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ABSTRACT Regardless of the application in which power electronic converters are deployed, their desired
performances crucially depend on the controlling strategy while different impressive parameters are varied.
This paper offers a novel controlling strategy originated from the mixture of two well-known controlling
techniques, namely feedback (FBC) and model predictive (MPC) controllers. It uses the advantages of the
above-mentioned controllers while their drawbacks or limitations are covered by each other using themixture
of experts (MoE) technique. Two neural networks for capturing the features of MPC and FBC along with
a gating network as the main tool of MoE are employed in order to optimize the controlling of the DC-DC
power electronic converters. These networks are trained through a set of pair data as the input vector and
the target data. The results reveal that better performance can be obtained via benefit exploitation of both
controlling techniques using a comprehensive MoE. The dynamic and steady state errors are decreased by
5% and 8%, respectively which demonstrate a global enhancement in the controlling of the DC-DC power
electronic converters.

INDEX TERMS Mixture of experts, machine learning, power electronic converters (PECs), controlling
strategy.

NOMENCLATURE
C Output capacitor.
d Duty cycle.
e Error between actual and reference variable.
fs Switching Frequency.
iL Current of input inductor.
ILref Reference inductor current.
ISSL Steady state inductor current.
Is0 Initial value of inductor current.

The associate editor coordinating the review of this manuscript and

approving it for publication was Francisco Perez-Pinal .

L Input inductance.
Q Power switch.
q Gate signal.
RC Internal resistance of output capacitor.
RL Internal resistance of input inductor.
Ro Load resistance.
Ts Switching.
u(t) Switching function.
vC Voltage of output capacitor.
VCref Reference capacitor voltage.
V SS
C Steady state capacitor voltage.
Vin Input Voltage.
vL Voltage of input inductor.
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I. INTRODUCTION
Modern advances in materials and manufacturing process of
power electronics have pushed back the frontiers of their
applications every day [1], [2], [3], [4]. The harnessing of
these technologies in all sorts of creative ways plays a cru-
cial role in designing and controlling the power electronic
converters. Controlling techniques are in charge of meet-
ing several principle requirements including static opera-
tion, dynamic operation, fault management & protection, and
reliability-related aspects [5], [6], [7], [8], [9]. Recently, a
significant number of studies have paid attention to the con-
trolling techniques of the power electronics converters [10],
[11], [12]. Conventional output feedback (voltage mode or
current mode) has been widely used owing to its simple
implementation. The conventional linear output feedback
controllers have been enhanced using complementary tech-
niques such as flux-based techniques [13], [14], charge-based
techniques [15], [16], and geometry control [17]. Although
these structures are identical to the voltage mode controller,
their performances are much more robust and less noisy
(more identical to the current mode controller).

Another widely used control method is ripple-based tech-
niques which are originated from hysteresis controls [18].
Switching frequency is variable and the controller may be
unstable in the cases in which the equivalent series resistor
(ESR) of the output capacitor is significant [19]. Zhou et
al. [12] proposed an enhanced ripple-based control in which
ESR voltage ripple is estimated and considered in the control
loop. However, the method is suitable for large ESR power
capacitors which is not the case in real applications. Because
the higher the ESR is, the more sub-harmonics (and conse-
quently the larger voltage ripple) are generated.

Since electronic chips have become cost-effective,
employing digital-based controlling techniques has attracted
attention among researchers [20], [21], [22]. A high band-
width inductor current estimator for digitally controlled dc-dc
converters is proposed in [23]. The proposed technique
tries to estimate the inductor current with the capability of
considering independent gains for average and ripple com-
ponents. This inductor current estimator is employed in a
digital current hysteresis control. Zhou et al. [24] proposed
a digital average voltage/digital average capacitor current
with a dual-edge modulation technique. Although the method
demonstrates a fast transient performance, it requires a dig-
ital compensator for increasing output regulation accuracy
which leads to a larger memory size of microprocessors
in comparison with the digital average-ripple-based control
techniques.

The observer-based control technique can be considered as
an alternative for the state variable feedback controller [25].
Peltoniemi et al. [26] have used an integrator tracker for
inductor voltage to guarantee that the inductor voltage is aver-
agely zero during one cycle. These kinds of controllers are
related to the model reference adaptive controller [7], [27].
The combination of the observer-based and model reference
adaptive control techniques has launched a control category

of model predictive controls (MPC) [28]. Recently, several
researchers have undertaken different MPC techniques in
the various converters [29], [30], [31], [32]. As an example
in [32], a finite control set MPC (FCS-MPC) has been pro-
posed based on a logical dynamic model. An inner current
loop controller, as well as an outer voltage loop controller,
are used in the proposed structure. Variable switching fre-
quency and lack of generating an accurate current reference
are the constraints of this method which the latter may be
alleviated by the technique presented in [33]. The variable
switching frequency of the aforementioned method has been
tackled with the proposed formulated approach in [34] called
continuous control set MPC (CCS-MPC). Enhancement of
reference current generation along with the fixed switching
frequency make CCS-MPC an attractive approach in DC-DC
converters controlling.

Another solution for improving control performance of
DC-DC power converter is described in [35]. In this work,
an adaptive deep learning-based technique has been proposed
in order to mitigate some uncontrolled steady-state voltage
deviations. In the wide range of switching frequencies, the
proposed method prepares a precise voltage gain using par-
ticle swarm optimization for discovering the optimal operat-
ing point which rapidly adjusts voltage gain and suppresses
the steady-state voltage deviation. However, the transient
behavior of the converter has not been considered and the
converter is not well controlled in the severe load and input
disturbances. Deep reinforcement learning based controlling
technique has been recently employed in several applications
[36], [37], [38]. These researches apply the reinforcement
learning on the different strategies such as sliding mode and
model predictive for enhancing the transient and steady state
behavior of the DC-DC converters. These approaches suffer
from huge off-line computations and large size of memory
for online processing and optimizing the performance of
the converter. In addition, several optimization algorithms
including Bat algorithm [39], Bee algorithm [40], and genetic
algorithm [41], [42] have been proposed in order to optimize
the parameters of conventional controller. Although these
algorithms explore to optimize the controlling parameters
of a specific controller for improving the response of the
converter, their optimizations are limited to some confined
controlling indices. Thus, they are still lacking a global
optimization for extended numbers of controlling indices
including setting time, over/undershoot, steady state voltage
ripple, power loss, etc.

Even though the performance of the power electronic
DC-DC converters has been improved in recent years
by employing aforementioned controlling strategies, most
improvements have been achieved by optimizing some
key indices at the expense of deteriorating the other
indices. Nonetheless, it is possible to further improve
this performance by possessing the advantages of more
than one controlling strategies through mixture of experts
(MoE) and artificial intelligence (AI) approaches. In this
study, output feedback control (FBC) and model predictive
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controller (MPC) are considered as two experts for optimiz-
ing different aspects of the controlling system. FBC has been
widely used due to its simple design and implementation.
Furthermore, the FBC technique better manages steady-state,
power loss, output voltage ripple, and robustness against
parameter deviation. However, MPC is well known for its
dynamic response performance. TheMPC introduces a better
settling time and voltage overshoot/undershoot. With this
goal, this work seeks to simultaneously

1- improve the steady state indices of the converter such
as power loss, output voltage ripple, and robustness against
parameter deviation by increasing the FBC contribution and

2- improve the transient indices of the converter such as
settling time and voltage overshoot/undershoot by increasing
the MPC contribution in the global controlling system.

In this regard, MPC and FBC techniques are separately
implemented using two distinct neural networks. The neural
networks are trained using a real mission profile by consider-
ing the inductor current and capacitor voltage as the input data
and switching state as the target. The share of each technique
in controlling the power converter is allocated with MoE.

The remainder of this paper is structured as follows.
Section II presents the DC-DC boost power electronics
converter modeling and introduces the FBC and MPC
techniques. Section III presents a case study and investigates
the related mission profile and the neural network training
algorithm. Section IV deals with MoE definitions and for-
mulations. Section V expresses the numerical results, exper-
imental results, and additional discussions. The concluding
remarks are eventually drawn in Section VI.

II. CONVENTIONAL DC-DC BOOST POWER
ELECTRONICS CONVERTER
In this study, we propose a combined controlling strategy
for a DC-DC power converter employing two well-known
controlling techniques, namely FBC and MPC. As shown in
Fig. 1, two neural networks are trained by FBC and MPC
controllers in such way to estimate the controlling variable
(switching function u(t)) by knowing the states of the input
inductor current and the output capacitor voltage. Another
unit called mixture of experts defines the contribution of each
controlling strategy in the controlling variable via the input
states, namely input inductor current and output capacitor
voltage and using a gating network. The resulted controlling
variable (u(t)) is, then, inserted to the pulse width modulation
(PWM) unit for generating the gate signals for the main
switches of the converter.

Conventional DC-DC boost power electronics converter
(DC-DC BPEC) has been widely used in diverse applications
such as renewable energy, energy storage, and automotive
systems [42], [43], [45]. Fig. 2 illustrates the circuit topology
of the DC-DC BPEC. The circuit consists of several passive
components and an active MOSFET switch. L and C are
the inductor and the output capacitor which their equivalent
series resistances are represented by RL and RC , respectively.
Q andD are the power switch and diode, respectively. Output

FIGURE 1. Block diagram of the proposed controlling strategy based on
mixture of experts, namely FBC and MPC.

voltage and inductor current are sensed and processed in
the controllers (FBC or MPC) and the controllers provide a
switching signal which is transformed to the gate signal using
a modulation technique and a gate driver.

A. DC-DC BOOST POWER ELECTRONICS
CONVERTER MODEL
The continuous model of DC-DC BPEC can be written as
follows in both continuous conduction mode (CCM) and dis-
continuous conduction mode (DCM) using a binary function
of daux [34], [46]

diL(t)
dt
=

Ro
L (Ro + RC )

(RC iL(t)+ vC (t)) u(t)

+ daux

(
−RL
L
−

RoRC
L (Ro + RC )

)
iL(t)

− daux
Ro

L (Ro + RC )
vC (t)+ daux

vin(t)
L

dvC (t)
dt
= daux

Ro
C (Ro + RC )

iL(t)−
1

C (Ro + RC )
vC (t)

−
Ro

C (Ro + RC )
iL(t)u(t)

vo(t) = daux
RoRC

(Ro + RC )
iL(t)+

Ro
Ro + RC

vC (t)

−
RoRC

(Ro + RC )
iL(t)u(t) (1)

where u(t) is the switching state (system input) and daux(t)
represents the operating mode of DC-DC BPEC in which 1
means CCM while 0 means DCM operation.

u(t) =

{
1 q = 1
0 q = 0

daux(t) =

{
1 u(t) ≥ 0 and iL(t) > 0
0 u(t) = 0 and iL(t) = 0

(2)

From the continuous-time model described in eq. (1), one
can obtain the discrete-time model ignoring the higher-order
terms as follows:

x(k + 1) = Ax(k)+ Bu(k)+ Ev

y(k) = Cx(k)+ Du(k)

u(k) =

{
1 q = 1
0 q = 0

(3)
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FIGURE 2. Circuit topology of the DC-DC boost power converter. Inductor
current and output voltage are sensed for FBC and MPC controllers. The
controllers provide a switching signal which may drive the main switch
using a modulation technique and a driver.

where x, y, and u are the state, output, and input vectors,
respectively. A, B, C , D, and E are the constant-coefficient
matrices and are written as follows

x(k) = [iL(k)vC (k)]T

y(k) = [iL(k)vO(k)]T

A =

 1−τaux[
TsRL
L
+

TsRORC
L(RO+RC )

] τaux
−TsRO

L(RO+RC )

τaux
TsRO

C(RO+RC )
1−

Ts
C(RO+RC )



B =


TsRO

L(RO + RC )
(RC iL(k)+ vC (k))

−
TsRO

C(RO + RC )
iL(k)


C =

 1 0

τaux
TsRO

RO + RC

RO
(RO + RC )


D =

 0

−TsRO
RO + RC

iL(k)

 , E =
[
τaux

Ts
L

]
, v = vin(k)

(4)

τaux is an auxiliary variable for representing the diverse oper-
ating conditions of the DC-DC BPEC in which the inductor
current experiences different manners in a single switching
period [34] and written as follows:

τaux =


1 u(k) ≥ 0 and iL(k + 1) > 0
t1
Ts

u(k) = 0 and iL(k + 1) = 0 and i(k) > 0

0 u(k) = 0 and iL(k) = 0

(5)

where t1 represents the taken time duration in which the
inductor current reaches zero just after the switching period
begins.

B. FEEDBACK CONTROLLER
The feedback controller is a well-known extensively used
controlling strategy in real applications due to its easy imple-
mentation and undeniable properties including low voltage

ripple, low steady-state error, low power loss, andmore robust
against parameters deviation of DC-DCBPEC converter. Sta-
bility analysis of the zero dynamics (internal dynamics) and
the minimum phase property of the inductor current served
as the output state hand-in-hand can be employed for indirect
controlling of the capacitor voltage (output voltage) while it
is not the case in which the capacitor voltage is served as the
direct output of state [47], [48]. Regarding equation (1) and
considering that capacitor voltage and inductor current are
unchanged in a switching period, the following equation can
describe the relation between capacitor voltage and inductor
current.

V 2
C + RC ILVC = daux[(RoRC + (Ro + RC ) vin) IL

− (RoRC + (Ro + RC )RL) I2L ] (6)

If consider that the second term in the left side of the
equation (6) is much smaller than the first term which is
the case while the capacitor equivalent series resistance is
ignorable and the DC-DC BPEC is in CCM operating mode
(daux = 1), one can rewrite equation (6) as follows:

VCref =

√
(RoRC + (Ro + RC ) vin) ILref
− (RoRC + (Ro + RC )RL) I2Lref

(7)

where VCref and ILref are the reference value of the capacitor
voltage and inductor current, respectively. With regard to
equation (7), one can find that the capacitor voltage can be
adjusted around the desired value through the appropriate
associated adjustment of the inductor current while output
load and input voltage are unchanged. Let define a new
variable for the output derivative (ϕ = ẏ = diL(t)

/
dt), the

controlling signal (u(t)) can be derived as follows using the
extracted equation (1)

ϕ =
Ro

L (Ro + RC )
(RC iL(t)+ vC (t)) u(t)+

vin(t)
L

−
Ro

L (Ro + RC )
vC (t)+

(
−RL
L
−

RoRC
L (Ro + RC )

)
iL(t)

(8)

The controlling signal is calculated as

u(t) =
1

(RC iL(t)+ vC (t))
(
(Ro + RC )

Ro
ϕL + vC (t)

+

(
(Ro + RC )RL

Ro
+ RC

)
iL(t)−

(Ro + RC )
Ro

vin(t))

(9)

Assume that the inductor current tracks the error of e =
ILref − iL(t), then

ϕ = ẏref + ke = k(ILref − iL(t)) (10)

where k is a positive coefficient that can be chosen by suitable
pole assignment to ensure inductor current error converges to
zero asymptotically. Inserting equation (10) into equation (9)

u(t) =
1

(RC iL(t)+ vC (t))
(
(Ro + RC ) k(ILref − iL(t))

Ro
L
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FIGURE 3. Controlling the DC-DC BPEC converter using a two-closed-loop
feedback controller via providing a switching signal for driving the main
switch. Inductor current and capacitor voltage are sensed, converted to
the 10-bit digital signal, and applied to the controlling algorithm.

+

(
(Ro + RC )RL

Ro
+ RC

)
iL(t)

+ vC (t)−
(Ro + RC )

Ro
Vin) (11)

Accordingly, a two-closed loop can be designed and applied
to the DC-DC BPEC for the control of the output voltage as
shown in Fig. 3.

C. MODEL PREDICTIVE CONTROLLER
The model predictive controller has been introduced since the
programmable microcontroller or digital signal processors
had widely used in electronic systems. The results of using
MPC reveal a better dynamic performance of DC-DC power
electronic converters. Although several studies have proposed
diverse model predictive controlling algorithms including
finite control set MPC (FCS-MPC) [29] and continuous con-
trol set MPC (CCS-MPC) [20], the proposed MPC controller
in [34] with the reduced prediction horizon and the fixed
switching frequency is used here.

Capacitor voltage and inductor current both may consider
to be constant during a period of switching regarding equation
(1) and the assumption that the natural frequencies of the
BPEC DC-DC converter are much higher than switching fre-
quency. Therefore, following equation can describe inductor
current increment regarding Fig. 4.

iL(k + 1) = is0 + fL1t1 + fL2t2 + fL3t3 (12)

where

fL1 =
Vin
L
, fL2 =

Vin − VC (k)
L

, fL3 =
Vin
L

(13)

And is0 is the initial value of iL(k). A standard current track-
ing error may be written as

J (k) = (iL(k + 1)− i∗L(k + 1))2

FIGURE 4. Inductor current during one single switching period.

= (eL − fL1t1)2 + (eL − fL1t1 − fL2(T − 2t1))2

+ (eL − fL1t1 − fL2(T − 2t1)− fL3t1)2 (14)

where eL = i∗L(k + 1)− iL(k) is the inductor current tracking
error. If t1 and t3 are equal and accordingly is0 and is3 equal
to the average value of the inductor current (iL(k)) as shown
in Fig. 4. With differentiating J (k) in term of t1 and equaling
it to zero (dJ(k)/dt1 = 0), the optimized timing can be found
as

t1 =
4eL − 3TfL2
6(fL1 − fL2)

t2 = T − 2t1 t3 = t1 (15)

The steady-state (SS) reference inductor current and capacitor
voltage may be defined as follows based on equation (1)

V ∗C (k + 1) = V SS
C

i∗L(k + 1) =
Vin
2RL
−

√√√√( Vin
2RL

)2

−

(
V SS
C

)2
RRL

(16)

Since there exist uncertainties in the load, a standard
Lungberger observer is used to compensate the model in
facing uncertainties [28], [34]. Fig. 5 demonstrates the global
structure of CCS-MPC controlling system. The details of the
controlling system can be found in [34]. As shown, Capacitor
voltage is sensed for standard Lungberger observer in order
to compensate the load variation during the BPEC DC-DC
operating time. Inductor current is also sensed and inserted
in to CCS-MPC current controller in order to better estimate
the switching time.

III. MACHINE LEARNING FOR CONTROLLING DC-DC
POWER ELECTRONICS BOOST CONVERTER
Machine learning algorithm has been widely used in
power electronics [49], [50], [51] along with several other
domains [9], [52]. In the different applications, it works as the
universal mapping function for capturing the desired target
through the best structure of the input data. In this study, a
machine learning based controlling strategy has been used in
order to optimize the performance of DC-DC BPEC employ-
ing the FBC and CCS-MPC structures. Machine learning can
use non-parameter models for training itself to create a map-
ping function for capturing the input-output relationship. This
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FIGURE 5. Controlling the DC-DC BPEC converter using a continuous
control set model predictive controller (CCS-MPC) via providing a
switching signal for driving the main switch. Inductor current and
capacitor voltage are sensed and applied to the controlling algorithm for
CCS-MPC compensation and standard Lungberger observation for
compensating the load uncertainties.

training is offline and is based on the real world conditions.
Fig. 6 demonstrates the machine learning based controlling
technique for DC-DC BPEC. As shown, two parameters,
namely capacitor voltage and inductor current, are sensed
and inserted into the neural network as the input dataset. The
output data (target) is the switching function of u(t) which
then inserted into the PWM for gate signal generating for
the main switch. The trained neural network is a universal
function to map the capacitor voltage and the inductor current
into a proper gate signal. We define two separate ANNs
for controlling the DC-DC BPEC which each of them was
trained based on the FBC or MPC techniques. The artificial
neural network (ANN) process is described in the following
sub-sections.

A. DATA COLLECTION
For training the neural network an adequate set of input
and target data is required. In this study, vO and iL are the
input data and u is the target or output data. The perfor-
mance of the ANN will be increased provided that adequate
amount of data is collected for training. In this regard, it is
assumed that the DC-DC BPEC is working as an interface
converter for charging and discharging the battery of an
electric vehicle as described in [46]. Thus a mission profile
of worldwide harmonized light-duty vehicles driving cycles
(WLTC-class3) was considered in this study. WLTC-class3
pattern has 1800 different vehicle speed points for 30min
of driving. Regarding the vehicle’s specifications, speed and
acceleration, the required power can be calculated. Based on
the calculated electrical power, the operation points for each
of speed point is derived using the DC-DC BPEC model in
section II.A. In order to obtain the switching function (u(t))
for each operating point, the output capacitor voltage and

FIGURE 6. Controlling the DC-DC BPEC converter using a trained neural
network via providing a switching signal for driving the main switch.
Inductor current and capacitor voltage are sensed and applied to the
controlling algorithm.

input inductor current of the associated operating points are
applied to both FBC and CCS-MPC controllers as described
in section II.B and section II.C, respectively. The behavior of
the DC-DC BPEC (vO and iL as the input data and u as the
target) was captured for both controlling strategies, namely
feedback and model predictive controllers. Accordingly, two
distinctive datasets of [vO iLu]1∗3∗1800 were prepared for each
of the controlling strategies and used to train the ANNFBC
and ANNMPC.

B. DATA PREPARATION
The contributory candidates (vO and iL) are considered as the
input data for ANNFPCorMPC model (fFBCorMPC ) to accurately
predict the target/desired output (u), i.e. u = fFBCorMPC (vO,
iL). Thus, a sufficient amount of data may guarantee the
accuracy of predictive model namely fFBCorMPC . Despite the
data may have an extended range of values, it would be better
and reported to insert the data into the ANN training process
after data rescaling. The input data, namely output capacitor
voltage and input inductor current, have different number
scales. The value range of these input data are thoroughly dif-
ferent from the output (u) lying between 0 and 1. Accordingly,
obtaining the weight coefficients of the neural network for
relating these different ranges of values (input versus output)
may lead either weak-mapping or diverging. Thus, there is a
need to rescale the input data in a range similar to output data
(u). In this regard, a range normalization of the data might
provide through the following equation:

xnew = a+
(b− a)(x − min(x))
max(x)− min(x)

(17)

where x and xnew are the original and the rescaled data,
respectively. [a, b] is the predefined range for data pre-
normalization. The best performance under defined condi-
tions were achieved while a = 0.1 and b = 0.9.
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C. NEURAL NETWORK
There exist several types of neural network for constituting
a universal mapping function including artificial neural net-
works (ANN), convolution neural networks (CNN), recurrent
neural networks (RNN) [53], [54]. However, artificial neural
network has been used in this study due to simple structure
and maturity. The rescaled data as a vector was inserted into
the ANN training process. The ANN for both controlling
strategies had three hidden layers with the neuron number
of 40, 35, and 25, respectively. The input layer has two
neurons for receiving vO and iL and the output layer has
one neuron for indicating the value of the switching function
(u). The number of hidden layers and their associated neuron
numbers were extracted with trials and errors as a trade-off
between the training time consumption and the accuracy of
the predictions. The layers in the neural network are in charge
of information processing in such a way that a precise target
(output) is estimated. Each neuron receives the data from the
previous neurons with a defined weight and then sum them up
with a defined bias and suggest an output for the next layer.
In fact, ANN training process tries to obtain the proper values
of the weights and the biases of each neuron to reach a desired
target with the minimum error. Function of each layer may
formulated as follows:

γ `i = f

N`−1∑
j=1

ωlij γ
`−1
i + bi

 i = 1, . . . ,N` (18)

where γ li is the output of the l th and ith layer and neuron,
respectively. ωlij and bi are the weight and biases factors,
respectively. Nl and Nl−1 represent the number of the neuron
in l th and (l−1)th, respectively. Additionally, f is the Sigmoid
activation function. During the training process, the values
of ωlij and bi are obtained in such a way that the minimum
root mean square (RMSE) and the maximum determination
factor (r) occurs between the target dataset and the predicted
dataset. The RMSE and r are defined as follows:

RMSE =

√√√√ n∑
i=1

1
n

(
ŷi − yi

)2
r =

√∑n

i=1

(
ŷi − ȳ

)2/∑n

i=1
(yi − ȳ)2 (19)

where ŷi, yi and ȳ are predicted, actual, and the mean value of
the actual output, respectively. RMSE values for FBC neural
network (ANNFBC) and MPC neural network (ANNMPC) are
calculated as 1.1% and 1.2%, respectively. Accordingly, the
trained neural networks with the above-mentioned structures
show precise and acceptable mapping functions for relating
the inputs to the output.

IV. MIXTURE OF EXPERTS
Two diverse controlling strategies, namely FBC and MPC,
and their features and properties have been discussed in the
previous sections. Both of the strategies have their own pros
and cons in the controllingDC-DC converters. For integrating

FIGURE 7. Architecture of a mixture of experts (MoE) consisting of two
expert networks and a gating network. Given an input x ∼ (vo, iL), the
output y∼ u of the system is computed as the sum
u∼ y =

∑
j=1,2 gj (x)uj (x).

the benefits and alleviating the drawbacks of these strategies,
concept of mixture of experts (MoE) might be used in the
controlling of the DC-DC boost power converter. In the pro-
posed MoE controlling strategy as shown in Fig. 7, both of
the MPC and FBC are integrated in controlling of the DC-DC
BPEC using a gate network which defines the share of each
controlling system contribution in determining the target i.e.
switching function u(t). The gating network (GN) is a kind
of neural network with several hidden layers connecting the
inputs to the outputs. The number of theGN inputs is the same
as the inputs of contributing experts [55]. The GN output is
the same as the number of the experts, here, ANNFBC and
ANNMPC. The MoE tries to compute a target from different
paths (experts) to obtain the best possible performance of the
global system. With a given set of training data {(xα , yα)}
where yα = f ∗(xα), a neural based network may solve the
regression problem by learning a function f that approximates
f ∗ by minimizing the following error function

E(W ) =
1
2

∑
α

(
yα − f

(
xα,W

))2 (20)

where W is the weight matrix of gating network, α is the
number of the training data. It has been proven that a max-
imum likelihood solution for weight matrix can be employed
for Gaussian error (f (xα , W) − yα) [56], [57]. However,
unrealistic to obtain a single function to model a wide range
of data. To this reason, MoE technique employs a mixture
of local experts by defining a gating network. As shown in
Fig. 7, the output u∼y is computed through a weighted sum
of experts’ outputs. Thus

y = F(x, θ ) =
2∑
j=1

gj(x,V )fj(x,W j) (21)
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It should be mentioned that θ = (V, W1, W2) represents all
the global model parameters. The condition of g1 + g2 = 1
leads to consider the gj as the softmax function of the output
layer values Sj of gating network. Thus

gj(x,V ) =
esj(x,V )∑
k e

sk (x,V )
(22)

Which may denotes a probability interpreation of the weights
in g1 and g2. Rewrite equation (20) in terms of θ , the solution
of the problem is embedded in minimizing the following
equation

E(θ ) =
1
2

∑
α

(
yα − F

(
xα, θ

))2 (23)

Consider that a random process generates x from a given
density functin and an expert is randomly chosen based on
the gating probabiliy gj(x). Then the selected expert j denotes
a random variable with the mean of uj = fj(x, Wj). Accord-
ingly, the switching function u∼y is the expected value of
E(yj|x). Thus one can obtain the probability of (x,y) as

P(x, y|θ ) =
∑
j

gj(x,V )P(j, x, y|W )

=

∑
j

gj(x,V )Nje
−

1

2σ jj
(y−f (x,Wj))

2

(24)

where Nj is a normalization factor. If the pair set of {(xα , yα)}
is assumed to be independence, log-likelihood can be applied
as follows:

L(θ ) =
∏
α

P(xα, yα|θ )

=

∑
α

log
∑
j

gj(xα,V )Nje
−

1

2σ jj
(yα−f (xα,W j))

2

(25)

Using expectation maximisation [58], one can find the
optimal set of θ∗ parameters. It was proven that the gradient
descent of log-likelihood (−∇θL) converges faster and more
reliable in comparison with E( θ ). Accordingly, by calcu-
lating and extracting the optimum parameters in θ from
equation (24), the MoE based controlling strategy which is
instructed from two powerful controlling strategies i.e. MPC
and FBC becomes ready to be implemented in the real
environment.

V. RESULTS AND DISCUSSION
A. EXPERIMENTAL RESULTS
In this section, our proposed controlling strategy i.e. mix-
ture of experts has been designed and implemented in the
STM32f407VGT6 microcontroller for controlling a DC-DC
boost converter (Fig. 2) in the electric vehicles. The DC-DC
BPEC is assumed to supply the required energy from a 200V
input to a 400V output for an electric motor drive. Full rated
power of the considered DC-DC BPEC is 2000W. For a
desired output voltage and input current ripples, a capac-
itor bank of 33µF and an inductor of 2mH were used in

the power circuit. Switching frequency was fixed at 10kHz.
Fig. 8 demonstrates the performance of the DC-DC BPEC
in three different controlling strategies. Fig. 8a illustrates
the behavior of the DC-DC BPEC under a voltage refer-
ence variation in all three controlling strategies. The volt-
age reference has been changed from 360V to 400V. In all
plots, orange and blue waveforms are allocated to the output
capacitor voltage and input inductor current, respectively.
As shown in this figure, all the strategies perfectly controlled
the DC-DC BPEC in a stable condition with a desired steady-
state error. Feedback controlling (FBC) strategy demonstrates
the best conditions as the steady-state error and voltage and
current ripples points of view. While model predictive con-
trolling (MPC) demonstrates the best performance as the
voltage under/overshoot and the settling time points of view.
In Figs. 8a and 8b (the two most left plots), the minimum
steady-state output voltage error occurred in the FBC con-
troller in which the controlling signal continuously varied
in order to stabilize the output capacitor voltage. The max-
imum steady-state error in the output voltage occurred in
the case of MPC controlling strategy in which the behav-
ior of the circuit is predicted through the inductor current
and the capacitor voltage from their states in the previous
switching period. Since, the prediction established based on
the circuit parameters, the accuracy of the converter steady-
state depends on how accurate the circuit parameters are
inserted into the model. Current and voltage ripples were
in their minimum values while FB controlling strategy was
employed. Both capacitor voltage and inductor current rip-
ples experienced higher values in the MP controlling strategy
in the identical conditions. In addition to electromagnetic
interference increase in the power converter, this increase
in the ripples may also affect the useful lifetime of the
power converter. Since the voltage and current stresses on the
switches wereminimized in the feedback controlling strategy,
the total power loss of DC-DC BPEC is lower than that of in
model predictive controlling strategy. On other side, dynamic
performance of DC-DC BPEC with model predictive con-
trolling strategy was by far better than that of using feed-
back controlling strategy. Maximum over/undershoot either
in capacitor voltage and inductor current is allocated to the
FBC strategy. In regard of the settling time, MPC strategy
demonstrates better performance in comparison with FBC
strategy. As illustrated, both FBC andMPC controlling strate-
gies have their own merits due to their inherent controlling
characteristics. The solution for exploiting both of their mer-
its is to simultaneously employ both controlling strategies.
Accordingly, as described, the proposed MoE controlling
strategy has been used for DC-DC BPEC controlling. The
performance of DC-DC BPEC has been enhanced using our
proposed MoE controlling strategies. The rightmost plots in
Figs. 8a and 8b are the corresponded waveforms while MoE
controlling strategywas applied to the DC-DCBPEC. As pre-
viously mentioned, both FBC and MPC as the experts have
their own share on the controlling parameters (u) by training
the networks shown in Fig. 7. Both ANNFBC and ANNMPC
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FIGURE 8. Experimental results of inductor current and capacitor voltage with different controlling strategies under different conditions. a) DC-DC
BPEC performance under voltage reference variation in which voltage reference has been changed from 360V to 400Vand b) DC-DC BPEC performance
under a step change in the load.

have three hidden layers with the number of neurons of 40,
35, and 25, respectively. The gating network has two hidden
layers with the number of neurons of 5 and 3, respectively.
It is noteworthy that the number of hidden layers and their
corresponded neurons were chosen as a trade of between the
computational time and the accuracy with trial and errors.
The gating network is responsible for deciding how much
contribution is required for final controlling parameter i.e.
u(t) for each expert in order to optimize DC-DC BPEC
performance under different conditions. These three ANNs
were trained via distinct 1800 data from the real mission
profile as described in the section III.A. Output capacitor
voltage (vo) and input inductor current (iL) were chosen as
the input of the neural networks and switching function (u)
is considered as the ANN output for controlling the DC-DC
BPEC. The gating ANN determines the share of each expert
on the controlling parameters while minimizing the errors as
described in eq. (24). The ANNs were computed offline and
their weights were applied to microcontroller as the constants
value to compute u as the switching function. In fact, MoE
strategy is a general mapping function in which the inputs
(vo and iL) are employed for extracting the output (u) via
three ANNs.

Fig. 9 illustrates the contributions of the FBC and MPC
strategies in the controlling of the considered DC-DC BPEC
versus the input data i.e. input inductor current and out-
put capacitor voltage. The plot demonstrates that the FBC

FIGURE 9. Model predictive and feedback strategies’ contributions on
controlling a DC-DC boost power electronic converter in the different
operating points (WLTC-class3 mission profile). The voltage and current
are normalized to their maximum tolerable values.

strategy generally has more contribution in the switching
function i.e. u(t) than MPC controller in the high input cur-
rent and high output voltage as the input of expert in these
controllers. Main contribution of MPC strategy in the con-
trolling of the considered DC-DC BPEC is occurred in low
current and low voltage operating points. In other operating
points, both MPC and FBC approximately share the same
contribution in controlling of the converter as also revealed
from orange scatters in Fig. 9. In the high power operating
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TABLE 1. Features of different controlling strategies in DC-DC BPEC.

FIGURE 10. Experimental efficiency measurements for Feedback, model
predictive and mixture of expert controlling strategies versus loading
current drawn from the considered DC-DC BPEC.

points, the parameter deviations of the key components in
the circuit have become intensified. Although the observer
in the MPC is in charge of minimizing this deviation in the
control algorithm, the it may not thoroughly estimate the
level of parameter deviation which finally leads to more error
in dynamic and steady-state in high power operating points.
Accordingly, FBC has better performance in the higher oper-
ating points. However, in the low operating points, MPC
demonstrate a better performance in comparison with FBC
due to its better dynamic behavior. The MoE strategy is
trained in order to optimized the behavior of the converter in
the different operating points. Thus, MPC dominates in lower
operating points and FBC has higher contribution in converter
controlling in higher operating points. Last but not least, the
DC-DC BPEC efficiency is shown in Fig. 10. The efficiency
of BPEC in all strategies improve by loading increase by 2%.
Maximum efficiency was measured 98.6% in MoE strategy
for BPEC controlling. It is also found that in all operating
points MoE strategy has better performance as the efficiency
point of view. The global behavior of the BPEC performance
far improves while the proposed controlling strategy i.e. mix-
ture of experts has been used. The reason is that the merits of
both feedback and model predictive controllers are unified in
controlling DC-DC power converter, while their weaknesses
are less contributed.

B. CRITICAL ANALYSIS AND DISCUSSION
The performance and controlling indices of the proposed
method are compared with the other recent controlling strate-
gies in this section. Both transient and steady state indices
are considered. Table 1 lists different features of the DC-DC
BPEC performance with different controlling strategies. It is
revealed that the FBC based strategies including conventional
FBC and optimized FBC with bat algorithm far outweighs
in the steady-state behavior while the MPC strategy has
better performance as the dynamic point of view. Although,
adaptive and deep reinforcement controllers show better per-
formance in some indices, they are not globally optimized
and have detriments in other indices. Using MoE, however,
one can find that FBC’s and MPC’s merits are included
in the DC-DC BPEC performance. These results are orig-
inated from the fact that both FBC and MPC strategies
have contributions in controlling the DC-DC BPEC. In every
specific operating point, their contributions are optimized
by trained gating neural networks via several pre-calculated
data. The maximum steady-state error of the DC-DC BPEC
with MoE strategy is limited to 0.8% which demonstrate an
enhancement of 1.4% in comparison with MPC strategy. It is
the case of maximum ripple in which there exists an 0.8%
improvement in MoE in comparison with MPC. In the case
of dynamic response, the MoE strategy shows much better
performance in comparison with other methods. In addition,
except conventional FBC and MPC, the implementation of
MoE controller is less complicated with comparison with
other adaptive controllers [35], [38], [39]. Thanks to the com-
bination of two different controllers, namely FBC and MPC,
global optimization of the controlling indices either in steady
or dynamic states is achieved. However, it is noteworthy that
MoE design and training totally depends on the application in
which the converter is used. In other words, theMoE is trained
based on a specific mission profile. Thus, MoE controller can
be designed for a specific converter with a specific mission
profile.

VI. CONCLUSION
In this paper, a new controlling strategy for the DC-DC
boost power electronic converter has been proposed based on
which the advantages of different classic controllingmethods,
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namely feedback and model predictive strategies have been
simultaneously taken. The proposed mixture of expert algo-
rithm uses both strategies in BPEC controlling by defining a
contribution list for these two strategies in switching function
as the controlling parameter of DC-DC power converter.
The results reveal that not only does the proposed algorithm
enhance the steady-state behavior of the DC-DC power con-
verter, but also the dynamic behavior of the converter is also
optimized. The results reported in this study indicated that
2.2% steady state error in MPC decreased to 0.8% in MoE
algorithm. The settling time of the power converter under
external disturbance decreased from 15ms in FPC to 2.7ms in
MoE controller. Although this study used FBC and MPC as
the fundamental controlling strategies for training themixture
of expert network, other controlling strategies depending on
the application in which power converter is working may also
be used as the basis of MoE algorithm. The proposed MoE
algorithm is generic, valid, and applicable to any other power
electronic converters with different fundamental controlling
algorithms. Definition of a global mission profile for training
the MoE controlling technique can propose a general MoE
which is under study and would be reported in the near
future.
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