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ABSTRACT Empirical mode decomposition (EMD) and its variants are adaptive algorithms that decompose
a time series into a few oscillation components called intrinsic mode functions (IMFs). They are powerful
signal processing tools and have been successfully applied in many applications. Previous research shows
that EMD is an efficient algorithm with computational complexity O (n) for a given number of IMFs,
where n is the signal length, but its memory is as large as

(
13+ mimf

)
n, where mimf is the number of

IMFs. This huge memory requirement hinders many applications of EMD. A physical or physiological
oscillation (PO) mode often consists of a single IMF or the sum of several adjacent IMFs. Let mout denote
the number of PO modes and, by definition, mOut ≤ mimf . In this paper, we will propose a low memory cost
implementation of EMD and prove that the memory can be optimized to (2+ mout) n without aggravating
the computational complexity, while gives the same results. Finally, we discuss the optimized memory
requirements for different noise-assisted EMD algorithms.

INDEX TERMS EMD, EEMD, CEEMD, memory cost.

I. INTRODUCTION
EMD [1] is a relatively recent algorithm of time series anal-
ysis that is nonlinear and adaptive in nature. The results of
applying EMD to time series data in general is the decompo-
sition of a signal into multiple components, known as IMFs,
through a featured sifting process. The IMFs are extracted at
different time scales, ranging from small to large, by iterating
the sifting process. In each iteration, the local maxima (resp.
minima) are detected and then connected using cubic spline
interpolation (CSI), which is the most commonly adopted
approach for EMD [2], thus forming the upper (resp. lower)
envelope. Then, the mean of the upper and lower envelopes,
which is in general a relatively slow oscillating signal, is sub-
tracted from the previous input, known as a prototype (proto-)
IMF, to get a new proto-IMF. When the sifting has been
repeated for a number that is a priori set by the researcher, the
resulting series will be deemed an IMF and is then subtracted
from the original signal, whose result is in turn used as the
input signal for the next stage of IMF extraction.

The associate editor coordinating the review of this manuscript and

approving it for publication was Olutayo O. Oyerinde .

EMD sometimes suffers from the phenomenon known as
mode-mixing [3], [4], [5], [6], [7], [8], the later developed
disturbance-assisted EMD algorithms (DA-EMD) such as
EEMD [4], CEEMD [5], masking EMD [6], UPEMD [7],
and MEMD [8] that contain the original EMD as the kernel
of the algorithms, can be applied to overcome this problem.
The DA-EMD algorithms have been successfully applied in
diverse fields including physics [1], mechanical system [9],
image analysis [10], biomedicine [11], and electrical engi-
neering [12], to name a few.

EMD and its variants have many applications. First,
an IMF or the sum of several adjacent IMFs often corresponds
to a particular physical/physiological mechanism/source [1],
[7], [10]. In addition, the IMFs can also be used as the
inputs to a neural-network [13]. Finally, EMD can serve as
an adaptive filter in which case the sum of selected IMFs can
be taken as the denoised signal [12].

Computation complexity and memory cost are two key
indices to measure the efficiency of EMD [14], [15], [16].
Previous research indicates that the EMD is a computation
efficient algorithm [17] with complexity O(n) for a given
number of IMFs [18]. However, it was shown that its memory
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cost is M =
(
13+ mimf

)
n, where n is the data length, and

mimf is the number of IMFs [18]. Although it is linear [19],
but with a coefficient as large as 13+ mimf .
Suppose that EMD is applied as a bandpass filter and the

input signal is decomposed into 7 IMFs, i.e., mimf = 7. Then
the total factor is 20. Such a huge memory requirement will
hamper many applications of EMD. For instance, it remains
a challenge to implement real-time DA-EMD via a pure soft-
ware approach in a computation andmemory resource limited
micro-controller (MCU) [20], [21]. Consider implementing
EMD on a 32 bit MCU in a wearable device, where EMD
is applied to a 30-s electroencephalography (EEG) signal
sampled at 250Hz, i.e., n = 7, 500. The memory requirement
for applying EMD as a single bandpass filter is 600 kB, which
is far beyond the memory limit of an MCU [22].

Moreover, when EMD is applied to GPU parallel computa-
tions, large memory demands may lead to excessive memory
allocations and transfer, which may dramatically increase the
run-time [23], [24], [25].

We propose in this article a low memory cost EMD imple-
mentation called low-memory EMD (LMEMD) in order to
optimize the memory while giving the identical results as the
original EMD. According to [18], the memory cost of EMD
consists of three parts.

part 1). The output IMFs requires mimf n (float).
A physical or physiological oscillation (PO) mode often

consists of a single IMF or the sum of several adjacent IMFs.
Let mout denote the number of PO modes and mOut ≤ mimf .
Then this part of memory can be reduced to moutn.
part 2). The CSI procedure requires 10n (float).
To reduce the needed memory storage, the entire signal

is often partitioned into windows of fixed length. Each side
of the window is then extended by a fixed overlap length
to reduce the boundary error and to ensure the continuity
between adjacent time windows [18], [20], [26], [27], [28],
[29]. Then EMD is executed in each window sequentially
from left to right.

However, these approaches still have a few drawbacks.
First, the memory cost is never investigated in detail. Sec-
ond, they invoke some empirical criteria for the overlap
lengths. Moreover, the discarded data might introduce bound-
ary errors [30] that will propagate into interior domain, but the
error of an IMF has never been precisely analyzed because
the mathematical theory of EMD is far from complete [31].
If the overlap length is too short, the boundary error effect
will be large. If the overlap length is too long, it will increase
the memory usage.

It is recently proved that the boundary error caused by
the window-wise approach decays exponentially fast with
the number of local maxima (resp. minima) in the overlap
region [32]. Let nL , nR, and nC denote the number of local
maxima (resp. minima) in the left overlap, right overlap, and
central region, respectively in Fig. 1(a), and their values are
(window) frame independent. We will prove that as nR and nL
exceed a certain number, the errors of the CSI and any IMF

will achieve machine zero, and the required memory can be
reduced to 8nw. Since the memory in the CSI is proportional
to the window size nw(= nL + nc + nR), if we opt to choose
nw � n, the memory cost in the CSI procedure becomes
negligible.

part 3). The input signal and working memory require 3n
(float).

We will apply an alternative-envelope-sliding-window
(AESW) approach as illustrated in Fig. 1(b) so that the signals
before and after a sifting iteration can share the samememory
to reduce the memory to 2n.
The paper is organized as follows. Section II summarizes

the concepts and algorithms of CSI and EMD. Section III
proposes the method of LMEMD and proves the above
statements concerning its memory cost. In Section IV,
we present the experimental results of the LMEMD on a per-
sonal computer. Section V concludes the paper with a brief
discussion.

FIGURE 1. Schematic of the sliding window for LMEMD. (a) u
(
t
)
; (b) The

AESW approach in LMEMD. The windows are processed in sequential
order ¬, , ® · · · .

II. EMD BASICS
A. CUBIC SPLINE
Given an input signal x(t) ∈ Rn, t = 1, 2, · · · , n. Let
[γk ] , 1 ≤ k ≤ K denote the position of the k-th local
maximum of x(t) and 0k = x(γ k ), the local maximum value.
The entire time duration of the processed signal, I , is decom-
posed into sub-intervals: Ik [γkγk+1), 1 ≤ k < K with-
out overlapping. Let hk = γk+1 − γk denote the scale
length.

The upper envelope u (t) is constructed piecewise using a
series of (piecewise) cubic polynomials uk (t) that enforce the
continuities of u, u′(t) and yk , u′′(t) at the local maxima
[33], [18]. The vector composed by second derivatives of
uk (t; γk , 0k ) is then given by the following tridiagonal system
of linear equations:

A⇀y =
⇀

d ,
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where

A =



b2 c2
a3 b3 c3

. . .

ak bk ck
. . .

aK−2 bK−2 cK−2
aK−1 bK−1


,

ak = hk−1, bk = 2(hk−1 + hk ), ck = hk ,

dk = 6 [(0k+1 − 0k) /hk − (0k − 0k−1) /hk−1] (1)

In particular, note that the size of the matrix A is (k − 2) ×
(k− 2). Natural boundary conditions y1 = yK = 0 have been
imposed in (1). Let τ = t − γk for t sitting in Ik . After

⇀y is
found numerically, the functional dependencies of uk (t) can
be written as follows [32]:

uk (t) = uk
(
t − γk ; yk , yk+1, x(γ k

)
, x(γ k+1))

= uk
(
τ ; yk , yk+1, x(γ k

)
, x(γ k+1)). (2)

The lower envelope l(t) can be constructed in the same way.

B. EMD ALGORITHM
EMD consists of a main procedure with multiple stages (the
actual number of needed stages is determined by the specific
data to be processed) in which a particularly important opera-
tion called sifting (function SIFT) is iterated for several times
at every stage except the last one. Let x (t) and x̃ (t) be the
proto-IMF before and after the sifting iteration. The sifting
iteration is as follows.

x̃ (t) = x (t)− [u (t; x (t))+ l (t; x (t))] /2 (3)

Sifting Procedure: x̃ (t) = SIFT(x (t))
1: Identify the local maxima and the local minima.
2: Solve for the maxima ⇀y and compute u (t)
3: Solve for the minima ⇀y and compute l (t)
4: Obtain the proto-IMF x̃ (t) by (3).

In the original EMD algorithm, there is nothing like step 5
above, and, instead step 6 here is what is to be executed. The
details of step 5 will explained soon in the next section, and
this step is of some novelty and of particular importance in
our realization and applications of LMEMD.

III. THE LMEMD ALGORITHM
A. OPTIMIZATION OF THE OUTPUT MEMORY
Aphysical/physiological oscillation (PO)modemay either be
represented by a single IMF or by the sum of several adjacent
IMFs. Let mout denote the number of PO modes and thus
mOut ≤ mimf . Suppose that only the PO modes are really
required for the specific scientific/engineering application at
hand, then it is not necessary to store all the IMFs simulta-
neously, thus allowing a way to reduce the output memory.
The algorithm is listed above in our version of the main
procedure of the EMD algorithm in which step 5 instead of

EMD: Main Procedur
Input: signal x (t), number of IMFs mIMF , and number of
siftings ns.
Output: all IMFs Cm(t),m = 1 : mIMF or all PO modes
POm(t),m = 1 : mout .

1: Set residue R0 (t) = x (t).
2: for m = 1 : mimf − 1
3: Set proto-IMF x (t) = R (t).
4: for s = 1 : ns

Apply one sifting to obtain x̃ (t) = SIFT (x (t)).
if (apply LMEMD)

5: if (m ∈ POk ) Set POk = POk + Cm(t).
else (apply original EMD)

6: Output Cm(t)
7: Compute residue Rm (t) = x (t)− Cm(t).

step 6 is executed. For an example, if EMD is applied as a
bandpass filter [34], thenmout = 1. An example will be given
in Section IV.

B. OPTIMIZATION OF THE CSI MEMORY
In order not to repeat essentially identical derivations, here
we choose to analyze the properties of the upper envelope,
and those similar assertions for the lower envelope can be
obtained in a completely analogous way.

1) BOUNDARY ERROR AND LOCAL PROPERTY OF THE
RESPONSE
In the following, ywill stand for the response vector/function
and let δy denote the referred boundary error whose detailed
definition is given in the following.

We first analyze the local property of ⇀y for the upper
envelope using the entire domain t ∈ I . Denote by V
the inverse of the matrix A in (1), writing out its columns,
V [⇀v2, · · ·

⇀vK−1][vi,j], where
⇀v j = [v2,j, · · · , vK−1,j]T . Let

⇀e j be the unit vector with a one in the j-th entry and zero
elsewhere, i.e., ⇀e j = [· · · , 0, 1, 0 · · · ]T . The solution ⇀v j
due to an impulse vector ⇀e j satisfies the equations: ⇀v j =
V⇀e j. Therefore, vi,j can be interpreted as the response at the
i-th knot (position of a local maximum) due to an impulse at j.
After vi,j has been obtained, the solution ⇀y can be expressed
as the linear combination of ⇀v j as follows.

⇀y = d2
⇀v2 + d3

⇀v3 + · · · + dK−1
⇀vK−1 (4)

Let ri,j denote the decay rate of yi at i due to an impulse
at j, and ξi denote the scale ratio at i.

ri,j
vi+1,j
vi,j

, 0 < ξi
hi−1
hi
=
γi − γi−1

γi+1 − γi
(5)

Theorem 1: The ri,j are localized and ‘‘causal’’, meaning
that: for i < j,
(a): r2,j = −2 (1+ ξ2)< −2,

ri,j = −2
[
1+

(
1+

1
2ri−1,j

)
ξ
i

]
< −2, i > 2. (6)

(b): ri,j is independent of position j.
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The proof of statement 1(a) is given in [32], and 1(b)
directly follows from 1(a). It indicates that vi,j decays expo-
nentially with distance |i− j| with decay rate

∣∣ri,j∣∣ > 2.
It implies that ⇀v j and

⇀y j are very localized in the sense that
the impulse at j mainly affect its nearby local maxima.

We next investigate the local property of δy using a segment
of data t ∈ wui =

[
γp−1γq+1

]
as shown in Fig. 1. Let nw,

nC , nL and nR denote the numbers of local maxima points
in wui, wuci, wuLi and wuRi (the definitions of these intervals
are demonstrated in Fig. 1), respectively, and nC is a fixed
number. For the sake of convenience, let us use the following
convention: if a f is a function that depends on the entirety
of the input data, i.e., t ∈ I , we then let the function f ∗

with superscript ‘‘∗’’ denote the ‘‘truncated’’ version of the
function that only depends on t ∈ wui, which is obtained by
throwing away the input data outside this particular interval
but still enforcing the interpolation and continuity require-
ments. Also, let δf , f ∗ − f denote the error caused by
discarding boundary data. Also let q + 1 and Q denote the
indices of last local maxima in wuRi and wuci. WLOG, set
nL = nR, then

nRq− Q+ 1, and nw = 2nR + nC (7)

Theorem 2: There exists a number ρ, which depends on
the specific signal being processed, such that if nR ≥ ρ, the
boundary error δyk in the central window, wuci, will be zero
in a processor

We will prove Theorem 2 in Theorem 5 and Theorem 7
later. The objective is to establish Theorem 2 and to find the
value of ρ as small as possible in order to reduce the size of
the overlap window wuLi and wuRi.
Following [32], since x (t) = x∗(t) in t ∈ wui, it leads to

δdk = d∗k − dk = 0 for p ≤ k ≤ q. Then the equations of
δ
⇀y⇀y
∗
−

⇀y are written as


ap bp cp

ap+1 bp+1 cp+1
. . .

aq−1 bq−1 cq−1
aq bq cq





δyp−1
δyp
.

.

.

δyq
δyq+1


=


0
0
...

0
0


(8)

Let Aw be a submatrix of matrix A in (1) formed by
taking the rows and columns ranging from p to q. Move the
terms apδyp−1 and cqδyq+1 in the first and last equation from
LHS to RHS. Following the same procedure in deriving (4),
it yields

Awδ
⇀y = βp

⇀ep + βq
⇀eq,

δ
⇀y = βp

⇀vp + βq
⇀vq, βq = −hqδyq+1 = −hqyq+1 (9)

Vector δ⇀y is obtained by the linear combination of ⇀vp and
⇀vq.

Without loss of generality (WLOG), consider δ⇀y = βq
⇀vq.

The last equality in (9) holds because of the BC, y∗p−1 = 0.
Note that yq+1 on the RHS of (9) remains unknown and must

be solved numerically. Let k̄ = q − k > 0 as the distance
between local maximumwith index k and impulse position q.
Define the average decay rate r̄ from q− 1 to k , recalling the
definition as in (5), by

r̄ k̄rk,qrk+1,q · · · rq−1,q, where k̄ = q− k (10)

Lemma 3:

vk,q = r̄−k̄vq,q and

δyk = vk,qhqyq+1 < 2−k̄
∣∣vq,qhqyq+1∣∣ .

Proof: The decay rate ri,j is obtained by recursively
applying (6) from i = p to q. Next, vq,q is obtained by (1)
with index q and dq = 1 as follows:

vq,q = (aq/rq−1 + bq)
−1 (11)

Finally, vk,q is recursively obtained backward from
i = q− 1 to k using (5) and (10). �
An example of the curve δyk versus local maximum index k

are plotted on the red curve in Fig. 2, which shows that |δyk |
decays exponentially with the distance to the right boundary
|q+ 1− k|.

2) EFFECT OF BOUNDARY ERROR δy ON ρ

Definition 4: Machine zero (0). If a number z is identified
and treated as zero in a processor, i.e., z ; 0, then z is
called machine zero. Similarly, if two numbers z1 and z2 are
identical in processor, then the difference between these two
numbers is also called machine zero, i.e., z2 − z1 ; 0 or
z1 ; z2.

FIGURE 2. Estimation of ρ for the white noise in Example 2. In this
example δy and 1y intersects at point Q+ 1 so that ρ is estimated from
the intersection point. Based on the figure, it yields
ρ = q−Q+ 1 = 48− 21+ 1 = 28. Note that on the left of Q+ 1,
log10

(∣∣δy∣∣ = 0
)
→−∞ and cannot be displayed on the figure.

A real number z in a processor can be represented by the
scientific notation, z = µ · 10E with 1 ≤ |µ| < 10,
E ∈ Z, E1 ≤ E ≤ E2, and µ has D bit resolution. WLOG,
we only consider a 64-bit floating data type. Following the
IEEE 754 standard,

E1 = −308, E2 = 308, and D = 52. (12)

Thus if |z| < |µ| · 10E1 , then z0; on the other hand, if |z| >
|µ| · 10E2 , it is interpreted as infinity.
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FIGURE 3. Estimation of ρ for the impulse-like signal in Example 1. In this
example δy and 1y never intersect so that ρ is estimated using
Theorem 5 and is obtained by the point with

∣∣δy∣∣ = 10E1 . Based on the
figure, it yields ρ = q−Q+ 1 = 598− 59+ 1 = 541.

Note that alternatively, E1 can be set to be −324 at the
price of reducing the resolution D to one. The drawback of
this definition is that D becomes a variable as E < −308.
To facilitate the analysis, we will adopt the definition given
by (12).
Theorem 5: If ρ ≥

⌈
E2−E1
log10 2

⌉
= 2047, then the error in

IMFm, δCm (t) ; 0, t ∈ wuci.
Proof: Consider the curve δyk versus distance k̄ in (10).

Since |δyk | decays with the distance k̄ (Lemma 3), as k̄
continuously increases, eventually, |δyk | will intersect the
horizontal line 10E1 at a point Q + 1 so that

∣∣δyQ∣∣ ; 0 (see
Fig. 3). Since max

∣∣δyq+1∣∣ = 10E2 and min
∣∣δyQ∣∣ = 10E1 ,

from Lemma 3 with k = Q, it yields

|r̄|nR ≥ 10E2−E1 or

ρ =

⌈
E2 − E1
log10 |r̄|

⌉
≥

⌈
E2 − E1
log10 2

⌉
= 2047. (13)

By (2), we then have δu (t) = δl (t) ; 0. Similarly, from (3),
we have δx̃ (t) 0. Based on the recursive nature of EMD, it is
then clear that δCm (t) ; 0.

3) COMPETITION OF δy AND ROUND-OFF ERROR OF y
In practice, Theorem 5 is often too strict for estimating the
upper bound of ρ since it assumes that |δy| ranges between
O(10−308) to O(10308). Also, the round-off error in a proces-
sor has to be considered.
Definition 6: round-off error1z. Let z̃ denote the value of z

that is being processed in the machine, and thus it is exposed
to the round-off error, which can in turn be defined as the
difference between the two versions:

1z , z̃− z. (14)

On the other hand, we can express

z̃ = (1+ ε) z, |ε| = 2−D. (15)

Combining (14) and (15), it yields

|1z| = ε |z| . (16)

It implies that if |ε| < 2−D, then z̃ and z are essentially
indistinguishable, i.e., 1z ; 0.

Theorem 7: If |δyk | ≤ |1yk | = ε
∣∣yQ∣∣, and curves |1yk |

and |δyk | intersects at a point Q+ 1, then

(a): ρ =
D+log2

∣∣∣ yq+1yQ

∣∣∣−log2|rq|
log2|r̄|

+ 1.

(b): ρ <
⌈

D−1
log2|r̄|

⌉
+1 ≤ 52 if yq+1 = yQ and

∣∣rq∣∣→ 2+.

Proof: (a) If
∣∣δyQ∣∣ ≤ ∣∣1yQ

∣∣, then the error is determined
by 1yQ, which in fact makes δyQ0. Substitute

∣∣δyQ∣∣ into
Lemma 3, it yields∣∣δyQ∣∣ = |r̄|−(ρ−1) ∣∣∣(aq/rq−1 + bq)−1hqyq+1∣∣∣

≤ 2−D
∣∣yQ∣∣ , (17)

where δyq+1 = yq+1 has been applied because of BC, and∣∣1yQ
∣∣ = ε

∣∣yQ∣∣ , ε = 2−D. The value of ρ is then obtained
by solving the equation:

∣∣δyQ∣∣ = ∣∣1yQ∣∣. After some algebraic
manipulation, it yields

ρ =
D+ log2

∣∣∣ yq+1yQ

∣∣∣− log2
∣∣∣[ ξq
rq−1
+ 2

(
ξq + 1

)]∣∣∣
log2 |r̄|

+ 1(18)

Following (6), the term in the bracket in the numerator can be
simplified as follow.[

ξq

rq−1
+ 2

(
ξq + 1

)]
= rq. (19)

Consequently, ρ can be simplified to what appears in part (a).
(b): From Theorem 1(a),

∣∣rq∣∣ > 2, then

ρ ≤
D+ log2

∣∣∣ yq+1yQ

∣∣∣− 1

log2 |r̄|
+ 1 (20)

Part (b) is obtained by substituting yq+1 = yQ into the above
equation. �
The values of the upper bound of ρ estimated using The-

orem 5 and Theorem 7(b) differ by approximately 40 times.
Next, we will discuss when we should apply Theorem 5.
Theorem 8: Suppose that x(t) is an impulse-like signal

which satisfies that x ′′ (γk) = 0 (distributed along a straight
line) in [γD1, γD2), where γD2 < q and γD1 > p (Fig. 1(a)),
and x ′′ (γk) 6= 0 at k = D2+ 1. A schematic of x(t) is shown
in Fig. 4.

(a) |yk | decays exponentially fast with distance |k − D2| at
the same decay rate as that of

∣∣δyk ∣∣ in [γD1, γD2].
(b) If D2 = q (see Fig. 1(a)), then the values 1yk and

δyk will never coincide. Consequently, Theorem 5 should be
applied to estimate ρ.

Proof: (a): The second derivative of x(γk ) is approxi-
mated by the following difference equation:

x ′′ (γk)=
2

hk + hk−1

[
x(γk+1)− x(γk )

hk
−
x(γk )− x(γk−1)

hk−1

]
(21)

In fact, dk on the RHS of (1) is proportional to the numerator
of x ′′(γk ) in (21). Therefore dk = 0 for γD1 ≤ γ k < γD2−1,
and the only non-zero term occurs at dD2. Following (4),
it yields

⇀y = 0⇀vD1 + · · · + 0⇀vD2−1 + dD2
⇀vD2 = dD2

⇀vD2 (22)
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FIGURE 4. Schematic of effect of impulse-like signal. top: impulse-like
signal, bottom: decay rate log10

∣∣yk
∣∣. versus index k .

Following the procedure in deriving (9), the equations for y
for k = D1 to D2 can expressed in (1) with index D1 ≤ k ≤
D2, and

⇀

d = [0, 0, · · · 0, dD2 − cD2dD2+1]T . (23)

This equation is similar to (9) except that here δyk is
replaced by yk , so that Theorem 1 still holds for yk and
it decays exponentially with the distance |k − D2|. From
Theorem 1, the decay rate only depends on the distribution
of the locations of the local maxima and is independent of
the impulse position dD2. Consequently,

∣∣δyk ∣∣ and |yk | have
the same decay rate. The magnitude of the impulse at the last
entry of (23) and βq in (9) might be different, and therefore
the values for δyk and yk might be different.
(b) Set D2 = q. Following (16), the curves of yk and 1yk

are parallel, so that the values of δyk and 1yk will never be
equal. �

Now we discuss when the condition of Theorem 7 will
hold. Let signal x(t) be an amplitude modulated (AM) signal.
It is often true for a real-world signal x(t) that it consists
of multiple IMFs; otherwise there is no need to apply EMD
to decompose the signal. The situation can become very
complicated since the contributions from dk and vk in (4)
need to be taken into account. Based on the local nature of yk
(Theorem 1), its value can be estimated by x ′′ (γ ) around the
neighboring local maximum of γk if the order of magnitude
of
∣∣x ′′ (γk)∣∣ (or dk ) does not vary significantly in the time

domain.
Example 1: We investigate a special case where the con-

ditions of Theorem 7 fail. A signal x(t) with hk = 1,∀k
and ⇀x (γ ) = ⇀eq+1. According to Theorem 8, ρ should be
estimated by Theorem 5 and is ρ = 541 based on Fig. 3.
Example 2: We investigate a case where the condition

of Theorem 7 holds. The signal x (t) is a white noise.
Fig. 2 plots y and |δy| versus index k . All the variables are
plotted in log 10 scale. The curves log10 |y|, log10 (|1y|), and
log10 |δy|, are plotted in black, blue, and red, respectively.
It is observed that the curves |δy| and |1y| intersect, thus
Theorem 7 holds. It is also observed that |y| ranges approx-
imately from 0.1 to 10 so that the term from Theorem 7(a),∣∣log2 ∣∣yq+1∣∣− log2

∣∣yQ∣∣∣∣ ≤ 2. In addition, |1y| fluctuates
within the class O(10−16) which is consistent with (16).
Based on the figure, ρ = 28, which is less than 52, and this
is consistent with Theorem 7.

C. OPTIMIZATION OF THE INPUT/WORKING MEMORIES
AND THE LMEMD ALGORITHM
The LMEMD algorithm consists of a main procedure
described in Section II and a sifting procedure called
LMSIFT. The sifting in (3) can be rewritten into two steps
as below.

x̃(t) ← x (t)− u (t; γu, x (γu)) /2;

x̃(t) ← x̃ (t)− l (t; γl, x (γl)) /2, (24)

where γu and γl are the time coordinates of the local maxima
and minima of x (t) (before sifting), respectively. We first
present an initial version. The sliding window wui is applied
sequentially from left to right to perform the CSI of u(t)
by (24) as shown in Fig. 1(b). The RHS of u(t) in (24) can
be directly assigned to its LHS so that it is not required to
store u(t). Next CSI is performed for l(t). Since the CSI is
processed window-wise, the memory allocated in the previ-
ous window can be reused for later windows. If we choose
nw � n, the memory in the CSI is negligible.

It is required to store both x(t) and x̃ (t) for the initial ver-
sion, therefore we develop the alternative-envelope (AESW)
approach that x(t) and x̃ (t) can share the same memory.
The number of local maxima for upper envelope in wui and
number of local minima for lower envelope in wli are chosen
to be the same, nw, but their lengths may not be identical as
illustrated in Fig. 1(b). We start the analysis with i = j = 1.
Compare γui in wui with γlj in wlj. If γlj < γui, then compute
l(t) in wlj+1; otherwise compute u(t) in wui+1. The same
process continues until all the windows are accessed.

Let us now explain why x(t) and x̃ (t) can share the same
memory in the AESW procedure. The u(t) and l(t) in (24)
depend on the local extrema of x(t) and the coordinates of all
local extrema

{
γlj, γui

}
are already sorted by the AESW pro-

cedure. Then, (γu, x (γu)) or (γl, x (γl)) is computed sequen-
tially from left to right. The results on the LHS of (24) are
subsequently assigned to x(t) so that it is not required to
store x̃ (t). After (24) is completed, the value of x(t) will be
overwritten. The LMSIFT algorithm is listed below.

LMEMD Sifting: x̃ (t) = LMSIFT (x (t); nR, nw)
1: Set i = j = 1.
2: Detect γui and x(γui) in wui, and γ`j and x(γ `j) in w`j
3: if γ`j < γui

Compute ⇀y in w`j and x̃ (t)← x (t)− l (t) /2
in w`cj.
Set j = j+ 1. Detect γ`j and x(γ `j) in w`j.

else
Compute ⇀y in wui and x̃ (t)← x (t)− u (t) /2
in wuci.
Set i = i+ 1. Detect γui and x(γui) in wui.

4: Repeat Step 3 until all of windows are accessed.

The parameters nR and nw are chosen to be constants, and
nw � n. Next we count the memory for the LMEMD.
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Part 1). Output memory. The output IMF Cm (t) is stored
as a float array of length n, then Mout = moutn.
Part 2). CSI procedure.
(a) extrema detection: The local maxima γk and x(γ k )

are stored in an nw integer and nw float array respectively.
Assume Mint = Mfloat/2, then Mmax +Mmin = 3nw.
(b) linear solver: Each of ak , bk , ck , dk , and yk in (1) is

stored as a float array of length nw. Therefore, Mtri = 5nw.
Part 3). Working memory. The residue R(t) and proto-IMF

x(t) are stored as a float arrays of length n. Then,Mmain = 2n.
The total storage is obtained by summing up all parts as

follows.

MLMEMD = (2+ mout) n+ 8nw ∼= (2+ mout) n,

given that nw � n. (25)

Note that the input signal x(t) will be overwritten when
the EMD procedure is finished. If it is required to reserve
the input signal, an additional float array of length n has to
be invoked. The memory requirement for EMD is listed in
Table 1.

Finally, we compare thememory requirements of LMEMD
and that of the continuous wavelet transform (CWT). Let
ψ (t) be a wavelet, then the CWT of a signal x(t) is written
as follows:

g (t) = ψ (t) ∗ x(t). (26)

Let F denote the Fourier transform operator. To speed
up the operation, (26) is often implemented using FFT as
follows.

g (t) = F−1 {F(ψ (t))F(x (t))} (27)

In (27), F(ψ (t)) and F(x (t)) are both arrays of complex
numbers of length n so that the total memory is 4n (float).
Compare it with (25), it is seen that the memory cost of the
LMEMD is less than that of the CWT.

TABLE 1. Memory for EMD and disturbance-assisted EMDs.

D. MEMORY REQUIREMEMTS FOR EEMD AND CEEMD
We discuss memory costs for different versions of EMD
algorithms in different application scenarios.

1) EEMD
Let ne, ns, and ε denote, respectively, the number of realiza-
tions, the number of siftings, and the disturbance amplitude.
The EEMD [4] algorithm is briefly summarized below.

In the EEMD algorithm, it is required to store the input
signal and the sum of the proto-IMF in each realization.
Therefore, an additional two float arrays of length n are
required.

EEMD: {Cm (t)} = EEMD (x (t) , nm, ns, ne, ε)
1: For each realization j, perturb x(t) by a white
noise wj(t):

x̂j (t) = x(t)+ ε · wj(t).
2: Apply EMD to decompose x̂j (t) into nm IMFs, C̃j,m(t),
with ns siftings.
3: If j 6= ne, set j = j+ 1 and go to step 1.
4: Obtain IMFk byCk (t) =

∑ne
j=1 C̃j,m(t)/ne,m = 1 to nm.

2) CEEMD
The CEEMD [5] is similar to the EEMD except that an
assisting-noise is both added to and subtracted from the signal
in each realization. Therefore, it is necessary to store the
assisting noise in a float array of length n.
The memory requirements for EEMD and CEEMD are

listed in Table 1.

IV. NUMERICAL EXPERIMENTS
Numerical experiments will be presented in order to confirm
the claimed the memory cost and the computational time of
the proposed LMEMD algorithm. The computer program is
implemented in sequential C language with 64-bit float data
type using a Matlab interface. Numerical experiments were
conducted on a desktop computer with 3.0 GHz CPU, 16 GB
DRAMmemory running onWindows 10. The LMEMDcom-
puter code can be accessed at [35].

FIGURE 5. The effect of nR on the error of the IMFs in Example 3.

Example 3: Decomposition of a white noise.
A white noise is decomposed into 10 IMFs using EMD

with the criterion of 10 sifting iterations for the generation of
each IMF. In practice, sometimes it is not allowed to choose
nR ≥ ρ, which is the number that appears in Theorem 2. For
example, in an online real-time computation, the number of
local maxima nR in the overlap regions actually represents
the data latency. If nR is too large, it might introduce unac-
ceptable data latency. First, we assess the effect of number
of local maxima (resp. minima), nR, on the error of IMFm,
Cm (t). The maximum error Em, for IMFm, is defined as
follows

Em =
∣∣Cm (t)− Cex,m(t)

∣∣ / ∣∣Cex,m(t)∣∣ , (28)
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where Cex,m(t) is the exact IMFm. For this task, the IMFs
obtained using offline EMD (nw = n) are taken as the exact
IMFs. The errors log10 Em for m = 1 to 10 and different
values of nR are plotted in Fig. 5. It is observed that Em
decreases with nR and Em0 for nR ≥ ρ = 28 (not shown
in the figure), which is less than the value in Theorem 7.

In the following tests, the LMEMD is performedwith nw =
1000, and nR = 50.

Next, we test the run time of LMEMD. Fig. 6 plots the
run time tLMEMD and tEMD versus different data length n. It is
confirmed that all the IMFs obtained by LMEMD and EMD
are identical. Fig. 6 shows that tLMEMD grows linearly with
respect to n, which implies the computational complexity of
LMEMD is the same as (the offline) EMD. The run time
increment of tLMEMD is within 2% because of the overhead
in overlapping regions including extrema detection and tridi-
agonal solver.

We now turn to compare the IMFs obtained by LMEMD
with those obtained by fast EMD [18] by treating the latter
as the exact solutions in (28). A segment of the results is
displayed in Fig. 7. It is observed that Cm (t) and Cex,m(t) are
almost identical. The maximum error Em is around 10−15 and
is caused by round-off error because the sequences of arith-
metic operations for fast EMD in (3) and LMEMD in (24) are
different.

FIGURE 6. Run-time vs. data length n for the LMEMD and EMD in
Example 3.

Lastly, the IMFs obtained using LMEMD are compared
with those of online fast EMD with a fixed overlap length
equal to 40 [18]. A segment of the results is shown in Fig. 8.
The error for online EMD increases with the IMF index.
For the first 3 IMFs, the results using both algorithms are
essentially indistinguishable from the figure. However, the
error become significant for the IMFs with index greater than
3 because there are not enough local extrema points in the
overlapping region.
Example 4: Noise reduction for an ECG signal containing

low frequency baseline wandering noise.
A clean ECG signal and a low frequency baseline wander-

ing noise both sampled at 360 Hz are obtained fromMIT-BIH
Arrhythmia Database [36]. The noisy data is obtained by
superimposing the clean data and noise as displayed in
Fig. 9(a). The amplitude of the R-wave of an ECG signal

FIGURE 7. Comparison of the IMFs obtained using LMEMD and fast EMD
in Example 3.

FIGURE 8. Comparison of the first 6 IMFs obtained using LMEMD with
nR = 50 and online fast EMD with fixed overlap length (=40) in
Example 3.

(see Fig. 9(b)) is often much larger than other local maxima
so that x ′′ (γk) in (21) and yk in (9) at the peaks of the R
waves are much greater than those of other local maxima.
We investigate how the term log2

∣∣yq+1/yQ∣∣ will affect the
value of ρ in Theorem 7.
The signal is decomposed using EEMD with mimf = 8,

sifting number ns = 10, realization number ne = 400, and
noise level ε = 0.3. The LMEEMD is appliedwith nC = 500,
and nR = 50.
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FIGURE 9. Profile of the ECG signal in Example 4. (a) noisy and clean
signal; (b) The denoised signal using LMEEMD.

The ‘‘clean’’ ECG mode is obtained as the summation of

IMF2 to IMF7, i.e., PO1 =
7∑

m=2
Cm(t), so that mout = 1. The

denoised ECG is shown in Fig. 9(b). It can be seen that the
low frequency noise is almost completely removed. It is found
that as nR ≥ ρ = 28 (not shown in the figure), the results
obtained using EEMD and LMEEMD are identical and the
value of ρ is less than the upper bound of Theorem 7(b).
The memory cost for LMEEMD and EEMD are 4n and

22n, respectively, which indicates the memory saving is
over 80%.

We then test the run time of LMEEMD. Fig. 10 displays the
run time tLMEEMD and tEEMD versus different data length n.
It has been confirmed numerically that all the IMFs obtained
by LMEMD and EMD are identical. The run time increment
of tLMEEMD is under 3%.

FIGURE 10. Run-time vs. data length n for the LMEEMD and EEMD in
Example 4.

V. CONCLUSION
In this study, we prove that the memory cost of EMD can
be improved from

(
13+ mimf

)
n to (2+ mout) n by adopting

LMEMD (where n is the signal length, mimf is the number
of IMFs, and mout ≤ mimf , where the former is the number
of target physical oscillation modes), while giving the same
results and efficacy. It indicates that EMD is in essence not
only a computationally efficient method but is also a low-
memory algorithm. Our findings also imply that the mem-
ory cost of the EMD is less than that of the wavelet trans-
form implemented by fast Fourier transform. The method of
LMEMDcan be also applied to other EMD-based algorithms.

This new result is a solid evidence of that the EMD-based
algorithm can be applied in a wider range of fields of appli-
cations than so far perceived. In order to perform some real-
time computation in applications, we will implement the
LMEMD/LMEEMD in a computation and memory limited
micro-controller in the near future.
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