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ABSTRACT Coarse registration is the first step in determining the accuracy of surgical navigation. The
purpose of this study was to present an automated coarse registration (ACR) methodology to improve the
convenience and accuracy. For this purpose, a deep learning model based on a convolutional neural network
was used. The input variable used for learning was virtual patient point-cloud (VPPC) generated based on
medical image. Output variables were values of coordinate transformation obtained in the process of sending
the VPPC to the surrounding space of a medical image. The ACR model consisted of a step of extracting
global features of point-clouds frommedical image and patient space and a step of predicting the information
of 3-dimensional coordinate transformation through global features. The coefficients of determination that
evaluated the similarity between predicted and actual rotation values on the x, y, and z axes were 0.993,
0.989, and 0.990, respectively. The coefficients of determination of the predicted and actual translation
values on x, y, and z were 0.993, 0.989, and 0.994, respectively. As a result of coarse registration of three
phantoms using the ACR, the registration errors between the patient and the computed tomography point-
cloud were 3.813 ± 0.792, 3.786 ± 0.734, and 3.653 ± 0.668 mm, which were significantly improved
over the conventional method’s registration error (4.671 ± 0.738, 4.865 ± 0.776, and 4.670 ± 0.455 mm).
The proposed method can provide convenience in the pre-operative preparation stage by automating coarse
registration. It is expected that repeatability and reproducibility can be provided by eliminating random errors
that might occur by the operator.

INDEX TERMS Surgical navigation system, coarse registration, registration error, deep learning, convolu-
tion neural network, mystery curve.

I. INTRODUCTION
The main purpose of image-guided surgical navigation
(IGSN) is to provide accurate information by displaying 3D
position information of the tip of the surgical tool inserted
into the body in real time to the operator during minimally
invasive surgery [1], [2], [3]. Minimally invasive surgery is
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a type of surgery that causes less damage by minimizing
incisions with medical devices such as IGSN [4]. The advan-
tages of this type of surgery include less pain, shorter hospital
stays, and fewer complications [5]. The IGSN is widely used
in precision surgery fields such as head and neck surgery
because it enables a high success rate with a reduced time for
a minimally invasive surgery [6], [7], [8], [9], [10]. An impor-
tant factor that determines the accuracy of the IGSN system is
the ‘‘Registration’’ step. It means matching the space of two
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FIGURE 1. Differences between the conventional coarse registration and the automated coarse registration (ACR) proposed in this study.

point-clouds acquired for the same surgical position in the
medical image and the patient space with the same coordinate
system [10]. The registration is classified into surface regis-
tration and point registration [2], [3], [11], [12]. In general,
point registration is widely used in neuro navigation clinical
due to its relatively stable and high accuracy [3], [6], [13],
[14], [15], [16]. However, it has limitations such as infection
by fiducial markers implanted in the body and delay of oper-
ation time [1], [2], [3], [12], [17], [18], [19]. Accordingly,
a surface registration method has been proposed [1], [10].
Related studies have been conducted to improve registration
accuracy that is relatively low compared to point registration
[1], [2], [9], [10], [12], [17], [19], [20], [21], [22].

Surface registration consists of coarse registration and
fine registration [23]. The coarse registration aligns medical
image and patient spatial information existing in different
spaces into one space, which is a necessary step before per-
forming fine registration [3], [23], [24].

The result of coarse registration directly affects the accu-
racy of surface registration because fine registration is the
step of precisely matching the distance between two points-
clouds roughly aligned by coarse registration. Conventional
methods of coarse registration include a method using
anatomical features of the surgical site [25] and a method
using 3D coordinate information of fiducial markers placed in
the corresponding position [26], [27]. However, in the manual
coarse registration, the accuracy of surface registration might
be lowered because of different acquisition positions of fea-
ture points that occur depending on the skill of the operator
[23]. Using the method based on fiducial markers, problems
such as scarring, risk of infection, and delay in operation time
can occur due to implants fixed in the body. Coarse registra-
tions that do not use anatomical features or fiducial markers
have been proposed to overcome pitfalls of conventional
surface registration. Serej et al. [28] have obtained anatomical
features of patient’s face by projecting a chessboard image
to the face to improve the accuracy of surface registration.
Liu et al. [23] have obtained a point-cloud for the entire

face using a 3D scanner and proposed a coarse registration
method based on intrinsic shape signatures. Fan et al. [2],
[12] have applied a 3D scanner to overcome problems caused
by fiducial markers used as reference points for coarse reg-
istration and suggested a coarse registration method based
on a 3D coordinate information of point-cloud acquired on
the entire head. In order to overcome limitations of the con-
ventional coarse registration, these studies have used data
acquisition equipment instead of using facial features or
fiducial markers. These methods entail logistic requirements
such as additional equipment and a calibration process due to
that.

Therefore, the purpose of this study was to propose a deep
learning-based ACR methodology to overcome limitations
of the conventional coarse registration. The methodology
consists of two main steps. First, input and output variables
required for training of the deep learningmodel are generated.
Input variables were virtual three-dimensional point-clouds
with continuous and geometric shapes generated from com-
puted tomography (CT) point-cloud. Output variables were
relative position information of the patient point-cloud with
respect to the CT point-cloud. In the second step, a deep
learning model was developed to predict relative 3D rotations
and translations between the generated virtual 3D point-cloud
and the CT point-cloud. The purpose of this study was to
propose a novel methodology based on deep learning that
could automatically perform coarse registration as an initial
strategy of surface registration without needing additional
equipment.

The contributions of this study can be summarized as
follows:
• The fiducial markers acquisition step necessary in the

current coarse registration can be replaced by the ‘‘Automated
coarse registration’’ method suggested in this study without
the need for additional equipment.
• This method can overcome drawbacks like scarring,

infection risk, and operation time delays that may occur due
to the placement of fiducial markers in the body.
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• This method eliminates the logistic issues that could arise
from using additional data acquisition equipment.
•By reducing operator intervention, this automatic method

can also increase reproducibility and repeatability.
In this study, we presented a methodology for improving

the accuracy of coarse registration, which is the first stage,
and the study was organized as follows: Section III provides
an overview of the methodology proposed in this study
(Section III-A), preprocessing (Section III-B), conventional
coarse registration (Section III-C), proposed automated
coarse registration (Section III-D), and a comparison of
results obtained using the conventional and proposed coarse
registration methods (Section III-E). Sections IV and V
present the results and discussions for the methods discussed
in Section III.

II. RELATED WORKS
A novel coarse registration methodology was proposed in
this study to improve surface registration accuracy. Several
previous studies attempted to improve surface registration
accuracy.

To overcome the limitation that the error of the conven-
tional surface registration method increased at the posterior
parts of the head, Fan et al. [2] proposed a surface regis-
tration method based on a point-cloud of the entire head.
The proposed surface registration method provided sufficient
accuracy not only in the anterior but also in the posterior
region of the head. Dong et al. [1] proposed selective scanning
regions of the head (the sphenoid-frontal zone, parietal zone,
left temporal zone, right temporal zone, and occipital zone)
to improve surface registration accuracy in the surgical area
of interest. The point-cloud of the regions of the head was
obtained using a handheld scanner. They showed reliable
accuracy in the sphenoid-frontal, parietal, and temporal areas.
Yoo et al. [9] reported that the irregular intervals of point-
cloud due to the general surface registration method’s track-
ing speed affect registration accuracy. To solve the problem,
irregular intervals were regenerated into regular intervals
by using cubic spline interpolation. They demonstrated that
using a point-cloud with regular intervals improves the accu-
racy of surface registration. Fan et al. [17] proposed an auto-
matic coarse-to-fine spatial registration method to improve
registration speed, ensure equivalent or higher registration
accuracy, and eliminate the need for a manual coarse reg-
istration process. The proposed method showed an obvious
speed advantage (17.4s and 21.4s for the elastic phantom
and five patients, respectively) as well as an improvement in
registration accuracy (1.17 ± 0.04 mm and range 1.64 mm
to 1.83 mm for the elastic phantom and five patients, respec-
tively). Choi et al. [20] extracted the optimal point-cloud that
has the minimum distance from the point-cloud in image
space. The optimal point-cloud was used to improve surface
registration accuracy, and it was validated using a hemi-
sphere mathematical model and a plastic facial phantom. The
proposed registration method outperformed the optical and
electromagnetic registration methods in terms of accuracy.

FIGURE 2. Overall process for obtaining CT point-cloud for soft head
phantom based on 2D CT images. (a) A soft phantom made of silicone
similar to human skin. (b) 2D medical image scanned by CT.
(c) Reconstruction of 2D CT images into 3D isosurfaces. (d) CT point-cloud
extracted using marching cube algorithm.

Yoo and Sim [22] proposed automated machine learning-
based surface registration process to improve the registration
accuracy. Using a neural network model and Bayesian opti-
mization, they extracted a new point-cloud that matched the
image space point-cloud. The proposedmethodology reduced
the average registration error by 57.8% when compared to
conventional surface registration.

Surface registration is consisted of coarse and fine registra-
tion steps [23], and the coarse registration is an essential step
before performing fine registration [3], [23], [24]. Therefore,
the accuracy of coarse registration has a direct impact on the
accuracy of surface registration. However, most studies have
concentrated on fine-registration, the final step in surface
registration.

III. MATERIALS AND METHODS
A. OVERVIEW
3-D rotation and translation information that can transform
two different point-clouds located in the medical image space
and the patient space into the same space is required to
perform the coarse registration. Fig. 1 shows differences
between the conventional coarse registration and the deep
learning-based ACR methodology proposed in this study.
In the conventional coarse registration, several fiducial mark-
ers as references are required to match point-clouds located in
two different spaces (Fig. 1(a)). In our ACR, instead of using
fiducial markers, various types of virtual patient point-clouds
(VPPCs) are generated based on CT point-cloud (CTPC). The
rotation/translation information between the VPPC and the
CTPC is then calculated. VPPCs and 3D rotation/translation
values were used as input and output variables of the deep
learning model, respectively, for the development of the ACR
(Fig. 1(b)).

B. ACQUISITION AND PREPROCESSING OF POINT-CLOUD
IN CT IMAGE
The CTPC was used as an input variable of the deep learning
model. It was also used to generate VPPCs. Fig. 2 presents
the process of acquiring the CTPC. The CTPC of the head
phantom was obtained by reconstructing a 2D tomographic
image scanned with a CT into a 3D image and then applying
a marching cube algorithm to the 3D image (Fig. 2(a)-(d))
[29], [30]. In this study, three soft head phantoms made of
silicone similar to human skin hardness (shore hardness =
20A) were used [31]. 2D tomographic images of each soft
head phantom were scanned with a rivo CT 385 (General
Electronics Medical Systems, Milwaukee, Wisconsin, USA).
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FIGURE 3. Sequential process of conventional coarse registration.

CT images had a voxel size of 0.625 mm, a resolution of
512 × 512 pixels, and a pixel spacing of 0.4883 mm. Digital
Imaging and Communications in Medicine (DICOM) data
of 2D medical images were loaded at pixel spacing intervals
and reconstructed into 3D isosurfaces. The range used for the
CTPC was from lips to the forehead except for the mouth
where the surgical tube was inserted.

C. CONVENTIONAL COARSE REGISTRATION
The conventional coarse registration was performed by
matching anatomical features obtained by CT scan and sur-
gical navigation equipment. Anatomical features included
lateral and medial canthus of both eyes, a tip of the nose, and
the philtrum in the facial midline, which were usually the thin
site of the face [9], [25].

Rotation/translation matrices were finally calculated based
on six anatomical features through the following five steps in
the conventional coarse registration used in this study (Fig. 3).
In Step 1, X and Y mean feature coordinates of patient and
medical spaces, respectively. X̄ and Ȳ are center points of all
features (i = 1 ∼ N ) in the two spaces. X̃i and Ỹi are displace-
ments between each feature and the center point, respectively.
The covariancematrix (H ) for the two features was calculated
with displacements (Steps 2 and 3) and decomposed into two
orthogonal matrices and one diagonal matrix using singular
value decomposition (Step 4). The rotation matrix (R) was
calculated using the two orthogonal matrices. The translation
matrix (t) was computed withR, features of patient space, and
medical features (Step 5).

D. AUTOMATED COARSE REGISTRATION PROPOSED IN
THIS STUDY
1) GENERATION OF INPUT AND OUTPUT VARIABLES FOR
AUTOMATED COARSE REGISTRATION
Input variables used in the ACR model were CTPC and
the VPPCs distributed around that. Output variables were

FIGURE 4. The process of generating virtual patient point clouds based
on mystery curves and CT point-cloud. Red and blue indicate CTPC and
VPPCs, respectively. (a) Generation of 2D mystery curve. (b) Coordinate
transformation of the mystery curve in front of the CT point-cloud.
(c) Generation of virtual patient points based on CT point-cloud.
(d) Generation of VPPCs based on CT point-cloud.

relative positions (RX ,RY ,RZ ,TX ,TY , and TZ ) of VPPCs
with respect to CTPC. Accurate output variables correspond-
ing to input variables are required to develop a deep learning
model based on supervised learning. However, it is not pos-
sible to obtain quantitative relative coordinate transformation
matrix between the point-cloud of patient space obtained in
the real world and the point-cloud of themedical image space.
To overcome this limitation, VPPCs were generated based on
the CTPC in this study. The overall process of generating the
VPPC is shown in Fig. 4.

First, a 2D trajectory in the shape of continuous with a
starting point and an ending point was generated (Fig. 4(a)).
Patient point-cloud used in the IGSN was acquired in a
different shape each time because it was directly acquired
by the operator. The mystery curve method used to design
geometric shapes such as symbols, logos, trademarks, and
bank-draft watermarks was applied to generate VPPCs with
the same characteristics as the patient point-cloud [32]. The
mystery curve is expressed as a trigonometric function of
x and y based on the complex function c(t). It is converted
into an exponential function to generate a geometrical curve
(Equation (1)):

c (t) = x (t)+ iy (t)

= (cos (at)+
cos (bt)

2
+

sin (ct)
3

)+ i(sin (at)

+
sin (bt)

2
+

cos (ct)
3

)

= ea·Timep·i +
eb·Timep·i

2
+
ec·Timep·i

3
(1)

The mystery curve can be expressed with a period of 0 to
2π , which reflects time series characteristics of the patient
point-cloud used for the IGSN. The Timep of Equation (1)
represents time information of time series data. A total of
1,000 points were generated by equally dividing 0 to 2π
equally into 1,000. In addition, 2D mystery curves with
different trajectories were generated by applying real val-
ues with one decimal place between −15 and 15 to three

VOLUME 10, 2022 115887



H. Yoo, T. Sim: Deep Learning-Based Approach for ACR of IGSN

(a, b, c) frequency components of Equation (1). In the second
step, the 2D mystery curve was moved to face the front
of the CTPC using the orthogonal coordinates system of
each point-cloud (Fig. 4(b)). In the third step, 3D virtual
patient points (VP points) were generated by orthographi-
cally projecting each point of the 2D mystery curve onto
the CTPC (Fig. 4(c)). Before performing the fourth step, a
three-dimensional rotational movement value to be used as
an output variable was obtained under the rotation/translation
condition of Equation (2). Equation (2) is a mathematical
process of coordinate transformation using the Euler angle.
The rotation transformation is performed in the order of z, y,
and x axes, followed by translation transformation [33].VPPC Z

VPPC Y
VPPC X


= RZ (ψ)RY (θ )RX (φ)

VP points ZVP points Y
VP points X


+

 TZTY
TX

 −
90 · π
180

< ψ, θ ,φ <
90 · π
180

(rad)

−150 < TZ ,TY ,YX < 150 (mm)

=

 cosψ sinψ 0
sinψ cosψ 0
0 0 1

 cos θ 0 sin θ
0 1 0

sin θ 0 cos θ

 1 0 0
0 cosφ sinφ
0 sinφ cosφ


×

 VP points ZVP points Y
VP points X

+
 TZTY
TX

 (2)

The coordinate transformation matrix calculated by
Equation (2) was applied to VP points in order to obtain
VPPC to be used as an input variable of the ACR (Fig. 4(d)).
In addition, the distance from the origin of CPPC to the origin
of VPPC was calculated to analyze the distance distribution
of VPPCs based on the CTPC. To quantitatively analyze the
distribution of VPPCs centered on the CTPC, distance anal-
ysis was performed by classifying the range of Equation (2)
into inner space (0-50 mm), middle space (50-100 mm), and
outer space (100-150 mm).

2) DEEP LEARNING MODEL FOR AUTOMATED COARSE
REGISTRATION
A deep learning model for automatically registration of two
point-clouds located in the CT space and the patient space
was proposed in this study without using fiducial markers or
additional equipment. Fig. 5 shows the deep learning archi-
tecture of the ACR model.

The ACR model is a structure that can predict 3D rota-
tion/translation between two point-clouds by combining fea-
tures of each point-cloud extracted from the CTPC and the
VPPC. The architecture has four steps. The CTPC and VPPC
used as input variable consisted of 5,000 points and 1,000
points, respectively. The initial number of channels was set
to be three because 3D coordinates (x, y, and z) were used in
the model.

FIGURE 5. Deep learning model architecture for automated coarse
registration (Step 1 to 4). In the first step, 1-dimensional CNN is used to
extract features from CT point clouds (CTPC) and virtual patient point
clouds (VPPC). In the second step, a transformation matrix that takes into
account the rigid motion invariant of the point-cloud is obtained using
T-Net and multiplied with the input feature. The network based on
1-dimensional CNN extracts global features in the third step, and a
network composed of dense layers predicts translation and rotation
values in the fourth step.

In the first step consisting of a 1D convolution layer,
64-channels, and a batch normalization layer, features were
extracted from input variables (the CTPC and the VPPC).
In the second step, the T-Net structure was applied to sat-
isfy the characteristic of rigid motion invariant of the point-
cloud, which should not affect the result even if various
transformations were performed on the input variable [34].
The T-Net consisted of two 1D CNN layers (128, 1024),
a max pooling layer, two dense layers, and a batch normal-
ization layer applied between each layer. The size of the
transformation matrix (64 × 64) obtained through the T-Net
was difficult to optimize. Thus, the weight was normalized to
64 channels before transferring to the third structure. In addi-
tion, features extracted in the first step were combined after
the step of feature transform to maintain initial features of
input variables. In the third step, features of point-cloud were
extracted to satisfy the permutation invariant property of input
variables. Global features were acquired with a symmetric
function [34]. Features of point-cloud were extracted through
three 1D-CNNs with the number of channels of 64, 128, and
1024. Global features of 1,024 for each point-cloud were
generated through max pooling. In the last step, each global
feature for the CTPC and VPPC was concatenated into one
feature. The feature was used as an input variable for predict-
ing 3D rotations and translations. The last structure consisted
of four dense layers reduced to 512, 256, 128, 3 to predict 3D
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rotations and translations. A five-fold cross validation was
performed for training and internal validation. VPPCs were
not duplicated between training and validation sets. Hyper-
parameters (leaky ReLU activation function, a learning rate
of 0.001, and ADAM optimizer) were tuned with extensive
empirical experiments.

3) EVALUATING THE PERFORMANCE OF THE ACR MODEL
The performance of the ACR was evaluated based on
root mean square error (RMSE) between predicted values
(Predicted XYZ i) and actual values (XYZ i) used as output
variables. The RMSEwas calculated with Equation (3). XYZ i
and Predicted XYZ i were the ith actual value and the ith
predicted value, respectively, in Equation (1).

RMSE =

√∑n
i=1 (XYZ i−Predicted XYZ i)

2

n
, [mm] or [rad]

(3)

The coefficient of determination (R2) was calculated to
analyze the linear relationship between predicted and actual
values (Equation (4)), as shown at the bottom of the next
page. R2 could quantitatively express whether there was a
correlation between the two groups. It was calculated as the
ratio of the sum of variances to total variances. XYZ and
Predicted XYZ were averages of actual and predicted values,
respectively.

In addition, the performance of the model was evaluated by
calculating the distance from the origin of CPPC to the origin
of actual/predicted VPPCs.

Additionally, differences between values predicted by the
ACR model and actual values were statistically analyzed for
rotations (RX ,RY and RZ ) and translations (TXTY , and TZ ).

E. COMPARING DIFFERENCES OF REGISTRATION ERROR
BETWEEN CONVENTIONAL COARSE REGISTRATION AND
ACR
The registration error between the two methods was analyzed
to compare performances of the conventional method and the
proposed method. The registration error was calculated with
Equation (5), which quantified average Euclidean distances
between corresponding points in the patient space and medi-
cal image space. The CT point i was the ith point of medical
images point-cloud and Patient point i was the ith point of
patient point-cloud coordinated by coarse registration [10].
CT and patient points are made up of positional information
on the x, y, and z axes, and the Euclidean distance between the
points is calculated using Equation 5. The registration error
is expressed as one parameter of the Euclidean distance.

Registration error =

∑n
i=1

∥∥CT point i − Patient point i
∥∥

n
(5)

The registration error of ACR was also calculated with
Equation (5). However, since ACR was performed automat-
ically, there was no point-cloud of the medical image space
that could calculate the error after performing the registration.

TABLE 1. Registration errors calculated with conventional coarse
registration for each phantom and trial.

To obtain data that could exactlymatch the shape of the VPPC
in the medical image space, the VP point extracted from the
CTPC was set as the CT point i. The difference in registration
accuracies calculated for the ACR and conventional method
was statistically analyzed with an independent t-test. The sta-
tistical significance level was set at 0.05 or 0.01. All statistical
analyses were performed using SPSS 15.0 software (SPSS
Inc., Chicago, Illinois, USA).

IV. RESULTS
A. MEDICAL IMAGE POINT-CLOUDS OF SOFT HEAD
PHANTOMS USED FOR ACR DEVELOPMENT AND
CONVENTIONAL COARSE REGISTRATION
A supervised learning-based ACR model was developed
using medical images of soft head phantoms. Fig. 6 shows
point-clouds obtained frommedical images of three soft head
phantoms. The CTPC of each phantom was extracted from
lower lips to the forehead used in the IGSN. The number
of points in each CTPC was 37,709, 24,254, and 23,940,
respectively. Points obtained by using marching cube were
distributed at regular intervals.

B. REGISTRATION ERROR CALCULATED BY
CONVENTIONAL COARSE REGISTRATION FOR SOFT HEAD
PHANTOMS
The conventional coarse registration was performed with five
replicates for each soft head phantom. Six fiducial markers
used as reference points for coarse registration were obtained
by a skilled professional. They were attached to lateral and
medial canthi of both eyes, the tip of the nose, and the
philtrum in the facial midline. Registration errors calculated
with the conventional coarse registration method were repre-
sented in Table 1. The average registration error was 4.735±
0.629 mm (range, 3.629 mm to 5.989 mm).

C. GENERATE CTPC-BASED INPUT VARIABLES AND
OUTPUT VARIABLES FOR DEVELOPING THE ACR MODEL
Fig. 7(a) to (c) presents VPPC samples used as input vari-
ables to develop the ACR model. A total of 1,000 VPPCs
were obtained from each of the three phantoms. They were
generated in different shapes by the frequency component
of a mystery curve formula [32]. All VPPCs have the same
number of points. Thus, a widely distributed point-cloud
has a long distance between each point, whereas a nar-
rowly distributed point-cloud has a short distance between
them. The average distance between points of all VPPCs
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FIGURE 6. Soft head phantom produced for ACR model development and
CTPC acquisition results obtained using a marching cube algorithm from
CT images of phantoms.

FIGURE 7. Various shapes of VPPC ((a), (b), and (c)) generated by mystery
curves formula and the reduced CTPC ((d), (e), and (f)) obtained at regular
intervals for use as input variables. Red and blue indicate CTPC and
VPPCs, respectively.

was 6.803 ± 3.097 mm (range, 6.232 mm to 7.395 mm).
The CTPC has high-resolution data obtained from medical
imaging devices consisting of tens of thousands of points.
For this reason, the amount of computation is increased in
the training model. Therefore, in this study, the CTPC was
reduced to 5,000 points by selecting at equal intervals for each
phantom (Fig. 7(a), (b), and (c)). These points were then used
as input variables for the ACR model.

As shown in Fig. 1, the output variables were 3D rotations
and translations used to transform VP points into around the
CTPC. Results of coordinate transformation of VP points
into around the CTPC with rotation/translation values are

FIGURE 8. 3D space distribution of VPPCs around the CTPC according to
the number of VPPCS. Visualization of distribution of (a) 10, (b) 30, and
(c) 50 VPPCs around CTPC. (d) Average distance between origin and all
VPPCs in three spaces.

shown in Fig. 8. Fig. 8(a) presents results of generating ten
VPPCs around the CTPC. Fig. 8(b) and (c) describe results
of generating 30 and 50 VPPCs, respectively. In this study,
1,000 3D translation and rotation values were obtained for
each phantom. Thus, a total of 3,000 translation and rota-
tion values were obtained. These 3D rotation and transla-
tions were used as output variables for the ACR model.
Fig. 8(d) shows analysis results by dividing VPPC into three
spaces based on the origin to quantitatively analyze VPPCs
distribution. The total space was uniformly classified into
inner space (0-50 mm), middle space (50-100mm), and outer
space (100-150 mm). The average and standard deviation of
the distance between the origin and VPPCs were calculated
for each space. Distances between origins for VPPCs dis-
tributed in each space of inner, middle and outer spaces were
64.672± 16.752 mm, 127.058± 22.331 mm, and 196.153±
16.099 mm. respectively.

D. PERFORMANCE OF THE ACR MODEL DEVELOPED
USING GENERATED VPPCs AND 3D
ROTATION/TRANSLATION VALUES
RMSE (Equation (3)) and R2 (Equation (4)) were calcu-
lated for actual and predicted values of 3D rotations and
translations to evaluate the performance of the ACR model
proposed in this study. Table 2 presents results of RMSE for
3D rotation/translation obtained by the proposed model.

Average RMSEs of the rotation obtained through 5-fold
cross validation were 0.016 rad, 0.021 rad, and 0.043 rad
for RX, RY and RZ, respectively. Average RMSEs of the
translation through 5-fold cross validation were 3.029 mm,
2.846 mm, and 2.883 mm for TX, TY and TZ, respectively.

R2
=

 ∑n
i=1 (XYZi−XYZ )(PredictedXYZi−Predicted XYZ)√∑n

i=1
(
XYZi−XYZ

)2√∑n
i=1 (PredictedXYZi−Predicted XYZ

2


2

(4)
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TABLE 2. Results of five-fold cross validation of RMSE between
prediction and actual values of 3D rotation and translation values to
evaluate the performance of the ACR model.

FIGURE 9. Coefficient of determination (R2) between actual and the
predicted values of rotation ((a), (b), and (c)) and translation ((d), (e), and
(f)) in x, y, and z axes for ACR model.

Fig. 9 shows results of correlation between actual and
the predicted values obtained by the ACR model. In Fig. 9,
the horizontal line represents actual values, the vertical line
represents predicted values obtained through the proposed
model, and R2 means the degree of similarity between actual
and predicted values. R2 values of rotation for x, y, and z
axes were 0.993, 0.989, and 0.990, respectively. R2 values of
translation for x, y, and z axes were 0.993, 0.989 and 0.994,
respectively. Strong correlations were observed for all three
axes. The average R2 was more than 0.98.

FIGURE 10. Average actual and predicted values of rotation and
translation in three axes to evaluate the ACR model (White box: actual
value; Gray box: predicted value; Plus point: median; whisker 5–95
percentiles).

FIGURE 11. Difference between actual VPPC and predicted VPPC
compared by calculating the distance from the origin of CTPC to the
origin of VPPC. Horizontal line, the space classified according to the
distance; Vertical line, the distance from the origin of CPPC to the origin
of VPPC. Plus, median; whisker, 5–95 percentiles.

Fig. 10 shows results of comparison between actual and
predicted values of the rotation/translation in the three axes.
There was no statistically significant difference between the
two methods.

Fig. 11 presents calculated distance from the origin of
CPPC to origin of VPPCs. As a result of analyzing distances
from the origin, there was no statistically significant differ-
ence between the actual distance and the predicted distance
in any space.

E. REGISTRATION ERRORS BETWEEN CORRESPONDING
POINTS IN PATIENT SPACE AND MEDICAL SPACE BY THE
ACR AND THE CONVENTIONAL METHOD
To evaluate the performance of ACR model proposed in
this study, registration errors calculated by the conven-
tional coarse registration and our model were compared
(Fig. 12). Average registration errors of the conventional
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FIGURE 12. Comparison of e registration errors calculated by the
conventional coarse registration and the ACR model for three soft head
phantoms.

coarse registration were 4.624 mm, 4.826 mm, and 4.621 mm
in the three phantoms, respectively. Average registration
errors calculated by the ACR model were 3.813 mm,
3.786 mm, and 3.653 mm in the three phantoms, respectively.
As a result of comparing registration errors between the
two registration methods, registration errors of ACR in all
phantoms were lower than those calculated by conventional
coarse registration (∗, p < 0.05; ∗∗, p < 0.01).

V. DISCUSSION
An ACR based on the deep learning model was proposed to
improve the accuracy and convenience of conventional coarse
registration. The ACR model is a supervised deep learning
model that requires input and output variables. VPPCs gen-
erated based on CTPC were relocated through coordinate
transformation around the CTPC and used as input variables.
The output variables were 3D rotation/translation values cal-
culated in the process of relocating the VPPCs around the
CTPC. ACR was developed based on a deep learning model
with input and output variables. It was used to match two
different point-clouds in medical-image and patient spaces.
For this, three soft phantoms were self-made. CTPCs with
an average of 28,634 ± 7,861 points were obtained from
each soft phantom. Eggers et al. [11] have reported that
more than 100,000 points are generally obtained in a head
phantom acquired by CT with a resolution of 512 × 512.
The average number of points obtained from each phantom
was 108,764 ± 17,159 in the present study. However, since
the range of CTPC required for the ACR model was from
the lower lip to the forehead, the rest of the points were
removed in the preprocessing step. CTPCs were used for the
conventional coarse registration. They were also used as the
references for generating VPPCs and input variables of our
ACR model.

The performance of the ACR model proposed in this
study was compared with that of the conventional coarse
registration. The error of the conventional coarse registration
was 4.735 ± 0.629 mm for three phantoms, consistent with
results of previous studies that presented registration errors of

4∼5 mm [2], [21], [35]. Additionally, the conventional coarse
registration was necessary several anatomical positions as
fiducial markers [9], [25]. However, a variation in registration
error may occur because it is difficult to obtain accurate posi-
tions of fiducial markers even for a skilled professional. The
VPPCs used as input variables of the ACR were generated in
all different shapes based on the mystery curve formula of the
exponential function [32]. The number of points constituting
the VPPC was 1,000. The average distance between each
point of the VPPC was 6.803 ± 1.597 mm. Considering
that the frequency of a general IGSN was 40∼60Hz [36],
it is expected that it will take about 20 seconds to track
1,000 points. Qyedare and Park [37] have reported that one
of the widely applied rules-of-thumb for deep learning is
that the dataset of input variables requires 50 to 1,000 times
more data compared to the class to be classified. Therefore,
3,000 input variables were considered for three phantoms to
predict six coordinate transformation values in the present
study. The 3D rotation/translation values between VPPCs
and CTPC calculated by Equation (2) were used as output
variables. The maximum diagonal distances of the inner
space (50 mm), middle space (100 mm), and outer space
(150 mm) classified based on the CTPC were 86.602 mm,
173.205 mm, and 259.807 mm from the origin, respectively.
As shown in Fig. 8 (d), distributions of VPPC for the three
spaces were 64.672 ± 16.752 mm, 127.058 ± 22.331 mm,
and 196.153± 16.099mmaway from the origin, respectively.
These results meant that not only the VPPCs, but also the 3D
rotation/translation values had various ranges.

The performance of the ACR model was analyzed using
RMSE, R2, and 3D rotation/translation values. In the RMSE
analysis, the average rotation and translation errors calculated
by the conventional coarse registration and ACR model were
0.026 rad and 2.919mm, respectively. As a result of analyzing
the rotation and translation values, there were no statistical
differences between the actual and the predicted values in
three axes (Fig. 10). In addition, strong correlations were
observed for results of the coefficient of determination to
analyze the linear relationship between actual and predicted
values. However, Rz was relatively lower than Rx and Ry.
In the point-cloud viewed from the front of the phantom, the
distribution of points was widely distributed along x and z
axes. On the other hand, the point-cloud viewed from above
(z axes) the phantom was relatively narrow compared to the
distribution viewed from the front. The reason for the low
accuracy of Rz than other axes was considered to be due
to insufficient coordination information of the z-axis in the
dimension reduction process, which resulted in insufficient
extracted features. The registration error calculated by the
ACR model was 3.751 ± 0.085mm on average, which was
significantly lower than the error of the conventional coarse
registration (4.735± 0.628 mm) (p < 0.05 or 0.01). Hui et al.
recently analyzed the error of a coarse registration algorithm
based on 3 to 8 fiducial markers [38]. As a result, an error of
5.292 to 6.329 mm was presented when three fiducial points
were used, and an error of 2.446 to 4.794 mm when eight
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fiducial points were used. These results were comparable
to or worse than our result (average error 3.751 mm). The
most significant difference between ACR and conventional
coarse registration, including the study of Hui et al., is that
it proposed an automated method. The improvement rate of
the ACR model was 20.762 ± 2.085% on average. Improve-
ment rates for the three phantoms were 18.366%, 22.168%,
and 21.753%, respectively. The ACR model, however, has
technological limitation. The ACR model’s input variables,
VPPC, were built in a wide range of the entire front of the
face to acquire facial features. For this reason, if the operator
acquires the patient point-cloud narrowly, there is a risk that
the registration error may increase. The ACR model does
not require a physical step of the conventional method for
obtaining the manual anatomical position in the preoperation.
It can improve the repeatability and reproducibility because
it is possible to remove human error that occurs in the step
of acquiring anatomical positions manually by the operator.
According to Fan et al. [17], the improvement of initial poses
by coarse registration can directly improve the accuracy of
fine registration. In their study, the fine registration error
was reduced from 1.93 mm to 1.70 mm by improving the
coarse registration. Therefore, the ACR method proposed in
this study is expected to improve the accuracy of IGSN by
reducing the fine registration error.

VI. CONCLUSION
The ACR model based on deep learning developed in this
study is a novel method of registration that can improve
the accuracy and convenience of conventional coarse regis-
tration. Our ACR model produced a soft phantom similar
to human skin. Its accuracy in an environment similar to
a clinical setting was evaluated. However, this study had a
limitation in that the ACR was not applied to clinical trials.
Additionally, in this study, the error of coarse registration was
improved among two registration steps constituting surface
registration. Therefore, in the future, it is necessary to ver-
ify the effectiveness by performing the second step of sur-
face registration, fine registration. In addition, clinical trials
are required to analyze the registration error in the lesion,
which is the ultimate goal of surface registration. The ACR
model proposed in this study not only offers convenience and
improves accuracy of coarse registration, but also ensures
repeatability and reproducibility of coarse registration by
eliminating fiducial markers extraction step that the operator
has to manually perform. These advantages indicate that the
ACRmodel is applicable as a major technology for IGSN that
requires stable surgery by maintaining consistent accuracy.
Furthermore, the ACR model can improve the registration
accuracy of IGSN by combining it with conventional tech-
niques of surface registration.
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