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ABSTRACT In wireless communication systems, signal transmission through a channel can not avoid the
influence of noise. When it reaches the receiver, it is accompanied by time delay and attenuation. Therefore,
the observed mixture signals at the receiver are convolutional mixed signals with noise contamination.
To solve the problem of traditional frequency-domain based convolutive blind signal separation methods
have poor separation performance for convolutional mixed signals with noise, this paper propose a
denoise-FastIVA method to separate convolutional mixed signals with noise. The basic principle is to use
a wavelet transform to denoise the observation signal, reduce the effect of noise on the separation effect
of the algorithm, and enhance the robustness of the fast fixed-point independent vector analysis (FastIVA)
separation algorithm to noise. Simulation experiments show the effectiveness of a denoise-FastIVA, under
the condition that the baseband signal of binary phase shift keying (BPSK) and binary frequency shift
keying (2FSK) signal modulation signal is 10 bits respectively,the separation accuracy of linear frequency
modulization (LFM) has increased from 87% to more than 94%; BPSK has risen from 83% to over 97%;
2FSK has improved from 81% to over 95%. When the SNR is greater than 10 dB, the separation similarity
of denoise-FastIVA for the communication mixed signals is more than 90%, and the demixing signal can
demodulate the baseband signal completely and correctly. Baseband signals of experimental BPSK and 2FSK
signal modulation signals are 100 bits respectively. When the signal-to-noise ratio is greater than 5dB, the
signal separated by denoise-FastIVA method has the highest similarity coefficient with the source signal,
and the bit error rate (BER) of the separated BPSK signal and the separated 2FSK signal are the lowest,
compared with the traditional frequency domain demixing method and FastIVA algorithm.

INDEX TERMS Blind source separation, FastIVA, convolution mixing, IVA, wavelet denoising.

I. INTRODUCTION
Blind source/signal separation (BSS) [1], [2] refers to the
method of estimating the source signal only from the received
signals. Independent component analysis (ICA) [3], [4] is
a typical blind signal processing technique used to separate
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independent and non-Gaussian mixed signals with statistical
properties, and is mainly suitable for the separation of linear
instantaneous mixed observation signals. The instantaneous
mixing model which only considers the direct path from
transmitter to receiver is too ideal. In the actual wireless
communication system, the communication signal arrives at
the receiving antenna through different paths, with varying
degrees of attenuation and delay. In the process of signal
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transmission, there must be noise effect. The observed signal
received by the receiver is a convolutional mixed signal with
noise.

At present, the most common denoising method used in
wireless communication systems is wavelet denoising [5],
[6]. Wavelet threshold denoising [6] is based on the
corresponding different coefficients of signal and noise in the
wavelet decomposition, and the wavelet coefficients between
the two are negatively correlated. The effective signal is
extracted by selecting an appropriate threshold value to
achieve the purpose of noise removal. In the latest research,
BSS is also used in signal denoising. For the Ground-based
Synthetic Aperture Radar (GBSAR) technology to obtain
noise in the dynamic deflection data of bridges, Xianglei Liu
et al. proposed a single channel blind source separation signal
(SCBSS) denoising method to obtain the dynamic deflection
of the denoised bridge [7]. For noise in magnetotelluric (MT)
sounding data, Rui Zhou et al. improving the traditional
FastICA method, useful signal is well separated from noise.
The correlation coefficient is used to calculate the number
of field sources, and the fast iterative shrinkage threshold
algorithm (FISTA) is used to adjust the decomposition of
signal amplitude before and after FastICA [8].

The BSS of convolved mixture problem is mainly solved
by the frequency domain method. This method uses the
short-time Fourier transform (STFT) to convert the time
domain convolutional mixing model to the instantaneous
mixing model in the frequency domain, and then the ICA
method is used for separation to obtain the frequency domain
demixing signal. Finally the obtained frequency domain
demixng signal is transformed back into the time domain to
gain the time domain estimation of the source signal. This
method is called frequency domain independent component
analysis (FDICA) [9], [10], [11]. However, the problem
with FDICA method is that the sorting of demixing signals
is random and uncertain. To solve the separation problem
of FDICA method, it is necessary to sort the separation
signals of each frequency point. There are two main sorting
methods at present. The first is to use the phase information
between the spectrums to cluster the independent components
at each frequency point using the estimated direction of
arrival (DoA) [10] of the signal at each frequency point
as a feature to solve the random uncertainty of sorting
the separated signal. The second method is to use the
amplitude information of the signal spectrum, and the signal
correlation between adjacent frequency points of the same
source signal is greater than that between adjacent frequency
points of different source signal [11]. However, the robustness
of this method is poor, resulting in unstable algorithm
separation.

Another effective way to solve the uncertainty of FDICA
random ordering is Independent Vector Analysis (IVA) [12],
[13], [14], [15], [16], [17]. The IVAmethod is an extension of
ICA and can solve the problem of BSS in frequency domain
very well. The IVA method extends the univariate function
in ICA to the multivariate function as the score function,

FIGURE 1. Convolution mixing model.

which makes the data between different frequency points not
separate but related. Thus, the problem of uncertain ordering
of ICA method is solved by using this dependence between
frequency points. The existing literature on IVA mainly
focuses on voice signal [16] and image signal [17], and in
most cases, the influence of noise is directly ignored. Noise is
a non-negligible factor in the actual wireless communication
system. In the literature [18], BPSK signals are separated
from various kinds of interference blindly, but the anti-noise
performance of the algorithm is not strong. The purpose
of this paper is to propose a denoising IVA algorithm for
blind convolutional mixing frequency domain separation in
communication systems.

II. PROBLEM DESCRIPTION
In the actual communication system, when the signal
is transmitted through the wireless channel, noise is an
important factor that can not be ignored, and there will be
varying degrees of attenuation and delay when the signal
reaches the receiver. In other words, the signal observed by
the receiver is a convolutional mixed signal with noise.

Now suppose N independent source signals s(t) =
[s1(t), s2(t), . . . , sN (t)]T are transmitted over a wireless
channel andM observation signals x(t) =
[x1(t), x2(t), · · · , xM (t)]T are received at the receiving end.
Here we only consider additive white Gaussian noise. The
simplified convolution mixing model is shown in Figure 1:

The specific mathematical expression is

xi(t) =
N∑
j=1

hij(t) ∗ sj(t)+ ni(t)

=

N∑
j=1

P−1∑
k=0

hij(k)sj(t − k)+ ni(t), 1 ≤ i ≤ M (1)

where, ∗ is the convolution operator; hji is the coefficients of
an unknown mixed matrix H; P represents the length of the
filter and ni(t) is the noise in the ith observed signal.
The convolution model can be expressed in vector form

x = H ∗ s+ n (2)
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where, ∗ is the convolution operator; x ∈ CM×1 is the
observed signal; H ∈ CM×N is mixed matrix; s ∈ CN×1 is
the source signal; n ∈ CN×1 and is noise.

Time domain convolution mixed signal is transformed into
frequency domain by STFT

xi(ω) =
N∑
j=1

hij(ω)sj(ω)+ ni(ω)1 ≤ i ≤ M (3)

where, xi(ω) =
[
x1i , x

2
i · · · , x

F
i

]
is the frequency domain

signal of STFT of the ith observation signal; sj(ω) =[
s1j , s

2
j · · · , s

F
j

]
is the frequency domain signal of STFT of

the jth source signal. hij(ω) and ni(ω) are the corresponding
coefficient matrix and noise.

Frequency domain index does not affect the derivation of
the algorithm, so it is ignored in the subsequent derivation.
When the time-domain convolution mixed signal is trans-
formed into the frequency domain by STFT, the following
relationship exists at each frequency point

xf = Hf sf + nf , f = 1, · · · ,F . (4)

where, xf =
[
x f1 , x

f
2 , · · · , x

f
M

]
and sf =

[
sf1, s

f
2, · · · , s

f
N

]
are the observed signal and source signal at frequency point
f , respectively. Hf is the coefficient matrix of the frequency
point f , and nf is the noise of frequency point f .
In the derivation of IVA algorithm, it is assumed that the

observed signal does not contain noise.The ideal observation
signal is x̃. The mixing model is x̃ = H ∗ s and the frequency
domain model is x̃f = Hf sf .Therefore, the estimated source
signal can be obtained by finding a demixing matrix wf at
each frequency point. Estimated source signal without noise
is s̃f = wf x̃f = wfHf sf .

If the actual noisy convolutional mixed signals are sepa-
rated directly by the IVA method, the following relationships
exist

yf = wf xf = wf
(
x̃f + nf

)
= s̃f + nf , f = 1, · · · ,F . (5)

where, yf =
[
yf1, y

f
2, · · · , y

f
N

]
represents the actual demixing

signal estimated at frequency point f .
The frequency domain estimation signal yj=

[
y1i , · · · , y

F
i

]
,

i = 1, · · ·N . is obtained by combining the signals of each
frequency point, and then the frequency domain signal is
transformed back to the time domain by inverse short-time
Fourier transformation (ISTFT) to get the estimated source
signal s̃j(t), 1 ≤ j ≤ N .

III. DENOISING INDEPENDENT VECTOR ANALYSIS
ALGORITHM
Formula (5) shows that the observed signal with noise is
separated directly, and separation results are affected by
noise. In this case, a noise reduction independent vector
analysis algorithm named deniose-FastIVA is presented. The
algorithm flow is shown in Fig. 2,

Source signal s(t) passes through a noisy channel and
receives observation signal x(t) at the receiver; x(t) is

FIGURE 2. Flowchart of denoise-FastIVA algorithm.

denoised by a wavelet threshold to get convolution mixed
signal x̂(t); then x̂(t) is transformed STFT to get frequency
domain mixed signal x̂(ω). Afterwards FastIVA algorithm
is used to separate x̂(ω) to get the estimated source signal
ŷ(ω). Finally, ŷ(ω) is transformed back to the time domain
by ISTFT, resulting in the estimated source signal ŝ(t).

A. WAVELET THRESHOLD DENOISING
The wavelet threshold denoising method is based on the
difference of the wavelet coefficients between the signal and
the noise wavelet transform. To achieve the purpose of noise
removal, an appropriate threshold function is used to gain an
effective signal.

1) WAVELET TRANSFORM
Obtain observation signal at receiver x(t), wavelet transform
(WT) is applied to x(t), and the formula is as follows

WTxi (α, τ ) =
1
√
α

∫
+∞

−∞

xi(t)ψ∗
(
t − τ
α

)
dt, α > 0 (6)

where,WTxi (α, τ ) is the coefficient of wavelet transform, (·)∗

means the conjugation of the matrix, α represents the scale
function, and τ is the distance of the shift.
In the process of actual engineering signal or time series

processing, discrete wavelet transform (DWT) is often used to
process engineering signal or time series. Discrete parameters
in wavelet functions:(

Wψxi
)
(α, τ ) =

〈
xi(t), ψα,τ

〉
, i = 1, · · ·M . (7)

Discretize the α and τ parameters in (7), α = 2−j, τ =

2−jk, j, k ∈ Z . Thus, discrete wavelet transform(
DWψxi

)
(j, k) =

〈
xi(n), ψj,k (n)

〉
ψj,k (t) = 2

j
2ψ

(
2jn− k

)
, j, k ∈ Z . (8)
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In (6), ψ(x) employs Haar wavelets, and the wave function is

ψ =


1, 0 ≤ x ≤

1
2

−1,
1
2
≤ x ≤ 1

0, others .

(9)

where x is a dummy variable.

2) THRESHOLD FUNCTION
xi(t) corresponding wavelet coefficient DWψxi is obtained
through DWT. Based on model xi(t) =

∑N
j=1 hij(t) ∗

sj(t) + ni(t). Choose an appropriate threshold to get a useful
signal, this article makes use of unbiased risk estimation
thresholds (rigrsure). The absolute value of each element
in signal xi whose length is L is sorted from small to
large, then the elements are squared to get a new signal
sequence.

f (k) = (sort (|xk |))2 , (k = 0, 1, 2 · · · L − 1) (10)

If the threshold value is the square root of the k-th
element of f (k), that is λk =

√
f (k). The risk from this

threshold is

Risk(k) =

[
L − 2k +

k∑
f (j)+ (L − k)f (L − k)

]
/L.

(11)

Threshold λ =
√
f (kmin) is obtained from the value

corresponding to the minimum value in Risk(k). The
threshold function uses the soft threshold function, which is

ω̂j,k =

{
sgn

(
ωj,k

) (∣∣ωj,k
∣∣− λ) , ∣∣ωj,k ∣∣ ≥ λ

0
∣∣ωj,k ∣∣ < λ.

(12)

where, ωj,k is the wavelet coefficient vector and λ is the
picked threshold.

The denoised mixed signal x̂(t) is gained from reconstruct-
ing the wavelet coefficients selected by the
threshold.

B. INDEPENDENT VECTOR ANALYSIS
After the observed signal passes through the wavelet
threshold denoising method, the current mixed signal x̂(t) =[
x̂1(t), x̂2(t), · · · , x̂M (t)

]T can be expressed as

x̂ = H∗s (13)

where, ∗ is the convolution operator, H ∈ CM×N is an
unknown mixed matrix, s ∈ CN×1 is source signal.
Transform x̂(t) to below frequency domain taking advan-

tage of STFT method

x̂i =
N∑
j=1

hijsj 1 ≤ i ≤ M . (14)

where, x̂i =
[
x̂1i , x̂

2
i · · · , x̂

F
i

]
represents the frequency

domain signal of the ith mixed signal. The relation of each
frequency point can be expressed as

x̂f = Hf sf f = 1, · · · ,F . (15)

By finding the demixing matrix wf for each frequency
point, the estimated source signal, ŷf , can be obtained.

ŷf = wf x̂f f = 1, · · · ,F . (16)

where, ŷf =
[
ŷf1, ŷ

f
2, · · · , ŷ

f
N

]
is the demixing signal of the

de-noised observed signal estimated at frequency point f .
The ith source signal, ŷi =

[
ŷ1i , ŷ

2
i , · · · , ŷ

F
i

]
, is obtained by

estimating the signal at each frequency point.

1) COST FUNCTION OF IVA
The cost function of the IVA algorithm is to separate
the observed signals by maximizing the independence of the
output signal ŷi. It can also be achieved by minimizing the
mutual information between the estimated source component
vectors.

The cost function of IVA algorithm is expressed by mutual
information

I (ŷ) = KL

(
pŷ‖

∏
i

pŷi

)
=

∫
pŷ(z) log

pŷ(z)∏
i pŷi (zi)

dz

(17)

where, KL is the calculation formula of divergence,
ŷ =

[
ŷ1, ŷ2, · · · , ŷN

]
is the estimated source signal vector

after denoising, ŷi =
[
ŷ1i , ŷ

2
i , · · · ŷ

F
i

]
represents the ith

estimated source signal vector, pŷ(z) is the probability density
of random variable ŷ.

According to the scattering principle, the cost function of
IVA could be expressed as

IIVA , I
[
ŷ1, · · · , ŷN

]
=

N∑
n=1

H
[
ŷn
]
− H

(
ŷ1, · · · , ŷN

)
=

N∑
n=1

H
[
ŷn
]
− H

(
w[1]x̂[1], · · · ,w[F]x̂[F]

)
=

N∑
n=1

H
[
ŷn
]
−

F∑
k=1

log
∣∣∣det (w[f ]

)∣∣∣− C . (18)

where, H
(
ŷn
)
represents the differential entropy of the nth

source estimated component vector. According to linear
transformation entropy H (ŷ) = log | det(w)| + H (x̂), then
C = H

(
x̂[1], · · · , x̂[F]

)
is a constant.

In the light of relation

H
(
ŷn
)
=

∑
f

H
(
ŷ[f ]n
)
− I

(
ŷn
)
. (19)
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transform (20) into the following form

IIVA =
N∑
n=1

(
F∑
k=1

H
(
ŷ[f ]n
)
− I

(
ŷn
))

−

F∑
k=1

log
∣∣∣det (w[f ]

)∣∣∣− C . (20)

It is known from (22) that the minimizing cost func-
tion minimizes the entropy of all components simultane-
ously and maximizes the mutual information within each
estimated source component vector simultaneously. The
mutual information calculation part of the cost function
is the key to solve the ‘‘alignment’’ problem of multiple
datasets.

The update matrix w is normalized, that is, the unit
orthogonal matrix, which satisfies

∑F
k=1 log

∣∣det (w[f ]
)∣∣ = 0,

so the cost function is simplified to

IIVA =
N∑
n=1

(
F∑
k=1

H
(
ŷ[f ]n
)
− I

(
ŷn
))
− C . (21)

2) OPTIMIZATION METHOD
In order to derive an effective IVA separation algorithm,
two methods, natural gradient and fast fixed point, are
often used for optimization. However, the natural gradient
method has a slow convergence speed and needs to choose
an appropriate learning rate when optimizing the objective
function.Here, the IVA algorithm based on fast fixed point
(FastIVA) is adopted. The update of the demixing matrix
of FastIVA algorithm does not need to select the iteration
step size, and it has faster convergence speed. The iteration
formula is

IIVA =
N∑
n=1

E
[
G
(∣∣ŷn∣∣2)] . (22)

where G (z) =
√
z is a nonlinear function, z is a dummy

variable. Newton method is adopted to work out the extreme

value of
[
G
(∣∣ŷn∣∣2)] under constraint ŷfn =

(
wf
n

)H
xf and∥∥∥wf

n

∥∥∥ = 1, and the updated formula of the separation matrix
obtained is

w[f ]
n ← E

[
G′
(∣∣ŷn∣∣2)+ ∣∣∣w[f ]

n

∣∣∣2 G′′ (∣∣ŷn∣∣2)]w[f ]
n

−E
[(
ŷ[f ]n
)∗
G′
(∣∣ŷn∣∣2) x̂f ] . (23)

where, w[f ]
n is the nth row of update matrix w[f ], G′ (u) =

dG (u) /du and G′′ (u) = d2G (u) /du2, u is a dummy
variable. After obtaining the updated matrix w[f ], it is stan-
dardized to ensure its orthogonality, and the standardization
formula is as follows:

w[f ]
←

(
w[f ]

(
w[f ]

)H)−1/2
w[f ]. (24)

where, (·)H is conjugate transpose.

The denoise-FastIVA algorithm is shown below.

step 1: Input xi(t).
step 2: Wavelet threshold denoising for xi(t), output x̂i(t).
step 3: STFT x̂i(t), output x̂i(ω).
step 4: Calculating initial separation matrix wf using joint
appro-

ximate diagonalization of eigen-matrices (JADE)
algorithm

according [19].
step 5: Calculate estimated source ŷ[f ]n .

step 6: w[f ]
←

(
w[f ]

(
w[f ]

)H)−1/2w[f ].

step 7: If the separation matrix is optimal, skip to the next
step, other-

wise skip to step 5.
step 8: ŷf = wf x̂f .
step 9: ISTFT ŷ(ω), output ŝ(t).

IV. SIMULATION EXPERIMENTS AND DISCUSSIONS
In this section, the simulated communication convolution
mixed signal is used for separation, and the Pearson
correlation coefficient and bit error rate (BER) are used as
the performance evaluation indicators of signal separation.

A. SEPARATION PERFORMANCE
About separation results of convolution mixed signals with
noise, this paper uses correlation coefficient and BER to
evaluate the performance of the separation algorithm.

1) CORRELATION COEFFICIENT
The correlation coefficient can be used to reflect the linear
correlation degree between two random variables. Assuming
there are two variables, X and Y , the correlation coefficients
between the two variables can be calculated as follows

ρX ,Y =
cov(X ,Y )
σXσY

=
E ((X − µX ) (Y − µY ))

σXσY

=
E(XY )− E(X )E(Y )√

E
(
X2
)
− E2(X )

√
E
(
Y 2
)
− E2(Y )

(25)

where cov (X ,Y ) is covariance of X and Y . σX and σY are
the standard deviations of X and Y , respectively. µX and µY
are the mean values of X and Y , respectively. E (·)means the
mean.

2) BIT ERROR RATE
BER is a measure of the accuracy of data transmission over a
specified time.

BER =
Number of error bits in transmission
Total number of bits transmitted

× 100%

(26)

where, × is multiplication operation.
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FIGURE 3. Waveform diagram of source signal and observation signal.
The baseband signals of BPSK and 2FSK are {1110010101} and
{1010100100} respectively. The task of blind separation is to separate the
source signal from the observed signal.

B. SIMULATION RESULTS
This section realizes the separation of three indepen-
dent modulation signals through simulation experiments.
In the simulation, three kinds of modulation signals with
50000 sample points are generated by MATLAB. The first
signal is a linear frequency modulation (LFM) signal with
a center frequency of 5GHz; The second signal is a BPSK
signal with a carrier of 100MHz, resulting in a total of 10 code
element; The third signal is a 2FSK signal with carrier divided
into 100MHz and 500MHz, resulting in a total of 10 code
element. The waveform is shown in Fig.3 (a). In subsequent
experiments, A(·) is used to indicate the amplitude. Three
modulation signals are passed through a 10-order convolution
filter, and the filter coefficients follow a Gaussian distribution
in the range [0, 1]. The mixed signals are obtained by adding
g aussian white noise with SNR of 30dB. Waveforms are as
shown in Fig.3 (b):

FIGURE 4. Observation signal STFT time-frequency diagram.

TABLE 1. Correlation coefficient between source signal and separation
signal with noise.

1) NOISY SIGNAL SEPARATION SIMULATION
After the observation signals are obtained, the observation
signals need to be whitened processing firstly. Then the
observed signal is transformed into the frequency domain by
STFT. Hanning window is selected as the window function of
STFT, with the length of 1024 and the sliding length of 768.
Its time-frequency diagram is shown in Fig.4 (a), (b) and (c):

FDICA method is used to separate the frequency domain
mixed signal obtained by STFT. The FastIVA method used
in this paper uses JADE algorithm to get initial values, and
Newtonmethod for optimization, so the FastIVAmethod used
in this paper is more complex. However, FDICA has random
uncertainty in sorting the results at each frequency point. This
experiment takes advantage of greater correlation between
homologous adjacent frequency points to sort each frequency
point, and the results are as follows Fig.5 (a). In addition,
the frequency domain mixed signals are separated using
the FastIVA algorithm. The separation results are shown
in Fig.5 (b). From the waveform of the recovery signal,
FastIVA separates better overall, and FDICA distorts part
of the separated 2FSK signal. FastIVA can basically recover
three modulated signals. Table 1 is given by calculating the
correlation coefficient between the source signal and the
separated signal.

FDICA only has a good separation effect on LFM signals,
and the correlation coefficient is 86.48%. It has a poor
separation effect on 2FSK signals and BPSK signals. The cor-
relation coefficients of the three modulation signal separation
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FIGURE 5. Separation results of noisy mixed signals.

obtained by FastIVA method are 81% and above, which can
separate convolution mixed signals well. Combined with the
separated waveform graph, FastIVA is better than FDICA
in separating convoluted mixed signals of three modulated
signals.

The separated BPSK and 2FSK signals are demodulated
and the waveforms are obtained as shown in Fig. 6 (a) and (b).
When demodulating separated 2FSK and BPSK signals, SER
of FDICA separated 2FSK signals is 20%, and BER of BPSK
signals is 30%. FastIVA separated 2BSK and BFSK signals
demodulate the baseband signal completely and correctly
without error codes.

2) DENOISING SIGNAL SEPARATION SIMULATION
The 30dB white Gaussian noise is considered in the
convolution mixed signal. Formula (5) shows that noise has
some influence on signal separation. After receiving the noisy
observation signal, wavelet threshold denoising is performed
on the noisymixed signal, and then FDICA is used to separate

FIGURE 6. Demodulation result of noisy separated signal.

TABLE 2. Correlation coefficient between source signal and de-noise
separate signal separated signal.

the mixed signal. The algorithm is defined as denoise-
FDICA. The result waveforms of denoise-FDICA and
denoise-FastIVA separation are shown in Fig. 7 (a) and Fig. 7
(b), respectively. Analyzing the waveforms in Figure 7(a)
and (b), the separation effect of denoise-FastIVA is better.
Compared to Fig. 5(b), the waveform of Fig. 7(b) is more
similar to the source signal waveform.

Calculate the correlation coefficient of each separated
signal and the source signal to get Table 2.

After denoising the observed signal, the correlation
coefficient calculated by signal separation can be signifi-
cantly improved. Compared with the similarity of FastIVA
demixed results, the correlation coefficient of LEM signal
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FIGURE 7. Denoising mixed signal separation saveform.

increased from 88.15% to more than 94.73%. The correlation
coefficient of BPSK signal enhanced from 83.87% to more
than 97.58%. the correlation coefficient of 2FSK signal
improved from 81.43% to over 95.53%.

The correlation coefficient between the signal and the
source signal separated utilizing the denoise-FastIVAmethod
is more than 94%. It shows that the separated signal
has a strong correlation with the source signal, and the
denoise-FastIVA can well separate the convolution mixed
signal with noise.

Demodulate the BPSK and 2FSK signals in the sepa-
rated signals obtained making use of denoise-FDICA and
denoise-FastIVA. The baseband signals gained are shown
in Fig. 8 (a) and (b).

In Fig. 8, the result of 2FSK signal demodulation obtained
by denoise-FDICA does not appear error codes, which is
lower than that of the demodulation of separated signal
of FDICA. The denoise-FastIVA separates the demodulated
baseband signal without error codes. Experiments show

FIGURE 8. Demodulation results of denoising mixed signal separation
results.

that under the condition of SNR=30dB, compared with
the traditional algorithm, denoise-FastIVA has a certain
improvement in the separation effect of convolution mixed
signals.

C. SEPARATION SIMULATION UNDER DIFFERENT
SIGNAL-TO-NOISE RATIO CONDITIONS
Noise has some influence on the algorithm. In previous
experiments, only 30dB noise signal is considered. Demixing
of separation algorithms considering different SNR. The
correlation coefficient between the separated signal and the
source signal is calculated as shown in Fig. 9.

As can be seen from Fig. 9, when 0 dB < SNR < 30 dB,
compared with the traditional separation algorithm, the
denoise-FastIVA proposed in this paper can better separate
the source signal. Under the condition of 0 dB < SNR <

5 dB, the correlation coefficient of the denoise- Fastiva
separated signal is 60% ∼ 80%, and the source signal can be
basically recovered. Under the condition of 5 dB < SNR <
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TABLE 3. Separate signal demodulation results.

FIGURE 9. Separation correlation coefficients at different SNR.

10 dB, the correlation coefficient of denoise-Fastiva method
separated signal is above 80%, which can separate mixed
signals well. When 10 dB < SNR < 30 dB, the correlation
coefficient of the denoise-FastIVA separated signal can reach
more than 90%, and the mixed signal can be very well
separated.

Demodulate BPSK and 2FSK in the separated signal and
calculate the BER. The results are shown in Table 3.

Table 3 shows that BPSK and 2FSK signals separated by
denoise-FDICA and FastIVA methods have error bits when
demodulated under 0 dB < SNR < 10 dB conditions.
The demodulation result of denoise-FastIVA only has 2FSK
signal demodulation errors occur. There is no error symbol in
the demodulation of demixing result of the denoise-FastIVA
when 10 dB < SNR < 30 dB, but denoise-FDICA
separation results showed wrong symbols in demodulation.
When 10 dB < SNR < 20 dB, FastIVA demixing result
demodulates with error symbols.

To further analyze the separation of denoise-FastIVA
methods, the simulation model shown in Fig. 10 is designed
for analysis.

One signal sends 100 bits baseband signal, and after
2FSK modulation, the carrier frequencies are 100MHz
and 500MHz, respectively. One signal sends 100 bits

FIGURE 10. System simulation model.

FIGURE 11. Separation correlation coefficients at different SNR.

baseband signal, passes BPSK modulation, carrier frequency
is 500MHz. The two signals are then convoluted and mixed
with LFM signal with a center frequency of 5GHz. After
adding some noise, it is separated by denoise-FastIVA
algorithm to demodulate BPSK and 2FSK signals in the
separated signal, and the BER is calculated.
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FIGURE 12. BER for separate signal demodulation.

Each signal contains 50000 sample points, Separating
mixed signals using different separation algorithms. In this
section, each separation algorithm is tested 20 times under
the same conditions, and the optimal results are obtained. the
mixed signal is separated by a separation algorithm as shown
in Fig.11 and Fig.12.

Figure 11 shows the curve of the correlation coefficient
of the separated signal with the SNR under different SNR
conditions. It can be seen that the performance of the three
separation methods decreases with the decrease of SNR.
When 0 dB < SNR < 30 dB, compared with the two
other separation methods, the denoise-FastIVA proposed
in this paper can better separate the source signal. When
5 dB < SNR < 30 dB, the denoise-FastIVA method has
the best separation effect. Under condition 10 dB < SNR <
30 dB, The correlation coefficients of signals separated by
denoise-FastIVAmethod can both be more than 90%, and the
signal can be better separated.

Fig.12 shows the BER curves of BPSK and 2FSK separated
by different separation methods with different SNR. It can be
seen that with the decrease of SNR, the performance of the
three separation methods decreases. When 0 dB < SNR <

30 dB, compared with the two other separation methods, The
BER of BPSK signal and The BER of 2FSK signals in the
demixing signal obtained by the denoise-FastIVA are lower.
The denoise-FastIVA has the best separation performance.
When 20 dB < SNR < 30 dB, both BER of BPSK and BER
of 2FSK signals are 2%, denoise-FastIVA can separate signals
very well. Under condition 10 dB < SNR < 20 dB, the BER
of BPSK and 2FSK increased gradually, but both were less
than 7%, denoise-FastIVA can separate signals well. When
0 dB < SNR < 5 dB, The BER of 2FSK signal is more than
10%, and the denoise-FastIVA method is poor.

V. CONCLUSION
In the wireless communication system, noise has a great
influence on frequency domain blind source separation
algorithm, so the research on noise reduction and separation

is of great significance. In this paper, a denoising IVA
convolution mixed frequency domain blind signal separation
algorithm is studied. The principle is to denoise the noisy
observation signal using the wavelet threshold denoising
method to reduce the influence of noise on the IVA algorithm.
The algorithm separates three modulation signals under
different SNR, which makes the IVA algorithm have better
anti-noise ability.

How to separate convolution mixed signals under low
signal-to-noise ratio and strong interference conditions is an
important research direction in the future. And this paper
only considers the wavelet threshold denoisingmethod. Other
denoising methods will be studied in the future.
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