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ABSTRACT The use of vehicular communications is anticipated to improve safety in road traffic. The
traditional radio channel models that describe the effects of radio wave propagation in dynamic vehicular
environments have their own limitations. In this paper, machine learning (ML) techniques are applied for
radio channel modeling in urban vehicular environments. A large data set of path loss (PL) and root-mean-
square Delay spread (RMS-DS) is computed using ray-tracing for a Line-of-Sight (LOS) straight road and
a Non-Line-of-Sight (NLOS) intersection road scenario. Fourteen input features are used to train three ML
models for vehicular channel prediction. Themodels considered in this work includeMulti-Layer Perceptron
(MLP), Convolutional Neural Network (CNN), and Random Forest (RF). The results show that RF gives
better performance than MLP and CNN models in the prediction of PL and RMS-DS in urban vehicular
channels.

INDEX TERMS Vehicular channel modeling, machine learning, ray tracing, multi-layer perceptron,
convolutional neural network, random forest.

I. INTRODUCTION
The idea of vehicular communication is to provide a secure
means of exchanging information among vehicles. The key
challenges in today’s vehicular communication systems are
assuring safety, efficiency, and traffic flow while maintaining
a comfortable journey. These challenges can be addressed
by establishing reliable vehicular communication. This advo-
cates the development of accurate radio channel models for
vehicular communication. Vehicular channels differ signif-
icantly from cellular communication channels due to the
constantly changing surroundings in which they operate.
Traditional approaches for vehicular channel modeling
include measurement based empirical models [1], [2],
[3], [4], non-geometry based stochastic models [5], [6], [7],
geometry based stochastic models [8], [9], [10], [11], and ray-
based deterministic models [12], [13], [14].

Machine learning (ML) methods have recently been
applied to radio channel modeling [15]. These tech-
niques can quickly adapt to non-linearity in radio channel
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parameters due to changing environments that make these
models well suited for real-time channel modeling in vehic-
ular scenarios. Several ML models including Support Vec-
tor Machines (SVM), Artificial Neural Networks (ANN),
Multi-Layer Perceptron (MLP), Convolutional Neural Net-
works (CNN) and Random Forest (RF) have recently been
proposed to predict radio channel parameters in radio
networks [16], [17]. Huang et al. in [18] investigated
SVM, RF and ANN models for identification of Line-
of-Sight (LOS) in vehicle-to-vehicle (V2V) channels at
5.9 GHz. Time-varying angular properties of the channel
including rising time, Rician K-factor, root-mean-square
Delay spread (RMS-DS), and kurtosis and skewness of
received power are used for training of ML models.
Yang et al. in [19] used an SVM-based model for the
prediction of Angle-of-Arrival (AOA) in vehicular chan-
nels. Real-time measured data of power delay profile (PDP)
and path loss (PL) are used to train the suggested model.
Reference [20] reported a Back Propagation Neural Net-
work (BPNN) based model to identify the vehicular chan-
nel scenarios in urban, highway and tunnels. Ramya et al.
in [21] used RF model to predict PL in V2V channels.
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The performance of the proposed model was assessed for
different combinations of input features. It was observed that
prediction accuracy improved with additional input features.
Turan et al. in [22] also developed an RF model to predict
PL in vehicular visible light communications (VVLC) and
IEEE 802.11p channels using real world measured data. The
proposed model performed well as compared to curve fitting
models. In another work by Turan et al. in [23] MLP, RF and
Radial Basis Function Neural Network (RBF-NN) for PL and
channel frequency response prediction in VVLC channels are
proposed.

Although the ML based PL prediction models have been
extensively studied in recent years, most of the work in
literature has been reported for indoor and outdoor cellular
networks. A little work has been reported for ML based PL
prediction in vehicular networks. This paper addresses this
gap and investigates threeML approaches namelyMLP, CNN
and RF to predict PL and RMS-DS in both LOS and NLOS
urban vehicular channels.

The rest of this paper is organized as follows. Section II dis-
cusses the development ofMLmodels used in this paper. Data
set preparation, list of input features, and a brief overview of
MLP, CNN and RF is provided. Optimization of the proposed
models is also explained. PL and RMS-DS prediction results
are discussed in section III. Finally, conclusion is provided in
section IV.

II. DEVELOPMENT OF MACHINE LEARNING MODELS
The development of ML models for vehicular channel mod-
eling is discussed in this section. A large data set of radio
channel parameters is generated using ray-tracing. The data
set is pre-processed and divided into a train data set and a test
data set. The proposed ML models are trained using the train
data set and optimized for model selection. Block diagram of
proposed methodology is shown in Fig. 1. Further details are
provided in the following subsections.

A. DATA SET AND LEARNING PARAMETERS
The first step in supervised ML models is to obtain a large
data set that has pre-computed the value of the target output
variable for different possible combinations of all the input
variables. These input variables are also called input features
in the context of ML. The details of data set preparation and
input features are given in the following.

1) DATA SET GENERATION
In this paper, the data set is generated using an in-house
ray-tracing simulation tool [24], [25], [26], [27]. Two most
common V2V communication scenarios including LOS on a
straight road and NLOS on a road intersection in an urban
setting are simulated. The scenarios simulated in this paper
are drawn from the Munich city [28] and are illustrated in
Fig. 2. The vehicles are either moving towards each other
(LOS case) or towards an urban street intersection (NLOS
case). The height of both the transmitter (Tx) and receiver
(Rx) antenna is assumed 1.6m. Multi-path channel with up to

FIGURE 1. Block diagram of the proposed framework for vehicular
channel modeling using ML.

four wall reflections and one corner diffraction is simulated
at carrier frequency of 5.9 GHz. Table 1 shows the simulation
parameters of the ray-tracing tool to generate the data set
used in this paper. Two output parameters including PL and
RMS-DS are computed at each time instance. PL is the ratio
of the power radiated by Tx antenna to the power received by
the Rx antenna and is given as follows.

Ploss(dB) = 10log
Pt
Pr
= Pt (dB)− Pr (dB) (1)

where Pr and Pt are the received and transmitted power
respectively. Total received power is computed using super-
position of electric fields of all the valid rays arriving at
the RX.

RMS-DS is the square root of the second central moment
of PDP and is given as follows [14].

τrms =

√∑n
i=1 Pi(τi − τ )2∑n

i=1 Pi
(2)

where Pi, and τi represent power and excess delay of the
ith ray respectively, and n is the total number of rays.
τ represents mean delay and is given by (3).

τ =

∑n
i=1 Piτi∑n
i=1 Pi

(3)

A total of 24, 500 data samples that include 14, 000 data
samples for LOS scenario and 10, 500 data samples for
NLOS scenario are computed to produce the data set used in
this paper. Each sample is computed using the combination of
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FIGURE 2. Simulation environment with a LOS and NLOS scenario used
for data set generation.

TABLE 1. The simulation parameters of ray-tracing tool to generate the
data set.

fourteen different input features. A standard Intel R© CoreTM

i5 computer with 16 GB RAM is used in simulations.

2) LIST OF INPUT FEATURES
The input features for the proposed models are Tx coordi-
nates, Rx coordinates, separation between Tx and Rx, number
of buildings penetrated by direct line joining Tx and Rx,
distance covered inside buildings by direct line joining Tx and
Rx, distance covered outside buildings by direct line joining
Tx and Rx, width of street in which Tx is located, width
of street in which Rx is located, distance of Tx from side
corner, distance of Rx from side corner, LOS or NLOS case,
and speed of the vehicles. These input features are listed in
Table 2. Figure 3 shows graphical representation of some
of the features for an NLOS example. The total indoor and
outdoor distance is given by

din =
∑
i

d iin (4)

dout =
∑
i

d iout (5)

TABLE 2. The detailed description of input features.

In example given in Fig. 3 two buildings are penetrated by
the direct line between Tx and Rx, so n is 2. It can be noted
that separation r is the sum of indoor and outdoor distances
as follows.

r = din + dout (6)

3) DATA PRE-PROCESSING
The first step in pre-processing of data set includes removal
of outliers and null values. Quantile ranges method for outlier
removal and Pandas library was used to remove null values in
the data set. Pandas is a well known Python library used for
the analysis and manipulation of input data. Scaling of input
features is performed in the next step. The range of values of
the input features varies by a large extent e.g. the separation
between Tx and Rx ranges from 8m to 235m whereas the
number of buildings penetrated by direct line joining Tx and
Rx ranges from 0 to 8 and so on. Feature scaling is performed
before training the models to make sure that the values of all
the features vary in the same range so that the cost function
associated with ML models can easily converge for better
prediction accuracy. In this paper, Min-Max normalization is
applied for feature scaling as follows.

x =
x − xmin

xmax − xmin
(7)
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FIGURE 3. Visual representation of input features used in ML models.

FIGURE 4. Block diagram of MLP architecture with each hidden layer
consisting of 44 neurons in the proposed model.

where xmin and xmax represents the minimum and maximum
value of the input feature respectively, x represents the actual
value and x represents the normalized value. After removing
of outliers and null values, and performing data normaliza-
tion, the data set is divided into training data set and test-
ing data set that constitutes 80% and 20% of total samples
respectively.

B. PROPOSED MACHINE LEARNING MODELS
Two well-known deep learning models namely MLP and
CNN, and an ensemble learning model RF are developed in
this work. A brief overview of each of the models is provided
in the following.

1) MULTI-LAYER PERCEPTRON
TheMLP is awidely used artificial neural network for solving
a number of ML problems [29]. MLP consists of an input
layer, one or more hidden layers, and an output layer. Each
layer consists of a number of nodes that are called neurons.
A non-linear activation function exists for each node in MLP,
allowing it to solve complex learning tasks. A generic block
diagram of MLP model is depicted in Fig.4.

MLP performs the training process in two steps. Firstly,
in forward propagation step, network weights are computed
and output is predicted by propagating input data across the
network from input layer to output layer. The output ŷ of the
MLPmodel for some input data ’xi’ is obtained as follows (8).

ŷ = σ (
∑
i

wi ∗ xi + b ) (8)

where wi is the associated weight matrix with input xi, b is
the bias and σ represents the activation function.
Secondly, in the back-propagation phase, MLP output is

compared with the actual output to compute the error signal.
The error is propagated from output layer to input layer
through the network, and the weights and biases are updated
accordingly. This method is repeated until a predefined cri-
teria, such as the mean square error being almost zero,
is achieved.

2) CONVOLUTIONAL NEURAL NETWORK
CNNs are well-known deep learningmodels that can find pat-
terns in data without requiring manual feature extraction and
can be retrained for new recognition tasks. CNNs are ideal
models to deal with ML problems having massive data sets
such as images. A comprehensive CNN architecture is shown
in Fig. 5. It consists of three different types of layers [30].

1) Convolutional Layers: Convolutional layers extract
features from input data by convolving the input data
with the kernels. The convolution of input data vector
’X’ with a kernel ’K’ is obtained by (9).

zj = X ∗ K =
s∑

i=−s

xj−iki (9)

here zj, X , and K are output, an input data with length
’L’, and filter or kernel respectively while the * shows
convolution operator. After the convolution layer, non-
linearity is applied by a non-linear function to generate
or limit the output of the node.

2) Pooling Layers: The pooling layer’s objective is to
reduce the computational cost. The pooling layer
reduces the parameters by performing down sampling.

3) Fully connected layers: Fully connected layers in CNN
are like the layers found in traditional ANNs. The nodes
in the fully connected layers are connected to all the
nodes in both previous and next layers. These layers
are applied at the end of the architecture that work as
classifiers.

3) RANDOM FOREST
RF model has been proven a successful classifier and regres-
sion method for practical problems. RF is an ensemble learn-
ing based algorithm in which multiple decision trees are used
for prediction. RF dramatically reduces the over-fitting prob-
lem through training each decision tree on different random
subsets. RF model consists of two segments.
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FIGURE 5. Block diagram of CNN architecture with 9 layers.

1) Boot-strapping: Boot-strapping is the process of creat-
ing a mini data set by randomly selecting samples from
the larger data set. The sub-sample size is chosen to
be less than the original data size and samples can be
included more than once as these are picked randomly
from the original sample space [31].

2) Tree-making: In this phase, a decision tree is made up
of ’k’ number of features randomly selected from a
subset, which are less than the total number of samples.

These two steps are repeated a certain number of times and
the trees thus formed are combined to make a RF. For a
regression problem, the output of all the trees is combined
and the average value is taken as the predicted value. Figure 6
shows a generic block diagram of RF. The result of RF
model for a regression problem with N number of trees is
represented by (10)

ŷ =
1
N
(

N∑
i=1

yi) (10)

here ŷ is the predicted value and yi is the output of each
decision tree.

C. TRAINING AND OPTIMIZATION OF MACHINE
LEARNING MODELS
The ML models proposed in this work are trained using
Python on Google Colab environment [32]. The mean

FIGURE 6. Block diagram of RF model.

absolute error (MAE), root mean square error (RMSE), and
mean square error (MSE) scores of the suggested models
are assessed to determine the model performance. Equations
(11), (12), and (13) are used to calculate MAE, MSE, and
RMSE, respectively.

MAE =
1
N

N∑
i=1

|ŷi − yi| (11)

MSE =
1
N

N∑
i=1

(ŷi − yi)2 (12)

RMSE =

√√√√ 1
N

N∑
i=1

(ŷi − yi)2 (13)

where ŷ and y are the predicted and computed values of the
output parameter respectively, N denotes the total number of
samples, and i is the index of each sample.

1) HYPER-PARAMETERS TUNING
The most challenging task is to determine the optimal hyper-
parameters for the models. In this study, random search and
grid search are used to obtain the optimized parameters.
In random search tuning process, parameters are chosen at
random from a set of hyper-parameters. In grid search, all
of the parameters are evaluated in order to choose the best
ones. Deep neural networks consist of a large number of
hyper-parameters, and conducting a grid search operation
for each would take considerable time to train. As a result,
random search is applied to find the best MLP and CNN
parameters. Grid search is used to tune the hyper parameters
of the RF.
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TABLE 3. The design parameters used for MLP Model.

TABLE 4. The Parameters used for CNN Model, having a total of 9 layers.

K-fold cross validation is used to further improve the
model’s performance. In this study, k is set to ten folds
(k = 10) for the k-fold cross validation procedure. The whole
data set is divided into 10 sub-groups. The model is trained
using 9 sub-groups and tested using a remaining sub-group
in the first phase. In second phase, a set of alternate 9 sub-
groups is used for training and a sub-group (different from the
testing sub-group during previous phase) is used for testing.
This process is repeated until the model is trained and tested
for all 10 sub-groups of the data set.
TensorFlow library [33] is used to develop the proposed

MLP and CNN models while RF model in this work is
implemented using sklearn library [34]. The input size for
both the MLP and the CNN is set to 14 corresponding to the
input features. Further details of setup of each of the models
is given below.

• MLP: A 5 layer deep MLP model is developed with
stochastic gradient descent as an optimizer. The learning
rate has been selected as 0.0001 and momentum is set to
0.9. The ’Mean square error’ is selected as loss function.
Parameters for the MLP model are listed in Table 3.

• CNN: A 9 Layer deep CNN model is implemented with
stochastic gradient descent as optimizer. The learning
rate is set to 0.0001 and momentum is set to 0.9. The
CNN is made up of 3 convolutional (Conv), 3 max-
pooling (pool) and 3 fully connected (FC) layers. The
mean square error is chosen as loss function for CNN.
The model is trained for 200 epochs. The details of CNN
parameters are shown in Table 4.

• RF: Please note that the RF method does not require
data normalization, so it uses 80%of the non-normalized
input data for training. Table 5 shows the details of
optimized parameters for RF obtained using grid search.

TABLE 5. The Parameters used in designing RF Model.

III. RESULTS
Three ML models discussed above are optimized to predict
PL and RMS-DS in urban vehicular channels. The detailed
discussion on results comparison for output parameters is
given in the following.

A. PATH LOSS PREDICTION
The trained ML models including MLP, CNN and RF are
used to predict PL values for each sample in test data set.
The performance of the MLmodels is assessed separately for
LOS and NLOS scenarios. Table 6 summarizes RMSE values
for the three models in straight road and road intersection
scenarios. It can be observed that RMSE values for MLP,
CNN and RF models for LOS scenario are 2.19 dB, 2.03 dB
and 0.63 dB respectively. Likewise, the RMSE values for
MLP, CNN and RF models in NLOS scenario are 4.06 dB,
2.64 dB and 0.44 dB respectively. The RF model gives the
best PL prediction results with RMSE values less than 1 dB
in both LOS and NLOS scenarios. It must also be noted that
CNN and MLP models also performed well with reasonable
accuracy. The actual and predicted PL values using RFmodel
for straight road scenario and road intersection scenario are
given in Figs. 7 and 8, respectively. The horizontal axis is the
distance in meters between Tx and Rx.

TABLE 6. RMSE comparison of all models for PL predictions in LOS and
NLOS scenarios.

The RMSE plot for PL prediction using MLP, CNN and
RF models in LOS and NLOS scenarios are shown in Figs. 9
and 10 respectively. The RMSE plot for MLP and CNN is
generated as a function of number of epochs for MLP and
CNN models, and for RF the plot is generated as a function
of number of estimators. It was observed that the execution
time for training the RF model on Google Co-lab GPUs is
18 times less than required for MLP model and 25 times less
than required for CNN model for 200 epochs.
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FIGURE 7. Actual and predicted values of PL using RF model for LOS
scenario.

FIGURE 8. Actual and predicted values of PL using RF model for NLOS
scenario.

FIGURE 9. Comparison of RMSE for PL prediction for all three ML models
under LOS scenario.

B. RMS DELAY SPREAD PREDICTION
The same trained ML models including MLP, CNN and RF
are used to predict RMS-DS values for each sample in test

FIGURE 10. Comparison of RMSE for PL prediction for all three ML
models under NLOS scenario.

TABLE 7. RMSE comparison of all models for RMS-DS predictions in LOS
and NLOS scenarios.

FIGURE 11. Actual and predicted values of RMS-DS using RF model for
LOS scenario.

data set. The performance of the ML models is assessed
separately for LOS and NLOS scenarios. RF model again
gives better prediction accuracy than both the MLP and CNN
models. Table 7 summarises RMSE performance of proposed
ML models in both LOS and NLOS scenario. It can be
observed that RMSE values of MLP, CNN and RFmodels for
straight road scenario are 10.6ns, 8.30ns and 5.88ns respec-
tively. Likewise, the RMSE values of MLP, CNN and RF
models for road intersection scenario are 11.0ns, 8.53ns and
1.8ns respectively. The actual and predicted RMS-DS values
using RF model for LOS and NLOS scenario are given in
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FIGURE 12. Actual and predicted values of RMS-DS using RF model for
NLOS scenario.

FIGURE 13. Comparison of RMSE for RMS-DS prediction for all three ML
models under LOS scenario.

FIGURE 14. Comparison of RMSE for RMS-DS prediction for all three ML
models under NLOS scenario.

Figs. 11 and 12 respectively. The convergence of RMSE for
RMS-DS prediction usingMLP, CNN and RFmodels in LOS
and NLOS scenarios as a function of number of epochs are
shown in Figs. 13 and 14 respectively.

IV. CONCLUSION
ML models including RF, MLP and CNN are investigated
for PL and RMS-DS prediction in urban vehicular channels.
The proposed models are trained using the data set generated
through ray-tracing simulations. The data pre-processing,
hyper-parameters optimization and K-fold cross validation
for improving the model performance are included in the
proposed framework. RMSE for RF model in PL prediction
is 0.63 dB and 0.44 dB for LOS and NLOS scenario respec-
tively. MLP and CNN models performed reasonably well
in PL prediction with maximum RMSE values of 2.64 dB
and 4.06 dB respectively. A similar performance in RMS-DS
prediction is observed. RF model gives the best results with
minimum RMSE value of 1.80 ns, whereas MLP model
incurred maximum RMSE value of 11 ns in RMS-DS predic-
tion. The results show that ML models can be used for radio
propagation modeling in urban vehicular channels.
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