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ABSTRACT As more and more applications rely on Artificial Intelligence (AI), it is inevitable to explore
the associated safety and security risks, especially for sensitive applications where physical integrity is at
risk. One of the most interesting challenges that come with AI are adversarial attacks being a well-researched
problem in the visual domain, where a small change in the input data can cause the Neural Network (NN)
to make an incorrect prediction. In the radar domain, AI is not that widespread yet but the results that AI
applications produce are very promising, which is why more and more applications based on it are being
used. This work presents three possible attackmethods that are particularly suitable for the radar domain. The
developed algorithms generate universal adversarial attack patches for all sorts of radar applications based on
NN. The main goal of the algorithms, apart from the computation of universal patches, is the identification
of sensitive areas in the raw radar data input which than can be examined more closely. To the best of our
knowledge, this is the first work that deals with calculating universal patches on raw radar data, which is
of great importance especially for interference analysis. The developed algorithms have been verified on
two data sets. One in the field of autonomous driving where the attacks lead to a steering misprediction of
up to 0.3 for the steering value which is within [-1,1], with the results also being successfully tested on a
demonstrator. The other data set originated from a gesture recognition task, where the attacks decreased the
accuracy, originally at 97.0% up to a minimum of 16.5%, which is slightly above 12.5% being the accuracy
for a purely random prediction.

INDEX TERMS Adversarial attacks, artificial neural networks, autonomous vehicles, edge computing,
object recognition, radar applications, real-time systems.

I. INTRODUCTION
There are many reasons why artificial intelligence (AI) will
play an increasingly important role in the future. One of the
main drivers is without question the transportation sector [1]
as one of the central components of today’s society and one
of the main drivers of intensive research. In this context,
numerous future aspirations, like decarbonization or time
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saving, are often projected into a transformation of the trans-
port structure. The promise is that thanks to AI, autonomous
vehicles will be able to drive on the roads of the future
and, due to optimized efficiency, will not only get us to our
destination faster and with fewer resources, but also reduce
the overall volume of traffic by means of sharing concepts of
autonomous self driving cars [2], [3].

Typically, the algorithms that enable the autonomous cars
make their decisions based on data provided to them by sen-
sors, which in turn record the vehicle’s environment. On the
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technical side there are several reasons in favour of AI in
the field of autonomous driving. On the one hand, tough
restrictions on the real-time capabilities of algorithms, that
can be met with AI, play a particularly important role so that
certain reaction times can be guaranteed, and on the other
hand, the high data rate and the associated data processing
speak for the use of AI because it works extremely efficient
and quickly on specialized hardware components.

However, this transformation in the transport sector
towards AI can only succeed if the vehicles of tomorrowmeet
safety requirements. In particular, it must be ensured that
the AI algorithms are not only capable of recognizing traffic
situations under laboratory conditions and acting accordingly,
but also function flawlessly under adverse conditions [4].

The constantly accelerating development of AI algorithms
and the incredible precision with which predictions can be
made do not disguise two limiting factors. These are that,
especially in the case of complex networks, explainability
is not given and decisions can be significantly influenced
by means of adversarial attacks, that are targeted attacks
that maliciously and intentionally cause AI in autonomous
vehicles or subsystems to behave incorrectly [5]. Adversarial
attacks lead to an erroneous prediction of an artificial neural
network (ANN) when the input signal has been minimally
altered, to provoke this erroneous prediction. This is of par-
ticular interest as it is a security risk that it is often not recog-
nized by humans, or at least not perceived as an attack as it is
hardly noticeable and exclusively affects the AI algorithms.
Nonetheless these attacks must be detected and thwarted.

In an autonomous vehicle, a variety of different sensors
will be used, such as camera, lidar/time-of-flight camera,
ultra-sound and radar. One of the reasons for the detailed
study of AI algorithms in the radar domain is the particular
prominence of this sensor type in contrast to other available
sensors. Radar is expected to play a leading role due to
its independence from weather conditions such as visibility
obstructions caused by fog, snow or rain [6], [7]. In contrast
to lidar, radar also offers the advantages of having nomechan-
ically moving components, a faster repetition rate, the ability
to detect obscured objects indirectly by means of second-
degree reflection, and the ability to directly determine the
radial velocity of objects bymeans of theDoppler effect. Each
sensor component and the associated evaluation algorithms
must be tested separately for sensitivity to attacks such as
adversarial attacks.

This work focuses on the creation of universal adversarial
attack patches for radar data evaluation algorithms. With
the setting of the boundary conditions the characteristics of
the attack, patch vs. perturbation, can be steered. Partic-
ular emphasis was placed on the feasibility of real world
implementation. The created tools can be used to analyse
the sensible areas in the radar signal, to determine where the
weak points of AI algorithms in raw radar data processing
are. It is important to note that research on adversarial attacks
should not be seen exclusively as an attack strategy. Rather,
adversarial attacks can be defined as standards to certify the

resilience of AI and are thus an ideal tool for standardization
and thus qualification and certification [8].

II. BASICS AND PRIOR WORK
A. RADAR TECHNOLOGY
The development of radar technology can look back on a long
history [7]. Nowadays, in consumer electronics as well as in
the automotive sector, the frequency modulated continuous
wave (FMCW) technology is the one most widely used. For
each frame a packet of chirps is transmitted, where a chirp is
a frequency modulated signal defined by its bandwidth and
length. The reflections of the chirps are detected by receiving
antennas and together withe the original transmitted signal,
the intermediate frequency signal is computed. This resulting
signal is sampled to produce a 3 dimensional data packet per
frame defined by a) the number of antennas, b) the number
of chirps per frame (CPF) and c) the number of samples per
chirp (SPC). High center frequencies allow a fine resolution
of the detected environment [9], [10]. The advantages of radar
technology in general and FMCW in particular are on the
technical side, the precise detection of static objects and the
determination of the relative speed of moving objects, as well
as the guarantee of privacy on the data protection side.

B. AI
Due to the fact that ANNs are increasingly better studied,
which is reflected in an increasingly higher accuracy of
the prediction probability and can cope with a high data
throughput, thanks to specialized hardware, there is a trend
that the processing of radar data will increasingly be done
using ANNs. In previous approaches, radar data is usu-
ally preprocessed before the information is transferred to
an ANN in the form of Range-Doppler-Maps (RDMs) or
other representations. Various applications of radar sensors
are conceivable, ranging from distance determination and
classification of objects in road traffic [11], to gesture
recognition in consumer electronics [12] and even breath and
heartbeat frequency detection of humans [13]. There is also
an increasing trend to move the previous data preprocessing
steps to the ANN as well, [14] as this allows specialized AI
accelerators to shorten response times and enable processing
on the edge [15], [16]. In previous work it was shown that
this approach is in no way inferior to previous, traditional
methods if sufficient training data is available [17].

C. ADVERSARIAL ATTACKS
Especially in the visual domain there is a lot of research work
dealing with the problem of adversarial attacks. Usually, the
goal of adversarial attacks is to provoke a malfunction by
changing the input data of the ANNs as little as possible.
On recorded datasets, this criterion seems reasonable, as it is
counter intuitive especially for humans, as external observers,
and shows limitations of AI. Basically, adversarial attacks
have to be distinguished between live attacks and attacks on
recorded data sets. While the latter usually only reveals the
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existence of vulnerabilities of the AI, live attacks represent a
real danger for AI systems. The criterion that an adversarial
attack is specified by a minimal change of input data is in this
case no longer relevant, since usually a control instance such
as a human is not involved in the decision cycle. Instead, it is
important to find attacks that are as effective as possible and
deliver falsified but still plausible sensor data. Themain focus
is the optimization for the enforceability of the disturbance in
live attacks. Impressive examples of live attacks in different
sensor domains are the work of [18], [19], and [20], where
a stop sign is no longer recognized as such, or an object on
the road is overlooked due to its surface structure / shape and
even active spoofing is investigated.

In the radar domain, research has not progressed that
far, and in addition, preprocessing of radar data complicates
attack methodologies. Thus, there is some work in the radar
adversarial attack area, but their commonality is the limitation
to attack scenarios on already preprocessed and recorded
data [21]. This means that the radar-specific signal shape is
not taken into account, but the problem is transformed into
a visual representation and attacked with successful algo-
rithms from the visual domain. A further sticking point of
the previous work is the limitation on frame-wise creation
of attack masks. In the visual domain, several works already
exist on universal patterns that produce malfunction of ANNs
independent of the sensor input signal [22]. These patterns
can be computed a priori, so that no computational effort
is required to generate them during the attack. The previous
work in the radar domain pays particular attention to keeping
the intensity of the mask as small as possible when creating
the masks in the Range Doppler domain. This makes sense
when investigating the problem with tools from the visual
domain to assure that adversarial attacks on radar data exist
in principle, but are not useful for performing live attacks
or determining the probability of such attacks in the radar
domain as it is neglecting the preprocessing pipeline.

In this work, the latter two challenges are addressed by
developing several algorithms that compute universal pat-
terns that can ideally be generated in reality. For the net-
work structure to be attacked, preprocessing is omitted in
order to impose constraints on the mask with respect to the
feasibility of these patches in the analog world. Due to the
transferability known in other areas, it can be assumed that
successful attacks will not be limited to the architecture on
which they are generated but will also have an effect on
unknown ANNs [23].

III. METHODOLOGY AND ALGORITHMS
The developed algorithms do not intend to compute adver-
sarial patterns that stick out for their small perturbation. The
focus rather lies on the generation of patches that are targeted
and universal, thus independent on the legitimate input. This
will lead to a failure of the network output, most of the time.
Another key focus is the feasibility of applying them in the
analog world. This approach allows to investigate real world
thread scenarios.

In order to be as close as possible to the real world per-
ception, which is what the sensor itself detects, we take the
raw data, coming from the analog digital converter (ADC),
as input to our algorithms. This way we do not loose infor-
mation that might get lost during traditional preprocessing
steps. As the preprocessing itself does not provide additional
information but only consists of filtering and representation
shifts, we presume that this can be handled by the ANN itself.
This claim was proven in our previous work [17], showing
that not only networks of variational autoencoders are capable
of accomplishing that.

The raw radar sensor signal coming from the ADC is
usually quantized as a 12 bits float within 0 and 1. This signal
is used as an input for the ANN.

The two task types that are taken into account are:

• Classification like in gesture recognition and
• Regression as in angle detection.

Depending on the task the system is supposed to solve, the
output of the ANN is either a distribution on the predicted
classes or floating values representing the output.

The goal is either to output a wrong class as a prediction or
to deflect the output value in a certain direction.

The algorithms are designed as a white box attacks though
if the ANN is unknown, a sufficiently similar network can
be generated and attacked with this algorithm and due to the
effect of adversarial patterns being transferable, the unknown
ANN can be attacked.

All implemented algorithms are based on the gradient
method which is also used for training ANNs, but instead of
the weights’ gradient the gradients of the input neurons to
the output neurons are considered. Depending on the chosen
attackmethod, different parts of the gradients, possibly taking
into account distance weightings, are combined to form a
universal adversarial patch.

During the computation of the gradient the loss function
must be adjusted. In the case of a regression network, the
output of the network is used directly without considering the
labels of the samples. If a classification network is present,
the labels are also not taken into account, but the outputs
of the individual classes of the network. The patch for each
individual sample is calculated by subtracting the gradient
of the predicted class from the gradient of the targeted class
taking into account the predictions.

The following subsections describe the different universal
adversarial attack algorithms that we developed.

A. ADDITIONAL INPUT-BIAS LAYER
This method is by far the simplest way to generate a universal
attack, as it just introduces an Additional Input-Bias Layer
(ABL). In front of the already trained network, an additional
bios layer is put on the input layer. Then the loss function of
the network is adapted depending on the task type while all
pre-trained weights of the network are frozen. Training the
network only changes the additionally added bias layer. This
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FIGURE 1. Architecture of the additional input-bias-layer attack.

bias layer represents the universal adversarial patch. A visual
description is given in Fig. 1.
Deviating with regard to the above explanation on the

loss function the same is retained in the case of a classifier
and only the target class is specified as label class during
computation of a universal patch.

This method also easily permits the application of various
conditions on the patch. Limits of values or empty spaces
in the patch can be set. This can a priori ensure the later
applicability of the patch by, for example, external sources
of interference.

B. SUMMATION OF PATCHES
For this algorithm all gradients of the individual samples
are computed on the pre-trained network that is attacked.
From the gradients the patches are generated, either by tak-
ing the gradient directly or combining them with respect
to the corresponding network output. The summation and
normalization of all generated patches represent the universal
patch generated by this method, hence Summation of Patches
(SoP).

Algorithm 1 Overall Algorithm With a Focus on the Com-
putation of the Framewise Adversarial Patches P
Require: X ,Y ,T , f , g
1: u← 0
2: for all epochs do
3: X ← X + u
4: Evaluate with gradient tab
5: Ŷ ← f (X )
6: PY ← ∇(ŶY ,X )
7: PT ← ∇(ŶT ,X ) F Is zero in case of regression NN
8: P← k · PŶ − (1− k) · PT
9: u← g(u,P, . . .) F g is update of the universal patch

10: save u
11: end for

The algorithms SoP andWSoP both have the general algo-
rithm structure in common. Algorithm 1 describes this overall
architecture of the gradient approach where X is the data that
gets evaluated by the ANN f () resulting in the prediction
Ŷ . Y is the correct label, T is the target class in case of a
classification problem. The universal patch u gets updated
by g which is described in Algorithm 2 taking the framewise

adversarial patches P as an input. Py and Pt are the gradients
with respect to the output of the subscript, while k balances
between the addition of the target and the subtraction of the
label gradient. Line 7 in Algorithm 1 only applies in case of
a classification problem, otherwise it is a zero matrix.

Algorithm 2 Universal Patch on Basis of Summation
Require: u,P, α, ε,m
Ensure: u ∈ m
1: û←

∑
P

2: u← (1− α) · ‖u‖2 + α ·
∥∥û∥∥2

3: u← ε · u
4: if u /∈ m then
5: set u to the constraints of m
6: end if
7: Return u

Algorithm 2 explains the updating process of the univer-
sal patch on the basis of summation, following the same
nomenclature as before. The additional variables that are not
explained in Algorithm 1 are, α the update weight of the
universal patch for each epoch, ε the intensity of the patch
and m the feasibility mask to constrain the patch.

C. WEIGHTED SUMMATION OF PATCHES
Similar to the previous explained SoP algorithm, all indi-
vidual patches are computed on each individual sample as
described in Algorithm 1. But instead of a pure summa-
tion, each patch is multiplied with a weight that represents
the importance of each individual patch. There are different
weighting methods. The goal is for the universal patch to
cause a similarly large and evenly distributed shift on all
samples. For this reason a weight factor is added resulting
in a Weighted Summation of Patches (WSoP).

To achieve this, the weighting in the case of regression
networks takes into account the distance of the prediction
to the actual label. In the case of classification networks the
emphasis each patch is given is determined by the difference
of probability between the targeted class and the predicted
one. The following formula represents the weight function,

w = s−d , (1)

where w is the weight, s is a scalar hyperparameter,
determined experimentally and d is either the differ-
ence of prediction and label or the difference of the
class-probabilities.

Conditions on the values of the patch can also be set. But
for ensuring the gradient to consider those it is needed to
repeat the algorithm for various epochs while the universal
patch is applied.

IV. EXPERIMENTAL RESULTS
The described algorithms are verified with two recorded data
sets.
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Algorithm 3 Universal Patch on Weighted Summation
Require: u,P,Y ,T , α, ε,m
Ensure: u ∈ m
1: d ← ŶY − ŶT
2: û←

∑
P · w

3: u← (1− α) · ‖u‖2 + α ·
∥∥û∥∥2

4: u← ε · u
5: if u /∈ m then
6: set u to the constraints of m
7: end if
8: Return u

TABLE 1. Radar sensor operation parameters for the regression task.

A. DATASET DESCRIPTION
To investigate the two problem classes, regression and clas-
sification, two different tasks were investigated. The sensor
used for the recording is the same in each case. It is the
FMCW radar sensor from Infineon BGT60TR13C which has
a center frequency of 60 GHz. To cope with sensor specific
requirements the sensordata undergoes aminor preprocessing
in the form of a baseline removal and a gain-correction. The
two data sets are structured as follows:

1) REGRESSION
The task is taken from the automotive sector and describes the
following scenario: A model car equipped with a radar sensor
follows another model car autonomously. This maneuver is
called platooning. The control of the pursuing car is taken
over by an ANN. Details about the experimental setup can be
taken from our previous works [24], [25].

For this task a data set was gathered, consisting of 153 648
radar frames and the associated driving parameters that are
used as labels. The individual frames contain the data from
two antennas and were recorded with 64 chirps per frame
(CPF) and 128 samples per chirp (SPC). The dataset was split
as such that, 103 899 frames are used for training, 34 634 for
evaluation and finally 15 115 for testing. Only the steering
position is taken into account as a performance parameter of
the NN, as this is the most difficult parameter to determine,
and also from a safety aspect, the most critical one. The
operation parameters of the radar sensor are given in Table 1.

2) CLASSIFICATION
The classification data set comes from the field of human ges-
ture recognition and distinguishes between 8 hand gestures:

1) class_0: down_up
2) class_1: up_down

FIGURE 2. Architecture of attacked regression network.

FIGURE 3. Architecture of attacked classification network.

FIGURE 4. Results of regression on test dataset.

3) class_2: left_right
4) class_3: rubbing
5) class_4: right_left
6) class_5: diagonal_sw-ne
7) class_6: diagonal_se-nw
8) class_7: clapping

The dataset is a subset of the one presented by Chmurski [12].
Each gesture consists of 10 frames with the information of
3 antennas recording with 64 CPF and 32 SPC. Each gesture
was repeated 570 times which results in a data set consisting
of 45 600 frames. The entire dataset is split such that 342 rep-
etitions of each gesture are used for training, and 114 each for
validation and testing. The split is kept constant for all parts
(network training and attack computations). The operation
parameters of the radar sensor are given in Table 2.

B. NETWORK ARCHITECTURE AND TRAINING
Details about the neural networks, handling the tasks are
given below.
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FIGURE 5. Patches on a single sample.

TABLE 2. Radar sensor operation parameters for the classification task.

1) REGRESSION
For the regression problem a network was trained which is
described in more detail in Fig. 2. The three dimensional data
packages for each frame are concatenated to two dimensional
ones. This way each frame has the shape 128 × 128x1.
The network is trained with the hyperparameters given in
Table 3, and early stopping is triggered as soon as the

TABLE 3. Hyperparameters for training the networks. Parameters that are
the same for both tasks are aligned in the center.

MSE does not decrease more than 10−10 for 5 consecu-
tive epochs. Each convolutional- as well as fully connected
layer (except for last) is followed by a ReLU and dropout
layer.
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TABLE 4. Hyperparameters for attacking the regression task.

2) CLASSIFICATION
Gesture recognition is performed using the network shown in
Fig. 3. Each frame is examined individually and then the class
that received the most votes among the 10 frames is the final
prediction. The stacking of the 3 dimensional data packages is
handled similar to the one of the regression task. Though due
to the different set of CPF and SPC the final input dimension
after stacking has the shape 192× 32.

C. PERFORMANCE OF THE ATTACK ALGORITHMS
In the following, the performance of the presented attacks will
be examined, first the behavior without attack mask will be
presented and later on compared with the behavior under the
different attack conditions. All results shown were obtained
on the test dataset.

1) REGRESSION
Without the attack pattern, the deviation of the output of the
neural network with respect to the recorded steering position
is on average 0.028. Figure 4 shows the output of the neural
network and the corresponding label. The individual frames
on the x axis are sorted in ascending order according to the
label value.

The calculation of the masks is carried out according to the
schemes given above, using the parameters given in Table 4:
In Fig. 5 on the next but one page, the different patches

of the algorithms are displayed, exemplary for one run on a
single sample.

Figure 6 top diagram shows the relationship between
epsilon, generated errors and the number of epochs. The
picture is from the ABL attack on the regression task and
is exemplary for the other attacks as well. In principle, the
generated error increases with increasing epsilon and increas-
ing epoch number. Figure 6 bottom shows the distribution
over the individual samples for different epsilon values, each
for 30 epochs of training. It is to be noted that with a right
drift as an attack target especially the samples during the
left drift are influenced. The same is true for the other way
around. For better comparability, all algorithms are run with
an epsilon of 0.02 and 30 epochs.When the attack patterns are
applied under these conditions, the average steering deviation
increases from the 0.028 to 0.291, 0.284, and 0.307 for ABL,
SoP, WSoP, respectively. The detailed results are shown in
Fig. 7 The performance of the attacks highly depends on the
chosen hyperparameters, as the two example of the WSoP in
Fig. 8 show. Where one of the two is optimized for maximum

FIGURE 6. Influences on the attack performance.

FIGURE 7. Comparison of attack methods.

sum of deflection and the other for the most uniform deflec-
tion possible.

2) CLASSIFICATION
Without any attacks, the neural network achieves an accuracy
of 97.0% on the test data set where Table 5 reflects the
confusion matrix of the evaluation. It can be clearly seen
that all classes are recognized about equally well and none
is preferred by the network.

In the further course the attack masks with an epsilon
of 0.02 are added. Figure 9 shows an example of the evo-
lution of the accuracy on the validation data set when the
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FIGURE 8. Dependency on hyperparameters.

TABLE 5. Confusion matrix.

attack is performed with the ABL. The attack performs best,
on the unseen validation set, after 30 epochs, which was
the maximum amount of epochs for which we computed the
values, though it already reaches a kind of steady state after
20 epochs.

As an example, the target class number five in this take at
epoch 30, is examined more closely. Its confusion matrix on
the test dataset is the one shown in Table 6, showing that some
classes are harder to fool than others, mostly depending on
the similarity between gestures. In the confusion matrix, for
example, it is clear that the gestures of class zero and one are
very similar to each other, but very different from the gesture
of class five. Figure 10 on the next page shows one computed
patch for each attack, that is applied to a single frame of
a gesture of class 3, converting it into a class 5 prediction.
A frame that actually is belonging to class 5 is given in
Fig. 11. Similar as in the regression task the weights of the
ABL attack are more at the limits of ε.

FIGURE 9. Evolution of accuracy for ABL.

TABLE 6. Confusion matrix.

The following results are all from the patches computed for
30 epochs. Averaged over all classes and three separate takes,
the attacks lead to the fact that in 87.7%, 66.5%, and 89.0%,
(for ABL, SoP, WSoP) of all cases a previously correctly
classified sample of a non-target class is wrongly attributed
to the target class, from now on we call this parameter the
attack rate. The accuracy thus decreases to 19.3%, 21.1%, and
16.5%, whereby it must be noted that the accuracy alone only
reflects the effectiveness of the attacks to a limited extent,
since even if all samples are assigned to the target class,
the accuracy is still 1/amount_of _classes, assuming that the
number of samples of all classes is the same. But the far
greater disadvantage of the accuracy is that it only reflects
how much the correct prediction has deteriorated without,
however, allowing a statement as to whether the attackers
target class has been reached. The attack rate pays particular
attention to that. Figure 12 shows the evolution of the attack
rate, as well as the accuracy always for one take for all three
attack algorithms.
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FIGURE 10. Example of patches for each attack, applied to a single frame
of class 3 and the change of prediction.

The parameters for the attack where chosen as displayed in
Table 7

3) COMPARISON
ABL pushes more towards the limits which can be seen in
Fig. 5 and Fig. 10 while (W)SoP generates patches that have

FIGURE 11. Example a single frame of class 5.

TABLE 7. Hyperparameters for attacking the classification task.

TABLE 8. Summary of main results.

a higher variation of disturbance values. The statement is
true in both cases. (classification and regression) Table 8 is
a summary of the main results of both tasks over all attack
methods.

V. DISCUSSION AND CONCLUSION
Regarding the regression problem, all attacks are sufficient
to make the system stop working. However, the WSoP attack
offers the best possibilities to adapt the attack to the respective
attack targets and possible available interference patterns.
On the other hand the WSoP turned out to be the most
challenging attack regarding fine tuning of the hyperparam-
eters. On the classification problem we observed that not
all classes can be attacked equally well. All attacks man-
aged to decrease the original accuracy significantly well but
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FIGURE 12. Evolution of accuracy and attack rate for all attack methods.

actually fooling the network in the prediction of a target class
varies. The experimental results show, that targeted universal
attacks can be generated on raw radar data, even with bound-
ary conditions that restrict the attack pattern. This way the
developed algorithms are a tool to compute attack patterns

on the basis of interference behaviour or other disturbance
mechanisms.

The next steps towards a live attack are investigations into
the interference behaviour to detect vulnerable regions in
the raw data and exploit them. Additionally safety risks of
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unintended interference due to multiple traffic participants
can be evaluated, which probably will be the most relevant
future research topic.
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