively. Thus,
the total complexity of this term is of orderO (|E|M |S| |A|).
Finally, the total complexity of the Q-REDTO algorithm is
computed by the sum of the main loops complexities as
O (|P| +M |S| + |E|M |S| |A|). In this equation, the third
term is much larger than the other terms when the number
of episodes grows. Therefore, the third term is dominant and
the other terms can be ignored. It should be noted that, in deep
learning methods based on data sets, the complexity is related
to the number of data samples used for training the model.
However, in Q-learning method which is based on trial and
error, the complexity is determined according to the number
of episodes.
It is worth mentioning that all computational tasks in the

ESTO algorithm should be executed for all tiles in each clus-
ter area. Accordingly, the complexity of this algorithm is of
order O

(
M
∣∣∣S̃∣∣∣), where ∣∣∣S̃∣∣∣ is the number of all tiles in each

cluster which is much larger than |S| in Q-REDTO. Since
|E| and |A| are upper bounded by the maximum values of
deployed episodes and actions in Q-REDTO, it is concluded
that the computational complexity of ESTO is higher than
that of the proposedQ-REDTO algorithm especially in a large
number of tiles.

V. SIMULATION RESULTS
In this section, we evaluate the performance of the proposed
Q-REDTO algorithm in terms of average sum rate, delay, and
the energy consumption of hubs. In this regard, we investi-
gate how the Q-REDTO algorithm designs the optimal tra-
jectory of UAVs to maximize the average sum rate besides
minimizing the average sum delay and energy consumption.
Toward this goal, we consider a vast network in which |P| =
300 patients are randomly distributed in the area with the
size of 3000 × 3000 m2. The optimal number of existing
UAVs in the network is calculated by the FGKM scheme
described in Algorithm 1. This algorithm divides the network
area into |C| clusters and dedicates a single UAV to each
cluster. For modeling the state space of our proposed algo-
rithm, the cluster area is discretized into different tails with
an area of 100 × 100 m2. To reduce the complexity of the
proposed Q-REDTO algorithm and to guarantee the real-time
transmission of vital signs in delay-sensitive healthcare appli-
cations, the numerical results of Q-REDTO in state spaces
with a different number of tiles are compared. Afterward,
the state space with tiles’ space 100m × 100m is selected
to manage the trade-off between the best-obtained results
and the complexity of the algorithm. In addition, we assume
that each UAV uj can horizontally fly at the altitudes auj ∈
{170, 180, 190, 200, 210, 220} meters. Moreover, the hori-
zontal radius of each UAV at each specific altitude is equal to

TABLE 4. Simulation parameters.

that altitude. To consider the dynamic nature of the WBANs
environment, Difference Correlated Random Walk (DCRW)
model is assumed for the mobility pattern of hubs. In this
regard, the velocity of each hubHi is randomly selected from
the interval [0, 4] m/s and it is changed in each time slot.
Furthermore, to achieve fair results, equal weights are con-
sidered for transmission rate, energy consumption, and delay
in our proposed utility function in (34). Based on this, ωr , ωe,
and ωi are assumed to be 1. According to these assumptions,
we simulate our proposed algorithm using theMATLAB sim-
ulator V.2018. Table 4 illustrates the list of parameters for our
simulations.

To compare the performance of the proposed Q-REDTO
algorithm in terms of high transmission rate, energy-efficient,
and delay-sensitive transmission of vital signs in WBANs,
we consider the following three baseline models:

Particle Swarm Optimization (PSO)-based UAV Place-
ment with OMA: Tomake a fair comparison, in this scheme,
the transmissions belonging to communication tier I are
scheduled using the proposed WH coding scheme, in which
all bio-sensors of each patient can simultaneously transmit
data to the corresponding hub by employing the aforemen-
tioned orthogonal WH codes. Afterward, in communication
tier II, where the aggregated data in each hub is transmitted
to UAVs, the OMA-based PSO algorithm proposed in [20] is
employed to optimize the trajectory of UAVs in each cluster.
This algorithm finds the best position of each UAV in each
time slot in which the UAV can achieve the best throughput
along with the least energy consumption. It is worth men-
tioning that this algorithm uses the OMA scheme to schedule
the transmission of hubs to UAVs. Accordingly, in each time
slot, only one hub can transmit its data to each UAV. To the
best of our knowledge, [20] is the only work that has inves-
tigated the problem of trajectory optimization of UAVs in
WBANs.

Particle Swarm Optimization (PSO)-based UAV Place-
ment with NOMA: In light of expanding the proposed
PSO algorithm in [20], the NOMA-based PSO scheme is
designed to support the NOMA scheduling technique. Simi-
lar to other algorithms, the cyclic orthogonal WH codes are
used for scheduling the transmissions of bio-sensors to the
corresponding hubs in tier I of this scheme. Subsequently,
in communication tier II, the best trajectory of each UAV
over each cluster area is determined by the new proposed
PSO algorithm to optimize the value of utility function URED.
In this case, the transmission of multiple hubs that satisfies
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constraint (19) can be simultaneously scheduled in the same
time slot using the NOMA technique.

Exhaustive Search-based Trajectory Optimization
(ESTO) Algorithm: Similar to the PSO-based algorithm,
in the communication tier I of this scheme, the transmission of
vital signs sensed by bio-sensors is scheduled by employing
the cyclic orthogonal WH coding scheme. In the next stage,
UAVs aggregate vital signs received by hubs. In the ESTO
scheme, each UAV has all information of hubs located in its
corresponding cluster. In other words, the utility function in
ESTO is obtained for each tail from (34). Then, based on this
information, each UAV computes its best trajectory in each
time slot. Moreover, ESTO uses the NOMA scheduling tech-
nique in which multiple hubs can simultaneously transmit
their data packets to its UAV.

Proposed Q-REDTO Algorithm: This scheme is our
proposed Q-learning-based UAV trajectory optimization
algorithm, where we use the cyclic WH codes in communica-
tion tier I. Furthermore, as described in the previous section,
we design a Q-learning-based search algorithm to find the
best location of each UAV in order to maximize the utility
function in (34). Additionally, the same as ESTO, our pro-
posed algorithm employs the NOMA scheduling scheme to
deliver data packets of hubs to UAVs.

A. RESULTS AND DISCUSSION
In this subsection, we first investigate the trajectory of UAVs
in corresponding cluster areas in the IoMT WBAN. This
trajectory is obtained by dividing the whole city area into
different clusters using FGKM and assigning one UAV to
each cluster. Fig. 4 shows the 3D trajectory of two different
UAVs attained from Q-REDTO compared to the ESTO algo-
rithm during ten time slots. In each time slot, Q-REDTO and
ESTO find the best 3D position of UAVs which maximizes
URED according to (34). It should be noted that because of
the mobility of patients in the network and the variations
of vital signs, the best position of UAVs is changed during
the time. As shown in Fig. 4, in the proposed Q-REDTO
algorithm, UAVs are trained to reach the benchmark trajec-
tory shown in solid line, by knowing the cluster environment
episode by episode. Moreover, we can see that in some time
slots, the position of UAVs, selected by Q-REDTO, is differ-
ent from the benchmark value obtained from the exhaustive
search. This occurs as a result of limited knowledge of UAVs
from the clusters’ area when the Q-REDTO algorithm is
employed.

Afterward, we evaluate the performance of the proposed
Q-REDTO algorithm through various scenarios in terms of
the spectral efficiency, energy consumption, and delay.

Scenario I:We first examine the changes in average spec-
tral efficiency defined as the ratio between average sum rate
and the total bandwidth W in different number of patients.
In this regard, assuming the number of patients, i.e., |P|,
is varied from 100 to 300, Fig. 5 illustrates the performance
of our Q-REDTO in terms of increasing the average spectral
efficiency in comparison to the other mentioned schemes.

FIGURE 4. 3D trajectory of two UAVs over their cluster areas during ten
time slots.

Because of employing NOMA scheduling technique in both
ESTO and Q-REDTO algorithms, any increase in the number
of patients leads to increasing the number of hubs covered
by each UAV. In this situation, based on NOMA, the num-
ber of simultaneous transmissions from hubs to each UAV
is increased, which results in intensifying the average sum
rate. However, by further increasing the number of patients,
the interference is highly increased that leads to reducing the
rate of raising average spectral efficiency. As it can be real-
ized from this figure, the Q-REDTO algorithm with FGKM
achieves considerably better results than Q-REDTO with
K-means in terms of increasing the average sum rate. This
indicates the poor performance of the K-means algorithm
in finding the global optimal solution of the city clustering
problem that results in deteriorating the optimized trajectory
of UAVs in the network. Furthermore, the results in Fig. 5
show that our proposed Q-REDTO algorithm outperforms the
PSO-based algorithm in increasing the average spectral effi-
ciency. This occurs as a result of scheduling the transmissions
of multiple hubs in the same time slot using NOMA tech-
nique. As demonstrated in the figure, the proposedQ-REDTO
algorithm achieves a better performance in finding the best
value of the average sum rate compared to the NOMA-based
PSO algorithm. The result indicates the lower convergence
speed of PSO than the Q-REDTO algorithm. In other words,
under very similar assumptions, because the NOMA-based
PSO does not converge to the best value of utility function
URED, it obtains the lower average sum rate in comparison to
Q-REDTO. Eventually, Fig. 5 demonstrates that the results of
our Q-REDTO algorithm are absolutely close to the optimal
values of the spectral efficiency obtained by the ESTO algo-
rithm. Thus, we can claim that our Q-REDTO algorithm can
achieve near optimal results without requiring all information
about the location and channel conditions of hubs, and just
by discovering the cluster environment step by step through
executing episodes.

Scenario II: This scenario investigates the effect of a dif-
ferent number of patients on the average sum energy con-
sumption at each time slot. To this end, the value of |P| is
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FIGURE 5. The variation of the average spectral efficiency versus different
number of patients.

changed between 100 and 300 and the results are shown in
Fig. 6. According to this figure, the average sum energy con-
sumption of our proposed Q-REDTO and ESTO algorithms
is higher than that for the PSO-based algorithms. This occurs
as a consequence of employing the NOMA scheduling tech-
nique in Q-REDTO and ESTO algorithms. Regarding this
property, multiple adjacent hubs that satisfy condition (19),
simultaneously transmit their data packets to the correspond-
ing UAV, while in the OMA-based PSO algorithm, only
one hub can transmit its data to each UAV at each time
slot. Additionally, the average sum energy consumption of
NOMA-based PSO is less than the Q-REDTO algorithm.
As a consequence of the lower convergence speed of NOMA-
based PSO, the lower number of simultaneous transmissions
is scheduled in each time slot. Hence, the sum value of
energy consumption of these transmissions is less than that
of Q-REDTO. Moreover, from Fig. 6, we can realize that by
increasing the number of patients in the network, the average
sum energy consumption of Q-REDTO and ESTO is intensi-
fied. In these algorithms, by increasing the number of patients
in each cluster, the number of hubs covered by each UAV is
increased. Thus, by increasing the number of simultaneous
transmissions to each UAV, the total energy consumption of
the network is increased. However, by further intensifying
the number of concurrent transmissions, some of them can-
not satisfy condition (19) and they are discarded from the
scheduling process. In this situation, the sum energy con-
sumption reduces. In contrast, the curve in blue demonstrates
the average sum energy consumption of the OMA-based PSO
algorithmwhere only one hub transmits its data packet to each
UAVwithin each time slot. It should be noted that by increas-
ing the number of patients, the number of hubs transmitting
to each UAV will not rise. Taking this problem into account,
the energy consumption of OMA-based PSO roughly remains
the same in a different number of patients. Taking these fea-
tures into account, by rising the number of patients in the
other algorithms, more hubs will be able to transmit their

FIGURE 6. The variation of the average sum energy consumption versus
different number of patients.

data packets concurrently which increases the average sum
energy consumption of these algorithms and finally results
in crossing the blue curve. Finally, Fig. 6 illustrates that the
average sum energy consumption value of Q-REDTO with
K-means is less than that for Q-REDTO with FGKM. In this
case, because of non-globally optimizing the clustering prob-
lem in K-means, the number of simultaneous transmissions
scheduled in the same time slot is reduced. Consequently,
the sum energy consumption value of these transmissions is
decreased.

Scenario III: The delay sensitivity of our proposed algo-
rithm is evaluated in this scenario. In this regard, the sum
emergency index of different algorithms is compared in
a different number of patients. To obtain this metric, the
emergency indexes of all covered hubs by all UAVs are
added together. This metric shows the delay sensitivity of
the algorithms. In other words, a higher amount of com-
puted sum emergency index represents that the hubs with
higher emergency conditions can access the channel ear-
lier. This guarantees the timely transmission of vital signals
in life-critical situations. The results are shown in Fig. 7
supposing |P| is varied from 100 to 300. As illustrated in
Fig. 7, the sum emergency index of Q-REDTO and ESTO
is much higher than the PSO-based algorithms. This is a
consequence of scheduling multiple hubs in the same time
slot using the NOMA technique in ESTO and Q-REDTO.
Accordingly, we can claim that our proposed Q-REDTO
algorithm outperforms the PSO-based schemes in terms of
delay sensitivity. Furthermore, this figure shows that under
similar assumptions, the NOMA-based PSO scheme has
worse performance in comparison to the proposed Q-REDTO
algorithm. As mentioned before, this occurs because the con-
vergence speed of NOMA-based PSO is less than our pro-
posed algorithm. Therefore, the inefficient ofURED is selected
by the NOMA-based PSO scheme which leads to reducing
the sum emergency index value of concurrent transmissions
scheduled by the NOMA technique.Moreover, we can realize
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FIGURE 7. The variation of the average sum emergency index versus
different number of patients.

that, by increasing the number of patients, the sum emer-
gency index of ESTO and Q-REDTO is increased, whereas
it remains constant for the OMA-based PSO algorithm. As it
was clarified in the previous scenario, this is a result of
increasing the number of simultaneous transmissions to each
UAV in ESTO and Q-REDTO. Similar to the argument in
Scenario I, our proposed Q-REDTO with FGKM has a bet-
ter performance in increasing the value of the average sum
emergency index in comparison to Q-REDTOwith K-means,
which is a result of globally finding an optimal solution by the
FGKM clustering algorithm.

Scenario IV: In this scenario, we investigate the con-
vergence of our proposed Q-REDTO algorithm throughout
episodes and in different learning rates. To this end, the opti-
mal value obtained from the ESTO algorithm in one time
slot is assumed to be the benchmark value, and our proposed
Q-REDTO is trained to converge to this value step by step
during the episodes. In this regard, Fig. 8 illustrates the con-
vergence of our proposed algorithm by increasing the number
of episodes in the range [1, 100], in terms of the aforemen-
tioned factors for one of the UAVs in different values of the
learning rate, i.e., λ. Figs. 8a, 8b, and 8c show respectively,
the convergence of sum rate, sum energy consumption, and
sum emergency index of all admitted hubs by the NOMA
technique in the selected position of the UAV versus different
episodes. These figures illustrate that in the earlier episodes,
the values obtained fromQ-REDTO are really divergent from
the benchmark line attained from ESTO. This phenomenon
occurs because, in earlier episodes, the UAV has no appro-
priate cognition from its cluster environment, thus, it ran-
domly selects its positions. However, by further increasing
the number of episodes, the environment information of the
UAV is enhanced, and eventually, the values of sum rate,
energy consumption, and emergency index converge to the
corresponding benchmark values. Moreover, we can realize
from Fig. 8 that by increasing the value of the learning rate,
the amount of the three mentioned factors converges slower.
This is because of the unknown nature of the cluster. In this

FIGURE 8. Convergence of Q-REDTO in terms of a) sum rate, b) sum
energy consumption, and c) sum emergency index.

situation, by increasing the learning rate value, the effect of
calculated reward is intensified in updating the Q-value of
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selected state-actions according to (33). Therefore, in earlier
episodes, due to the lack of information of the environment,
selecting some inappropriate positions leads to considerable
changes in Q-values of that state’s actions. This problem
results in a raising number of requisite episodes for conver-
gence of the algorithm. Additionally, Fig. 8c demonstrates the
convergence of the sum value of the emergency indexes of all
hubs scheduled in the same time slot, which has a reverse rela-
tionship with the access delay. Indeed, as explained in Section
III-A, the emergency index metric, i.e., IHi

em , represents the
delay sensitivity of each hub Hi. Under the circumstances,
the higher value of the sum emergency index in each time
slot means that hubs with higher emergency conditions are
scheduled in that time slot. This property results in reducing
the access delay of life-critical data packets transmitted in the
allocated bandwidth.

VI. CONCLUSION AND FUTURE WORK
In this paper, we addressed the Q-learning-based 3D trajec-
tory optimization of UAVs to the timely transmission of vital
signs of patients without interrupting their daily lifestyle.
To this end, we proposed the Q-REDTO algorithmwhich effi-
ciently increases the amount of throughput and reduces the
energy consumption and delay by training UAVs to achieve
the best 3D placement. In this regard, at first, each UAV has
no prior cognition of its corresponding cluster area, and it
gets to know the environment during the episodes by moving
among the states based on their Q-value. It should be noted
that the mobility of patients leads to a time-varying topology
of the network. In this situation, our proposed Q-REDTO
algorithm learns to reach the best 3D position for eachUAV in
each time slot by updating its Q-table step-by-step.Moreover,
our algorithm employs the NOMA technique, which simul-
taneously schedules the transmission of multiple hubs by
considering a degree of interference among them. Under the
circumstances, the data rate requirement of all of the simulta-
neous transmissions should be satisfied using a pre-specified
SINR threshold. The simulation results demonstrated that
our Q-REDTO scheme can achieve the benchmark value of
throughput, energy consumption, and delay without requiring
complete information about the environment. One possible
future work is to expand this study to use a more sophisticated
learning algorithm along with edge computing in the NOMA
technique to find the best set of simultaneous transmissions
as well as employing federated learning to improve the per-
formance of the proposed trajectory optimization algorithm
in absolutely large test-beds.
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