
Received 6 October 2022, accepted 26 October 2022, date of publication 31 October 2022, date of current version 11 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3218335

A New Multi-Filter Framework for Texture Image
Representation Improvement Using Set of Pattern
Descriptors to Fingerprint Liveness Detection
RODRIGO COLNAGO CONTRERAS 1,2, LUIS GUSTAVO NONATO 1, (Member, IEEE),
MAURÍLIO BOAVENTURA 2, INÊS APARECIDA GASPAROTTO BOAVENTURA2,
FRANCISCO LLEDO DOS SANTOS 3, RODRIGO BRUNO ZANIN3,
AND MONIQUE SIMPLICIO VIANA4
1Institute of Mathematical and Computer Sciences, University of São Paulo, São Carlos, São Paulo 13566-590, Brazil
2Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto, São Paulo 15054-000, Brazil
3Faculty of Architecture and Engineering, Mato Grosso State University, Cáceres, Mato Grosso 78217-900, Brazil
4Computing Department, Federal University of São Carlos, São Carlos, São Paulo 13565-905, Brazil

Corresponding author: Rodrigo Colnago Contreras (rodrigo.contreras@unesp.br)

This work was supported in part by the Brazilian National Council for Scientific and Technological Development (CNPq) under
Grant 381991/2020-2; and in part by the São Paulo Research Foundation (FAPESP) under Grant 2022/05186-4, Grant 2021/15165-1,
Grant 2015/14358-0, and Grant 2013/07375-0.

ABSTRACT The use of user recognition and authentication systems has become very common and is part of
everyday routines for many people, guaranteeing access to the automatic teller machines, entrance to the gym
or even to smartphones. Among all the biometrics that can be analyzed in this type of system, the fingerprint
is the most considered due to the ease of collection, the uniqueness of each user, and the large amount of
solid theories and computational libraries available in the scientific literature. However, in recent years,
the falsification of these biometrics with synthetic materials, known as spoofing, has become a real threat
to these systems. To circumvent these effects without the addition of hardware devices, techniques based
on the analysis of texture pattern descriptors were developed. In this work, we propose a new framework
based on steps of data augmentation, image processing and replication, and feature fusion and reduction.
The method has as main objective to improve the ability of classifiers, or sets of classifiers, to recognize life
in fingerprints. Furthermore, it is proposed a generalization of vector representation of patterns described in
matrix form from the systematic use of sets of mapping functions. All the proposed material was analyzed
on the well-established benchmark of the Liveness Detection competition of the 2009, 2011, 2013 and
2015 editions, presenting an average accuracy of 97.77% and being a competitive strategy in relation to
the other techniques that make up the state of the art of specialized literature.

INDEX TERMS Fingerprint liveness detection, spoofing detection, pattern recognition, texture analysis,
computer vision.

I. INTRODUCTION
Biometrics [1] is defined as a physiological or behavioral
attribute that can be used to uniquely characterize an indi-
vidual. As examples, we can cite fingerprints [2], faces [3],
iris [4], ears [5], voice [6], palmprint [7], body silhouette [8],
walking way [9], among others. Based on these character-
istics, user recognition systems can be defined, being this
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known as Biometric Authentication Systems (BASs) [10].
In this case, BASs have numerous advantages in user recog-
nition processes compared to other authentication techniques
such as those based on password, since the user can forget
their code or have it stolen, and those based on card presen-
tation, as the user may lose the material and/or someone else
may present it instead. Therefore, we can note that BASs do
not have such a deficiency, as there is no possibility of a user
forgetting or losing a biometric, except in the rare cases in
which the user suffers an amputation or deformation.
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Among all biometrics, the most used in BASs is the fin-
gerprints [11]. With pickup devices becoming cheaper, even
smatphones and personal computers with this feature are
becoming popular, increasing the use of fingerprint-based
BASs and boosting the level of security in user recognition
for performing tasks, such as access to restricted locations
or personal devices [12]. The preference for fingerprint bio-
metrics is due to the following factors [13]: a considerable
amount of academic research conducted on it, since this is the
most explored biometrics and, consequently, more techniques
and computational libraries are available; ease of collection,
as the user touches a sensor for a few seconds to have their
biometrics collected and authenticated in the system; quality
of biometrics, since the fingerprint has all the good properties
that an authentication feature should have, such as univer-
sality, as the vast majority of users have at least one finger,
uniqueness, as there is no record current of two different
people with the same fingerprints, and permanence, because
fingerprints do not change over the user life.

Even though the use of fingerprints in BASs becomes
widespread nowadays, the security of these systems can be
compromised by frauds known as spoofing attacks, which
consist in the presentation of a synthetic finger, or made by an
imposter, which may be incorrectly recognized as authentic
by the model adopted in the system [14]. In fact, we can find
records in the literature of real systems that have suffered
attacks of this type [15].

To overcome these adversities, advances were made in
terms of hardware, this being a development that demands
greater monetary investment, and software [16]. In the case of
the latter [17], it is not necessary to carry out updates on the
devices used by the BAS, but new routines must be attached
to the user recognition model, which are dedicated to detect-
ing life in the biometrics presented to the system. In detail,
software-level detection techniques are divided into twomain
categories [18]: those based on neural networks, more specif-
ically convolutional neural networks [19], whether deep or
not; and those based on handcrafted features [20] that must
be used in some classifier, so that the most common features
are those produced by texture descriptors, by statistical mea-
surements or by analysis of the region of interest. Regarding
this second category, some researchers propose the use of
some processes that favor the detection of fraud in biometrics,
such as [21] and [22]: the use of a pre-processing step in the
fingerprint images before the construction of features; the use
of elaborate techniques for detecting regions of interest; con-
ducting feature reduction to increase the classifier’s accuracy;
between others. In these cases, it is said that the technique
composes a framework based on handcrafted features for
spoofing detection in BASs, since the steps of the proposed
technique are the same, differing only by the construction of
the features that must represent the biometrics.

This work is an extended version of our preliminary
work [22]. In this work, we propose a new framework
based on handcrafted features to detect fingerprint spoof-
ing. The main idea behind this work is to present an image

representation enrichment method through simple pre-
processing techniques in order to obtain competitive results
to the methods that make up the current state of the art on
the subject. In detail, the developed technique has steps of
data augmentation, pre-processing, feature fusion and dimen-
sionality reduction. The method described here in detail was,
in a very preliminary version, runner-up in a challenge of
the Liveness Detection (LivDet) competition of 2021. In this
case, the method described here is a generalization of the
preliminary version of our work. Thus, we present a more
flexible and powerful method, described in greater detail, and
conduct more complete experiments with more comparisons
and test situations. Furthermore, we propose in this work a
new representation category for texture descriptors evaluated
directly in the fingerprint spoofing detection problem. In this
way, the scientific advances contained in this text can be
summarized in:
• A new framework for detecting life in fingerprint
images;

• A new representation category of matrix based pattern
descriptors;

• New experimental results of texture descriptors in the
fingerprint spoofing detection problem,

• Competitive results compared to benchmarks and meth-
ods that represent the state of the art in the specialized
literature.

The paper is organized into 7 sections: in the Section II,
a review of related works on the topic of spoofing
detection with software-level techniques is carried out; in
Section III, a generalization is proposed for the representation
of matrix-based texture descriptors through mappings; in
Section IV, we propose a multi-step framework specialized
in improving the representation of fingerprint images for the
problem; in Section V, practical instances of the proposed
generalizations are determined; the results that demonstrate
the effectiveness of the proposed material are presented in
Section VI; and the work finishes with conclusions and con-
siderations for future developments in Section VII.

II. RELATED WORKS
One of the most used texture pattern descriptors in the
literature is the Local Binary Pattern (LBP) [23], which was
one of the first descriptors to be analyzed in official bench-
marks for fingerprint spoofing detection competition [24].
To solve the technique’s vulnerability to noise and, conse-
quently, increase the accuracy of the classification routine,
Jia et al. [25] considered two multi-scalar versions of the
LBP: one obtained directly from the generalization of the
LBP [26] and the other consisting of the LBP extraction from
smoothed images by Gaussian filtering [27]. Furthermore,
variations of this pattern descriptor, as the Uniform LBP
(ULBP) [28], were proposed to solve the same problem.
We can see that other well-known texture pattern descriptors
have also been successfully used in the task of detecting life
in fingerprints, namely the Scale Invariant Feature Transform
(SIFT) [29], the Local Phase Quantization (LPQ) [30] and
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its multi-scalar version [31], the Weber Local Descriptor
(WLD) [32] and variations [33]. In this sense, Gragnaniello
et al. [29] made a deep investigation to compare several
texture descriptors in the problem. Also, it is worth men-
tioning that new texture pattern descriptors were developed
in order to enhance the detection of spoofings. Examples
include: the Quantized Fundamental Fingerprint Features
(Q-FFF) [34], which proposes the joint analysis of known
first-level features, which describe the orientation of the
ridges of a fingerprint, with known third-level features level,
which describe the contours of the ridges of a fingerprint,
these being extracted, respectively, by a weighted linear com-
bination based on Weber’s law [35] and by the analysis of
the two-dimensional short-time Fourier Transform [36]; the
Weber Local Binary Descriptor (WLBD) [33], which con-
siders all directions in its definition and not just the hori-
zontal and vertical directions, in addition to conducting the
computation of WLD components using LBP; the combined
Shepard Magnitude and Orientation (SMOc) [37], which,
as the name suggests, is based on the calculation of the phase
information in the frequency domain and the spatial stimulus
calculated by the Shepard magnitude [38]; the Distinctively
Encoded Histogram of Fingerprint Features (DEHFF) [39],
which is made from the analysis of the fingerprint ridge map,
calculated from Gabor filters and response to spatial stimuli,
and the analysis of the orientation of the fingerprint ridges,
calculated from a variation of the LPQ; and the Compre-
hensive Edge Direction Descriptor (CEDD) [40], which is a
descriptor made from the analysis of the implicit and explicit
information of the Log-Gabor transform responses [41].

Techniques based on handcrafted features with elabo-
rate formulations and various processes involving spoofing
detection have been proposed in recent years. According
to Sharma and Dey [42], this category of techniques has a
clear superiority in real-world presentation attack situations,
as they define simpler and faster approaches that should
increase the security level of real-world BASs. Furthermore,
Agarwal et al. [43] claim that the pure use of handcrafted
features presents better results than its deep counterpart in
most test situations involving open benchmarks on the theme.
An example is a method presented by Jonathan Wu [44] and
extended by Li et al. [45], in which the features are extracted
by the pattern descriptors LBP, SIFT, and Histograms of
Oriented Gradients (HOG) [45] and, before being used in the
classification stage, they are merged by five different strate-
gies: concatenation, sum, average, maximum and minimum
between coordinates. In the same sense, Toosi et al. [47]
propose a framework with three main processes: extraction
of features from fingerprint images by groups of pattern
descriptors; feature fusion; and classifier training. In the
work, several combinations of specialized techniques were
considered in each of the processes, being evaluated several
known texture descriptors and, in the case of classifiers, four
techniques, considering a proposal of a deep neural network,
were evaluated. Tan et al. [48] proposed a framework with
a pre-processing step based on guided filtering [47] and

adaptive histogram equalization [48] and a dimensionality
reduction step based on t -Distributed Stochastic Neighbor
Embedding (tSNE) [49]. Jian et al. [52] proposed to improve
the accuracy of five different texture descriptors by weight-
ing the classifications obtained by a support vector machine
(SVM) of their respective features and training another SVM
with such weights. Similarly, in the work of Sharma and
Selwal [53], in addition to proposing a new pattern descriptor
based on an adaptive version of LBP, the authors present a
new strategy based on radial SMVs and AdaBoosts ensem-
bles [52] to improve the accuracy of pattern descriptors in
the problem. The authors present a modified version of the
mentioned framework [53], in which the features extracted
by the descriptor Binarized Statistical Image Features (BSIF)
are used for training a deep sequential neural network and
such results are also considered in the AdaBoost committee.

Another category of techniques widely used in the detec-
tion of fingerprint fraud is those based on artificial neu-
ral networks, mainly convolutional neural networks (CNN).
In detail, the first work to use a neural network to detect
fingerprint spoofings was the CNN of Nogueira et al. [56]
which, in this case, is used together with filtering steps,
detection of the region of interest, histogram equalization,
and data augmentation. The authors extended the work [55]
with the use of transfer learning techniques considering
the well-known AlexNet [56] and VGG [57] CNNs, origi-
nally trained for object detection and adjusted to discrimi-
nate images of legitimate fingerprints from fraudulent ones.
Similarly, Samma and Suandi [60] investigated the learn-
ing transfer of the VGG network at three different depth
levels, and the shallower network, containing only the two
initial blocks of layers of the original network, had better
performance in the spoofing detection. Further developments
were conducted using CNNs to detect liveness fingerprints.
As an example, Yuan et al. [59] proposed a new CNN with
a spatial and pyramidal clustering layer, or pooling, whose
initial parameterization was configured from a pre-training
stage in the ‘‘ImageNet 2012 database’’ [60]. CNNs may
require that the images used for their configuration are of the
same dimensions, which generally entails the need to reduce
their dimensions and, consequently, the loss of the original
information present in the image. To overcome this difficulty
and keep the information at the texture level, Yuan et al. [61]
proposed a CNN with an image-scale equalization step and
with adaptive learning. A densely connected variation of a
CNN was proposed by Jian et al. [62], with the parameters of
this network optimized by a Genetic Algorithm [63], which
improved the quality of operation of the method in spoof-
ing detection. Yuan et al. [64] highlight that CNNs com-
prise a category of neural networks whose parameter opti-
mization tends to stagnate in local optima, especially in the
backpropagation stage, which can compromise the results.
To circumvent this adversity, the authors propose the use of
a deep residual neural network (DRNN), with optimization
driven by adaptive learning, and prove that the tool is more
robust in the problem compared to other neural networks.

VOLUME 10, 2022 117683



R. C. Contreras et al.: New Multi-Filter Framework for Texture Image Representation

TABLE 1. Summarization of some of the main techniques for fingerprint spoofing detection. In this case, if the technique is based on handcrafted
features, then the HF code is associated with it. Likewise, techniques based on artificial neural networks or deep learning are associated with ANN/DL
code and techniques based on framework is associated with the FW code. In addition, ACC and ACE refer, respectively, to the average accuracy and to the
average classification error of each technique.

Zhang et al. [65] start their work by highlighting that CNNs,
in general, tend to need large amounts of parameters in their
configuration and, because of the popularization of BASs in
devices with less computational capacity, the authors propose
a dense neural network that works with smaller amounts of
parameters.

In summary, Table 1 presents some of the main methods
discussed here, highlighting their differences and similarities.
Specifically, the following are presented: the acronym of the
method; the year of publication of the work; the category of
techniques it is included in, that is, whether it is a technique
based on handcrafted features, framework or neural networks;
which editions of the Fingerprint Liveness Detection Com-
petition (LivDet), that defines the benchmark of the theme,
are considered in the experiments; and the average perfor-
mance in terms of accuracy and/or average classification
error. We emphasize that all the methods listed are used to
compare the proposed material.

In this way, we can see that much has been done to cir-
cumvent the problem of fingerprint spoofing detection in
BASs. However, this problem still remains open, since none
of the existing methods has 100% accuracy in fingerprint
liveness detection considering the benchmarks of the area.
Thus, further developments on this topic are still needed.
In this work, two main advances are made: the first consists
of a new framework characterized by steps of data aug-
mentation, multi-filtering, feature extraction and fusion, and
dimensionality reduction, which is responsible for improv-
ing the accuracy of a given pattern descriptor or groups of
pattern descriptors in discriminating fraudulent fingerprints;
and the second being the proposal of a new generalization for

representing texture descriptors based on mapping its matrix
features.

III. MAPPING DESCRIPTORS AS A HANDCRAFTED
FEATURE
Pattern descriptors such as LBP and its variations have the
ability to represent an image as a feature vector in the form of
a histogram that belongs to RnH . In these cases, it becomes
natural to use classifiers of simple definition and high per-
formance such as SVMs. However, there is a category of
descriptors that represent images bymatrices. As an example,
we can cite the pattern descriptor SIFT [66]. This descrip-
tor represents the image as a set, or a matrix, of gradient
histograms present in the neighborhood of some keypoints.
In other words, for each keypoint in the image, which can
reach thousands in the case of fingerprints, a histogram is
calculated and stored in a matrix. In this way, the image
is represented by a matrix in the RnP×nH , where nP is the
number of keypoints — and therefore the number of his-
tograms—a value possibly big. Consequently, representation
strategies of this feature matrix must be adopted to make its
use in classifiers feasible and efficient. In this case, one of
the best known techniques and with the greatest number of
variations is the one based on bag of visual words (BOVW).
To represent an image using these techniques, it is necessary,
previously, to define a dictionary of words, which consists of
representatives of the histograms, commonly centroids
obtained by some clustering algorithm, calculated from the
histograms of the pattern descriptor with respect to various
images that represent the classes on which to conduct the
classification. Once the dictionary is determined, each image
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is represented as a histogram that describes the amount by
which each ‘‘word’’ appears in the set of histograms cal-
culated by the pattern descriptor over the image. A very
common problem in this type of technique is that the clus-
tering algorithm needs to be executed on a large number of
histograms, both previously, on an exemplary set of images
that represent the problem to define the dictionary, and later,
to represent the word pattern of the images in cases where
the matrices represent many histograms. To mitigate this
information, a part of the histograms of each image can be
disregarded, which represents loss of information.

We can note that many pattern descriptors that represent
the image by a matrix have been proposed in recent years.
The best known are Binary robust invariant scalable keypoints
(BRISK) [67], Speeded-up robust features (SURF) [68],
KAZE [69], among other affine and scale-invariant descrip-
tors [70]. In general, all these descriptors associate a given
image I with a feature matrix DI , in which the features are
represented in the rows of this matrix, as shown in Equation 1.
In the case of SIFT, for example, the matrix DI is formed by
the histograms di ∈ RnH ,∀i, calculated for each of the nP
keypoints.

DI =


—d1—
—d2—
...

—dnP—


nP×nH

. (1)

In this work, we propose an alternative and simplified way
to represent the matrix DI of the Equation 1. The repre-
sentation is defined through a set of mapping functions that
must be applied to the features, or histograms in the case of
SIFT, extracted from the image I , and considered together
to configure a feature vector that must represent the image.
Mathematically, the set in question is M, defined by nM
functions, as shown in Equation 2:

M =
{
m1,m2, . . . ,mnM

}
, (2)

in which, each mapping function mi, i ∈ {1, 2, . . . ,mnM},
is a function that associates a vector with a matrix and,
therefore, is given as follows:

mi : RnP×nH → RnH

DI 7→ mi (DI ) . (3)

Finally, it is defined as a manufactured characteristic of the
image I obtained by the pattern descriptor8 and represented
by the set of mappings M to the measure P8,M (I ) of the
Equation 4:

P8,M (I ) := F
(
m1(DI ),m2(DI ), . . . ,mnM (DI )

)
, (4)

in which DI is the matrix generated by the pattern descriptor
8 and F (·) is a function that represents an information fusion
strategy, such as vector concatenation.

In Figure 1, the script for representing fingerprint images
is schematized according to the proposed method. Since,
in the example, the pattern descriptor considered is SIFT,

the feature fusion strategy F is the concatenation of vectors,
and a set of five mappings is used, namely: the average,
the standard deviation, entropy, skewness and kurtosis of the
features inDI . The example fingerprint is the image I belong-
ing to the training portion of the database ‘‘Hi Scan’’, from
LivDet 2015, corresponding to the code user ‘‘002_4_0’’ and
originally classified as a real image.

There are preliminary versions of specific cases of this
proposed strategy in the literature. For example, in the work
by Erpenbeck et al. [71], the authors considered the mean
and standard deviation of histograms extracted by the SIFT
descriptor as image representation. The strategy was success-
fully used in texture analysis to classify malaria parasites and
was able to improve the accuracy of classifiers compared to
BOVW-based representation techniques. Furthermore, in the
preliminary version of this work [22], a specific variant,
restricted to the dense version of SIFT descriptor was used in
the fingerprint spoofing detection problem. However, to the
best of our knowledge, no generalization of this representa-
tion of matrix-based pattern descriptors has been proposed
and, consequently, little experimentation has been conducted
on the problem of detecting fingerprint spoofings.

IV. A NEW FRAMEWORK BASED ON MULTI-FILTERING,
DATA AUGMENTATION, FEATURE FUSION AND
DIMENSIONALITY REDUCTION
The use of additional steps for pattern extraction and classi-
fication has become common in the specialized literature on
fingerprint liveness detection. For example, a filtering step
can mitigate the presence of noise in the images and, con-
sequently, its counter-effect on the operation of classifiers.
In this section, we present a generalization of techniques
using this type of additional steps. Specifically, a framework
specialized in detecting life in fingerprints based on hand-
crafted features is proposed, which is composed of four main
strategies: data augmentation; image processing; image rep-
resentation; and definition of the fingerprint liveness detec-
tion model. So all these steps are detailed below.

A. DATA AUGMENTATION
The idea of increasing the number of samples in the problem
training databases is common in computer vision and pattern
recognition tasks, given that this strategy has the potential to
decrease the overfitting of classifiers and improve their accu-
racy [72]. To increase samples, perturbed and/or combined
versions of the samples are usually made from simple trans-
formations such as rotation or noise addition. In this case,
this type of strategy has been successfully used in liveness
detection techniques in biometrics such as faces [73], iris [74]
and even fingerprints [75].

Thus, the first step that defines the proposed framework is
increase the number of fingerprint samples originally defined
by the training bases of the benchmarks. Mathematically,
this increasing is considered to be done according to the nT
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FIGURE 1. Fingerprint coding scheme by the proposed representation of matrix pattern descriptors using set of mapping functions. In the
example, we are considering five mapping functions mi responsible for determining statistical magnitudes of the columns of the matrix
DI , calculated through the descriptor 8 = SIFT. Finally,, the measurements are merged using the F function which, in the example,
is defined by concatenation of vectors and are used to compose the mapped pattern of I : P8,M

(
I
)
.

transformations of the set T :

T =
{
T1,T2, . . . ,TnT

}
, (5)

in which, Ti are functions of matrix transformations that must
be performed on fingerprint images. Thus, for each image
I from a training database, more nT images will be made:
T1(I ),T2(I ), . . . ,TnT (I ).

B. IMAGE PROCESSING
In this section, the generalization of one of the most com-
mon steps in fingerprint liveness detection systems is pre-
sented, which concerns image enhancement strategies to
highlight important details present in biometrics. Specifi-
cally, for this framework step, we propose that the image
goes through a region of interest (ROI) detection process,
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followed by a multi-filtering routine and, finally, its his-
togram is equalized.

In detail, the ROI detection is important, since most of
the sensors used do not only capture the fingerprint during
the collection of biometrics, but a fixed area. For example,
in the case of the sensor responsible for composing the
‘‘Italdata’’ database from the LivDet 2011 competition, many
images have an extensive light-colored background and some
regions with noticeable dirt, which can define a noisy texture
and, consequently, compromise the proper pattern extraction
according to the considered descriptor. Thus, we propose that
a ROI detection strategy be employed in order to improve the
biometrics representationwithout image background interfer-
ence. For this, the function ROI(·) is defined, which must be
applied to an image containing a fingerprint in order to obtain
an image containing only the biometrics: the IROI .
In the analysis of fingerprint images, there may be some

natural phenomena associated with the human finger that
end up compromising the image capture by the sensor [76].
As example, we can mention the cases where the fingers are
too wet or too dry, are dirty, have excess oiliness, among
others. Thus, the characterization of the collected fingerprint
is impaired in these situations and the use of a smoothing filter
may be convenient to alleviate these difficulties. However, the
use of this type of technique can make it difficult to detect
important features in the fingerprint, which can be crucial
for the classification step, since they are dissolved in the
image with the use of these filters. Mainly in cases where
the image captured by the sensor does not fit into any of
the aforementioned problem situations and, therefore, does
not have any noise class in its composition. For this reason,
using the original image together with its smoothed version
is a powerful strategy in the task of representing the texture.
In addition, in many situations, it can be beneficial to use
a sharpening filter so that the blurred features can be high-
lighted in the image and be used in the task of representing the
image together with the features extracted from the original
image and from the smoothed image.

Also in this sense, in the special case of the synthetic
fingerprint detection problem, the presence of special classes
of noise and imperfections in biometric images is known in
the literature [77], since many details are lost in the manu-
facturing process. In addition, also as a result of this process,
it is common for the appearance of ‘‘artifacts’’ in biometrics,
in the form of holes or gaps between the fingerprint ridges,
in the form of loss of continuity between these ridges or, still,
in the creation of almost homogeneous regions and, conse-
quently, without well-defined ridges. In this sense, smoothing
filters may prove to be more efficient in fake fingerprints,
since regions with the presence of an artifact are regions with
abrupt variations in gray levels and, consequently, defined by
high frequencies. Likewise, sharpening filters should be more
effective in synthetic images, as defects present in biometrics,
which should be more recurrent in spoofings, are highlighted
by this procedure. As an example, in Figure 2, we can see
that some of these artifacts were created on the fingerprint of

code ‘‘002_4_0’’, in the training database ‘‘Hi_Scan’’ of the
LivDet 2015 competition.

Given the raised propositions, we propose that modified
versions of the fingerprint image be created using sets of
filters with different behaviors. In detail, we consider the set
F of the Equation 6 defined by nF filtering processes, which
must correspond to filters of varying characteristics. That is,
Fmust be composed of low-pass filtering, high-pass filtering,
mixed filtering, etc.

F =
{
F1,F2, . . . ,FnF

}
, (6)

such that Fi are filters that must be applied to an image
containing a fingerprint ROI IROI, giving rise to its filtered
versions Ii.
Pattern descriptors, especially those that are dedicated to

representing textures, can be dependent on lighting condi-
tions [78]. In this way, a correction step conducted by his-
togram equalization strategies must also be incorporated in
this step to enhance the descriptor representation capacity.
Thus, for each image Ii generated by the filtering processes,
a version IHEi with a histogram equalized by the function h
must be additionally generated.

In summary, the steps for generating corrected versions of
the input image described in this image processing step are
presented in Algorithm 1.

Algorithm 1 Image Processing Step in the Proposed Frame-
work

Input:

I Fingerprint image.
ROI ROI detection routine.
F Set of filters with nF elements.
h Histogram equalization function.

1: IROI := ROI(I ) F ROI detection in I .
2: for Fi ∈ F do
3: Ii := Fi(IROI) F Calculate the filtered version of IROI

using Fi.
4: IHEi := h(Ii) F Define a histogram equalized version

of Ii using h.
5: end for

Saída:
{
I1, IHE1 , I2, IHE2 , . . . , InF , I

HE
nF

} Versions of I
as the result of

this step.

C. IMAGE REPRESENTATION
As a result of the previous image processing step, we have a
set I, presented in Equation 7, which is formed by the original
image I , by its nF filtered versions Ii and its nF filtered and
histogram-equalized versions IHE1 , with i ∈ {1, 2, . . . , nF}.

I =
{
I , I1, IHE1 , I2, IHE2 , . . . , InF , I

HE
nF

}
. (7)

We can see that each of the images in I may contain a fea-
ture intrinsic to the spoofing detection problem. In addition,
these features must be highlighted according to the adopted
filters and lighting corrections. Thus, all these images must
be considered in the feature extraction process.
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FIGURE 2. Artifacts in fake fingerprints concerning four different synthetic materials from the same
individual, whose code is ‘‘002_4_0’’ in the database LivDet 2015. In the example, it is possible to detect in
the artificial fingerprints homogeneous regions, highlighted in blue, or with discontinuities, highlighted in
green.

Each pattern descriptor in the literature has a special-
ized representation ability that can be limited or enhanced
according to the considered task or texture. Consequently,
in many image recognition problems, sets of descriptors are
used to represent the image in feature space. Furthermore, this
approach has already been used in the detection of spoofing
in fingerprints [43], [44] and in other biometrics [29]. Thus,
in this work, we propose that the image representation step be
composed by the extraction and aggregation of the features in
all images from I that must be extracted using a set P of nP
pattern descriptors, as shown in Equation 8.

P =
{
81,82, . . . , 8nP

}
. (8)

In other words, each pattern in 8j must be extracted from
the original image I , giving rise to the feature vectors Ev0,j
of Equation 9. The same must occur for the filtered versions
and for the histogram equalized filtered versions, which must
generate, respectively, the feature vectors of the Equations 10
and 11.

Ev0,j := 8j(I ),∀j ∈ {1, 2, . . . , nP}, (9)

Evi,j := 8j(Ii),∀i ∈ {1, 2, . . . , nF}, j ∈ {1, 2, . . . , nP},

(10)

EvHEi,j := 8j(IHEi ),∀i ∈ {1, 2, . . . , nF}, j ∈ {1, 2, . . . , nP}.

(11)

Finally, each image I will be represented by the aggrega-
tion — or fusion —, defined by the function A (·), of all the
features generated in this step. Thus, for each image I , the
proposed framework associates a feature vector EvI given by
the Equation 12.

EvI := A
(
Ev0,1, Ev0,2, . . . , Ev0,nP , Ev1,1, Ev

HE
1,1, Ev1,2, Ev

HE
1,2,

. . . , Ev1,nP , Ev
HE
1,nP , . . . , EvnF,nP , Ev

HE
nF,nP

)
. (12)

D. FINGERPRINT LIVENESS DETECTION MODEL
DEFINITION
Each vector EvI is composed of (2nF + 1)nP feature vectors.
Since each P descriptor must represent each of the images
in I. Thus, it is expected that, in many configurations of the
proposed framework, the vector EvI will be of high dimen-
sion, which brings to this representation the problem of high
dimensionality. To get around this situation, we propose the
use of some data projection technique, represented by the
transformation PROJ(·) that describes the data from a space
Rnhigh to a space Rnlow , where nlow � nhigh.

Finally, it is necessary to define a spoofing detection model
using a classifier. In this case, a base of features extracted
from images referring to the training BTrain of the Equation 13
must be used to adjust a classification algorithm. In addition,
together with such algorithm, it is common to use some
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normalization, or scaling, strategy on the feature vectors.
For this, we consider that the used normalization strategy is
NORM(·).

BTrain :=
{
EvI1 , EvI2 , . . . , EvInTrain

}
, (13)

where nTrain is the number of images from the considered
training image base.

In summary, in the Algorithm 2, the process of defining
the spoofing detection model in fingerprint-based BASs is
described according to a feature vector base.

Algorithm 2 Classifier Training Stage and Definition of
the Fingerprint Liveness Detection Model in the Proposed
Framework

Entrada:

BTrain
Training database with
nTrain feature vectors.

PROJ(·)
Dimensionality

reduction strategy.
NORM(·) Normalization function.

1: for i ∈ {1, 2, 3, . . . , nTrain} do
2: v̂Ii := NORM

(
PROJ

(
EvIi
))
F Reduce the dimension

of feature vectors and normalize them.
3: end for
4: B̂Train :=

{
v̂I1 , v̂I2 , . . . , v̂InTrain

}
F Define a training base

normalizedwith feature vectors with smaller dimensions.
5: Train a classifier with the base B̂Train.
Output: A fingerprint liveness detection model.

E. PROPOSED ALGORITHM
The proposed framework consists of the composite and
sequential use of all the steps mentioned in the previous
subsections. Specifically, it is established that the following
processes are executed:

1) Define the necessary parameters for the execution of
the framework. These are, for example, data augmen-
tation routines, sets of filtering techniques, etc.

2) Increase the number of samples in training database.
3) Create different versions of each image I through ROI

detection routines, filtering and histogram equalization.
4) Use a set of pattern descriptors to represent the images

generated in item 3. At the same time, the same is done
with the original image, which was not the result of any
type of image treatment.

5) Combine all the characteristics generated in item 4.
6) Reduce the dimension of feature vectors.
7) Normalize feature vectors with reduced dimension.
8) Train a classifier with the reduced dimension normal-

ized feature vectors of all the images of the considered
training database.

9) Define a fingerprint liveness detection model.
Finally, all the steps of the proposed framework are out-

lined in the flowchart of the Figure 3.
We can notice that, according to the proposed algorithm

configuration, it is possible to define existing techniques in

the literature, which corresponds to the generalizing char-
acter of the proposed material. For example, we can obtain
an instance of the Tan et al. [21]’s algorithm by from the
following configuration:

• Non-use of data augmentation strategy: T = {}.
• Use as a technique to ROI detection, a modified Otsu
segmentation method [79].

• Use the original image and its guided filtered [47] ver-
sion with ROI detection. For this, the set F must be
formed by the identity function and the guided filtering
procedure.

• Use contrast limited adaptive histogram equaliza-
tion [48].

• Using the co-occurrence of adjacent local binary pat-
terns (coALBP) [80] pattern descriptor: P = {coALBP}.

• Use as an information aggregation function the strategy
that consists of concatenation and that disregards the
feature vectors associated with the original image and
with the versions of the image that do not have equalized
histogram.

• Use the t-SNE technique as dimensionality reduc-
tion [49].

• Use an RBF - SVM as a classifier.

V. PARAMETERS FOR THE PROPOSED METHOD AND
PRACTICAL INSTANCES
All proposed contributions, both the representation of matrix
descriptors and the framework, were presented in the form
of generalizations. That is, the proposed representation is
dependent on a matrix descriptor 8, a set of mappings M,
and a fusion strategyF (·). Similarly, the framework is depen-
dent on filtering sets, routines specialized in detecting ROI
and in equalizing image histograms, among other parameters.
Thus, we had to establish a specific configuration for both
contributions so that a functional instance is defined. To con-
duct the experiments, the objective is to define the simplest
possible parameterization for each case and to evaluate the
improvement that the proposed strategies can obtain through
elementary methodological additions.

Besides, in the preliminary content of this work [22], three
different versions of the developed tool were evaluated. In this
work, ten usable instances are considered to solve the prob-
lem of detecting life in fingerprints, which are detailed below.

A. MAPPING REPRESENTATION PARAMETERS
The mapping set considered is formed by statistical measure-
ments of the features of the matrix pattern extracted from an
image I by a descriptor8. In this case, the followingmapping
measures are considered [81]: mean (m1), standard deviation
(m2), entropy (m3), skewness (m4) and kurtosis (m5). In addi-
tion, the concatenation of vectors generated by all mappings
will be considered as the fusion strategy F (·). Thus, the
feature vector calculated by the proposed representation will
be the vector (m1(DI ),m2(DI ),m3(DI ),m4(DI ),m5(DI )).
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FIGURE 3. Flowchart of the proposed framework. The colors represent the steps of the method. Specifically, the
blue color represents the data augmentation step, the red color represents the image processing step, the yellow
color represents the image representation step, and the red color represents the fingerprint liveness detection
model definition step.

We can see that in the preliminary version of this work [22],
only the SIFT descriptor in its dense version (DenseSIFT)
was considered for this configuration. In this work, the

proposed representation method will be evaluated on the
matrix patterns collected using three different descriptors:
SIFT, DenseSIFT, and BRISK. These are three of the most
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used pattern descriptors to solve the life detection problem
in fingerprints. However, as already mentioned, any pattern
descriptor that represents the image in matrix features can
be represented by the proposed strategy. In this case, as M
is formed by statistical measures, these descriptors will be
referred to, respectively, by the abbreviations sSIFT, sDens-
eSIFT, and sBRISK.

B. FRAMEWORK PARAMETERS
The framework demands a more extensive and elaborate
parameterization than the proposed representation, since, for
each step, several components must be defined. In fact,
in some framework steps, more than one parameterization
will be considered for analysis and, consequently, will be
highlighted in this section. Thus, in the sequence, the pro-
posed parameterization for each component of the framework
is presented:

• Data augmentation: To increase the number of example
images of the training base, five simple strategies that
should compose the set T will be considered:

1) Horizontal flip (T1): the original image is reflected
along the abscissa axis.

2) Vertical flip (T2): the original image is reflected
along the ordinate axis.

3) Double flip (T3): the original image is modified by
the two previous processes.

4) Resizing (T4): the original image undergoes a
downsampling process so that it assumes half of
its original dimensions and, subsequently, it under-
goes an upsampling process via cubic spline to
reassume its original dimensions.

5) Noise addition (T5): random Gaussian noise is
added to the original image.

• ROI detection: Considering that traditional fingerprint
segmentation techniques such as the Otsu threshold
method [79] are not efficient for some fingerprints
of the LivDet competition sensors, a more robust
technique based on the Fisher measure [82] and active
contours, described by Zheng et al. [83], is used.
In Figure 4, an example of a real fingerprint image of the
Biometrika sensor, code ‘‘031TamRrngBmk’’, from the
LivDet 2013 train database is shown. Note that Otsu’s
segmentation is not capable of detecting the fingerprint
properly, since the background of the image is not com-
pletely discarded by the binary mask, while the used
technique can segment the fingerprint adequately.

• Filters: To preserve the original intent of the proposal,
four different filtering strategies will be considered to
compose the set F:

1) Smoothing (F1): this procedure is defined by a
Gaussian filter of kernel with standard deviation
equal to 1.

2) Sharpening (F2): this process is defined by a
Laplace filter, whose mask is a matrix 5× 5 with

TABLE 2. Versions of the proposed framework according to the set of
descriptors.

central coordinate are equal to 24 and the others
are equal to −1.

3) Guided filter (F3): this routine is defined by the
guided filtering of He et al. [49].

4) ROI of non-filtered image (F4): to define this strat-
egy, the identity function is adopted for F4.

• Histogram equalization: The used lighting correction
strategy (h) is one of the most used histogram equal-
ization strategies in the literature, which consists of the
limited contrast-based adaptive histogram equalization
technique of Zuiderveld [48].

• Set of descriptors: All parameterization to this part
of the text is common to all evaluated versions of the
proposed framework. In fact, what should define a spe-
cific version is the P set of pattern descriptors. This
being formed by combinations of the descriptors sSIFT,
sDenseSIFT, sBRISK, LPQ, and coALBP. In detail,
we will consider 10 different versions referenced by
V1,V2, . . . ,V10 and defined respectively by variations
of P as shown in Table 2. The idea is to evaluate the exe-
cution of the proposed descriptors sSIFT, sDenseSIFT,
and sBRISK together with the framework. In addition,
two descriptors widely used to detect life in fingerprints,
LPQ and coALBP, are considered.
Not all possible combinations among these five descrip-
tors were considered for reasons of text space, but the
most important combinations to analyze the developed
material, which are the versions fromV1 toV5, in which
we have representations of P with only one element,
which makes it possible to evaluate how and how much
the framework is enhancing the descriptor’s ability to
detect life in fingerprint. Still, the other versions should
confirm the framework’s ability to represent different
texture features in the fingerprint image and, conse-
quently, improve its ability to detect life in these images
andmake themethod competitive with the others present
in the state-of-the-art.

• Information aggregation: In this work, the informa-
tion aggregation strategy A (·) will be considered the
simplest possible feature fusion routine, which is the
concatenation of vectors.
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FIGURE 4. ROI detection of a real fingerprint by Otsu’s segmentation techniques, on the top images, and segmentation via Fisher measure
analysis and active contour, on the bottom images.

• Dimensionality reduction: As it is one of the sim-
plest and most representative techniques in the class
of projection methods, the Singular Value Decompo-
sition (SVD) [84] will be used as a function PROJ(·).
Specifically, in each version Vi, four dimensions will
be evaluated to compose the reduced feature space: 100,
200, 400, and 800.

• Normalization: To normalize the feature vectors,
four different strategies were used, these being the
most common in the problem. Specifically, four dif-
ferent scales were considered for each Vi version:
the Min-Max scale (NORM1); the standard scale
(NORM2); robust scale (NORM3); and the non-use
of normalization function. Mathematically, considering
B̂Train :=

{
v̂I1 , v̂I2 , . . . , v̂InTrain

}
the basis for training

feature vectors in reduced space Rm and each v̂Ij =(
v̂Ij,1, v̂Ij,2, . . . , v̂Ij,m

)
, then the four normalization func-

tions are:
1) Min-Max scale (MM):

NORM1(x) :=

(
x1 −minj{v̂Ij,1}

maxj{v̂Ij,1} −minj{v̂Ij,1}
,

. . . ,
xm −minj{v̂Ij,m}

maxj{v̂Ij,m} −minj{v̂Ij,m}

)
;

2) Standard scale:

NORM2(x) :=
(
x1 − µ1

σ1
, . . . ,

xm − µm
σm

)
,

where,

µi =

nTrain∑
j=1

v̂Ij,i
nTrain

,

σi =
1

√
nTrain

√√√√nTrain∑
k=1

(
v̂Ik ,i − µi

)2
;

3) Robust scale (NORM3): it is a modification of the
standard scale that is robust to outliers. For this,
the mean (µi) is replaced by the median and the
standard deviation (σi) by the distance between the
first and third quartile of the distribution.

4) No scale: it is the strategy represented by the iden-
tity function. That is, NORM4(x) = x.

• Classifier: To discriminate the feature vectors of each
image, a binary classifier of the SVM type with lin-
ear kernel was used. It is worth noting that this is
one of the most used classification models in the topic
addressed.
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VI. RESULTS AND EXPERIMENTS
In this section, the necessary experiments must be carried out
to evaluate the performance of the proposed advances. For
this, a well established benchmark is defined and detailed in
Section VI-A. In this case, two situations must be analysed:
one involving an internal analysis of the proposed content
and another involving an external analysis of it. The first,
described in Section VI-B, aims to evaluate the proposed
representation for matrix descriptors and for each step of the
framework. The second situation, detailed in Section VI-C,
was designed to allow the comparison of the proposed mate-
rial performance to existing techniques in the literature and
that make up the state of the art on the topic.

To make possible the comparisons, it is necessary to spec-
ify some performance metrics that represent the amounts of
error and success of the method with respect to the images
of the test bases. In this work, the official metrics of LivDet
competitions were used, which are the following [85]:
• FerrLive (FL): which represents the rate of real finger-
prints classified as fakes.

• FerrFake (FF): which represents the percentage of fake
fingerprints classified as real.

• Average Classification Error (ACE): which is the aver-
age between the false positive and false negative rates of

the method. Mathematically, ACE =
FL+ FF

2
.

• Accuracy (ACC): is the rate of correctly classified fin-
gerprints.

All implementations presented in this work were built in
Python1 programming language, more specifically with the
use of scikit-learn2 and OpenCV,3 on a personal microcom-
puter equippedwith 8GB of RAMand an Intel (R) Core (TM)
i5-4460 of 3.20GHz frequency.

A. BENCHMARK
Having its first edition held in 2009 [86] and organized to
take place in odd years, the Fingerprint Liveness Detection
(LivDet) competition has been the most representative event
on the topic of spoofing detection in biometrics. The main
intention of the competition is to bring together solutions
at the software level to alleviate the problem and, con-
sequently, promote the development of new methods with
greater robustness and greater accuracy in fingerprint spoof-
ing detection.

In each edition of the competition, a group of sensors is
used to build pairs of training and testing bases from examples
of real and fake fingers. Specifically, each sensor is used to
collect fingerprints from a group of users and to conduct
the reading of synthetic fingerprints. In this case, the algo-
rithms evaluated in the competition must use only the training
portion to define and adjust their method. After the com-
petition, both databases are made available for research and
experimentation.

1https://www.python.org/
2https://scikit-learn.org/
3https://opencv.org/

TABLE 3. Details about the real and fake fingerprint image databases of
the benchmark formed by the bases presented in the LivDet
competitions. DPIs represents the number of dots per inch.

TABLE 4. Materials used for spoofing construction in the LivDet
benchmark for each year of the competition.

For the experiments carried out in this work, the most
recurrent databases in the literature are considered, which
are presented in the LivDet editions referring to the years
2009 [86], 2011 [87], 2013 [88] and 2015 [89]. In the Table 3,
some details of these databases and the images that compose
them are presented. Specifically, the sensors used in each year
of edition, the dimensions of the images, and the amounts
of real and fake images reserved for training and testing are
presented. It is also worth noting that, in the case of the
2013 edition, the CrossMatch sensor was not considered, as it
is known that a problem in the acquisition may have affected
the quality of the data in this database [21], [88].

For each edition of the LivDet competition, a set of syn-
thetic materials is used to manufacture fake fingerprints.
In the first three editions of LivDet, the same materials were
used both for the definition of the training set and for the
definition of the test set. However, for the 2015 edition, a set
of five materials was used for training and a set of nine
materials was used for testing. In this case, the intention
is to evaluate the generalization capacity of the methods in
detecting spoofing of materials different from those used to
define your model. In detail, in Table 4, the materials used in
each edition of LivDet are listed.

B. PERFORMANCE ANALYSIS BY CONFIGURATION
All the considered versions of the proposed framework con-
figurations, including its 16 variations depending on the
4 normalization strategies and the 4 possible amounts of fea-
ture vector coordinates obtained by the projection technique,
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FIGURE 5. Comparison between ACE, in percentage, for the sensors of the LivDet competitions of the 2009 editions, on the
left, and 2013, on the right. The descriptor used by each technique is highlighted on the lower axis of each graph. To create
the results represented by the blue and red bars, only the best accuracy values were considered among the variations of each
version for normalization and projection functions.

were evaluated on the 14 sensors of the used benchmark.
This resulted in the creation of 140 tables with detailed
information on all FL, FF, ACE, and ACC metrics regarding
each sensor and each version of the framework. Since all
these tables are presented in the supplementary material to
this work and, in the following paragraphs, some analyzes
are conducted based on clippings of these results.

To start the experiments, the impact of using the proposed
framework on the considered descriptors will be analyzed.
Thus, it will be possible to verify the influence of the main
steps of the framework in improving the image representation
capacity in each of the evaluated descriptors. For this, in each
of the versions V1 to V5, three variations of the framework
are analyzed: one containing all the steps described and con-
figured according to the V; one that does not have the data
augmentation step; and one that does not have any step of the
proposed framework, consisting only of the pattern extracted
by the descriptor and whose classification model is based
on the training of a linear SVM. In Figures 5 and 6, a bar

chart is presented with the ACEmeasurements, in percentage,
of each of the evaluated methods, with the red bars referring
to the techniques that use all the steps of the framework, the
blue bars refer to techniques that do not only use the data
augmentation step, and the yellow bars refer to the original
techniques without using the proposed framework. In the case
of the first two variations of techniques, as several projection
dimensions and normalization functions are analyzed in the
framework configuration, the best result presented by the
technique is evaluated.

Observing the results presented in Figures 5 and 6, some
interesting facts can be noticed. In detail, the following stand
out:
• In most cases, the ACE is higher when no step of the
framework is used. Thus, it is clear that the framework
enhances the ability to represent the fingerprint image
to facilitate the detection of life. As an example, the
representation of coALBP stands out, which became
competitive with the use of the framework. Furthermore,
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FIGURE 6. Comparison between ACE, in percentage, for the sensors of the LivDet competitions of the 2011 editions, on the
left, and 2015, on the right. The descriptor used by each technique is highlighted on the lower axis of each graph. To create
the results represented by the blue and red bars, only the best accuracy values were considered among the variations of each
version for normalization and projection functions.

as can be seen in the case of LivDet 2009’s Identix
sensor, the ACE of the coALBP, which originally cor-
responds to 19.8%, now corresponds to 1.7%, which is
less than 10% of the original value.

• The use of the framework improved the classification
accuracy for most cases. Only in four situations out of
the 70 evaluated, the framework did the classification
result worst: in the case of the sSIFT descriptor in the
representation of Biometrika images from the LivDet
2009 and 2013; and in the case of the LPQ descriptor
for the images of the Italdata and Biometrika sensors
from the LivDet 2013. However, in all these cases, the
addition ofACE corresponds to values below 1%.A sim-
ilar analysis can be obtained regarding the use of the
framework without the data augmentation step whose
results are represented by the blue bars in the images.

• The data augmentation step proved to be very efficient
in most of the considered cases, since there is a tendency
that the red bars represent lower ACE values than those

represented by the blue bars, which, in turn, represent
lower values of the ACE than the values of the yellow
bars. In other words, there is a tendency that all stages
of the framework should be used for the greatest per-
formance gain. In addition, we can see that the data
augmentation step is effective in improving the accuracy
in detecting life in fingerprints. This indicates that there
may be a sampling deficiency in most of the image bases
of the benchmark.

• The use of representation by mappings as proposed in
Section III proved to be competitive in the cases of
SIFT and DenseSIFT descriptors for its original repre-
sentation investigated by Gragnaniello et al. [29]. The
results obtained with the use of the proposed framework
were, on average, superior to those obtained with the
visual vocabulary representation of words. This indi-
cates that the use of the proposed steps, even if config-
ured by simple strategies, can considerably enhance the
ability to represent images by pattern descriptors and,
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TABLE 5. Results for the sensors referring to LivDet 2009. The used normalization is represented by: ‘‘Rob’’ for robust, ‘‘Std’’ for standard, ‘‘MM’’ for
max-min and ‘‘UnS’’ when no normalization is used. The average accuracy and the average error considering all sensors are represented respectively by
µ

(
ACC

)
and µ

(
ACE

)
. In bold, the best accuracy value is represented with respect to all analyzed versions for the case of a particular sensor or for the

average case.

TABLE 6. Results for the sensors referring to LivDet 2011. The used normalization is represented by: ‘‘Rob’’ for robust, ‘‘Std’’ for standard, ‘‘MM’’ for
max-min and ‘‘UnS’’ when no normalization is used. The average accuracy and the average error considering all sensors are represented respectively by
µ

(
ACC

)
and µ

(
ACE

)
. In bold, the best accuracy value is represented with respect to all analyzed versions for the case of a particular sensor or for the

average case.

consequently, make these descriptors competitive for the
problem.

Next, the performances of the proposed framework ver-
sions are compared. Thus, in the Tables 5, 6, 7 and 8, the
performance of each version with respect to the sensors of
the LivDet 2009, LivDet 2011, LivDet 2013 and LivDet
2015. In each table, each version is presented: in ‘‘ACC’’,
the best ACC obtained value by the version for each sensor;
in ‘‘ACE’’, the best ACE obtained value by the version for
each sensor; in ‘‘Dimension’’, the feature vector dimension
in which the analyzed version reached the best ACC value;
and, in ‘‘Normalization’’, the normalization strategy used in
which the analyzed version reached the best ACC value.

We can see that all evaluated versions have an average
accuracy of over 90% in all editions of LivDet. Furthermore,

the ACE of all versions is below 15% for any specific sensor,
as can be seen in the summary illustrated in Figures 7 and 8.
In these, it is possible to detect a trend of performance
improvement in versions that are defined by sets P with
more elements. Visually, note that the bars referring to the
ACEs of versions V7, V8, V9 and V10 are smaller than
those presented by the other versions in most of the bases.
Specifically, V7 has the best accuracy value in 1 sensor;
V8 presents the best accuracy value in 3 sensors; V9 presents
the best accuracy value in 4 sensors; and V10 presents the
best accuracy value in 6 sensors. This fact helps to confirm
the veracity of the framework’s foundation in the sense that
the more pattern descriptors used in P, the greater the image
representation capacity, since each descriptor has a certain
ability to represent information. However, the difference in
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TABLE 7. Results for the sensors referring to LivDet 2013. The used normalization is represented by: ‘‘Rob’’ for robust, ‘‘Std’’ for standard, ‘‘MM’’ for
max-min and ‘‘UnS’’ when no normalization is used. The average accuracy and the average error considering all sensors are represented respectively by
µ

(
ACC

)
and µ

(
ACE

)
. In bold, the best accuracy value is represented with respect to all analyzed versions for the case of a particular sensor or for the

average case.

TABLE 8. Results for the sensors referring to LivDet 2015. The used normalization is represented by: ‘‘Rob’’ for robust, ‘‘Std’’ for standard, ‘‘MM’’ for
max-min and ‘‘UnS’’ when no normalization is used. The average accuracy and the average error considering all sensors are represented respectively by
µ

(
ACC

)
and µ

(
ACE

)
. In bold, the best accuracy value is represented with respect to all analyzed versions for the case of a particular sensor or for the

average case.

average accuracy obtained by these versions is not very sig-
nificant, since, for the sensors of the LivDet 2009, 2011,
2013, and 2015, this difference is, respectively, 2.58%,
0.77%, 0.57%, and 1.47%. Furthermore, we can note that
the versions from V1 to V5, which are defined by only
one descriptor, presented competitive results with each other
for most of the evaluated bases. In particular, the pro-
posed sBRISK, sSIFT, and sDenseSIFT, used to compose the
versions V1, V3 and V4, respectively, presented similar per-
formance to the V2 and V5, defined, respectively, by the
well-established LPQ and coALBP, which proves their
effectiveness in representing textures for the problem.

Regarding the normalization and dimensionality reduc-
tion strategies, we can also notice a trend in the results.

In this case, we can see that the robust normalization strategy,
or NORM3, is the most efficient in most bases. In fact,
according to Figure 9a, this scaling strategy is what helps
most versions to reach the best accuracy value considering the
bases of all years of the LivDet competition. This indicates
that most image bases have examples that are represented
in a discrepant way from the others, which configures the
presence of outliers, and that, therefore, need a normalization
that is little influenced by these examples. Similarly, the
use of 800 dimensions for the latent representation of the
feature vector proved to be more efficient for most versions
considered in most bases. In this case, as shown in Figure 9b,
the greater the number of used coordinates, the greater the
chance that the version will assume the best accuracy value.
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FIGURE 7. Illustration in bar-chart of the ACE measure, in percentage, presented by the considered versions of the proposed
material, specified in Table 2, with respect to LivDet from the years 2009 and 2013. In the representation, it is possible to
observe that the versions that consider a greater number of descriptors are those that present a lower error value.

Thus, projections in latent spaces with very small dimensions
can compromise the representation of the feature vector in
this problem.

Evaluations were also carried out considering situations
in which the sensors used to collect the images that make
up the training base are different from the sensor used to
collect the images from the test base. This test situation
seeks to demonstrate the generalizability of a fingerprint
liveness detection method since the training is done with
respect to one sensor and the test is done with respect to
another. In addition, according to Table 4, this situation also
evaluates the performance of the method on different sets of
synthetic materials used to make the spoofings. Specifically,
the sensors used to build the ‘‘Biometrika’’ and ‘‘Italdata’’
bases for the LivDet 2011 and LivDet 2013 were considered,
totaling four base pairs. It is known [88] that the fingerprint
spoofing images from the 2011 databases have better quality
than the same category images from 2013. Thus, three main
test scenarios are defined: the worst scenario, in which the

versions are trained using the 2013 bases and evaluated on
the 2011 bases; the medium scenario, in which the versions
are trained using the 2013 bases and are evaluated on the
2011 bases; and the best scenario, in which the training and
testing bases are from the same edition of the competition.
In Table 9, the performance of all considered versions of the
proposed framework is summarized.

We can see that the worst ACC of considered versions
occurs in the worst scenario. For example, the version
V3, even analyzing all its variations for the normalization
and dimensionality reduction functions, was able to cor-
rectly classify only 49.95% of the images from the Italdata
2011 database when trained by the Italdata 2013 database.
Something similar occurs when we consider the different edi-
tions of Biometrika. In these two situations, all the analyzed
versions have an accuracy close to 50%, which corresponds
to poor performance and which serves as evidence for the
fact that the proposed method needs good-quality images
to correctly represent spoofings. At the same time, in the
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FIGURE 8. Illustration in bar-chart of the ACE measure, in percentage, presented by the considered versions of the
proposed material, specified in Table 2, with respect to LivDet from the years 2011 and 2015. In the representation, it is
possible to observe that the versions that consider a greater number of descriptors are those that present a lower error
value.

medium-difficulty scenario, the proposed material worked
reasonably well. In detail, in the case where the base used
for training was the Biometrika 2011 and the base used for
testing was the Biometrika 2013, all versions presented ACC
greater than 70%. Half of the analyzed versions had ACC
greater than 90%. Similar results can be detected when the
Italdata 2011 is used for training and the Italdata 2013 is
used for testing. This suggests that the proposed method
can generalize well when training is performed on a base
of good quality images and using the same sensor. In fact,
in cases where the images used for training and testing are of

good quality, belonging to the 2011 edition, but are collected
by different sensors, most of the analyzed versions of the
proposed method also have difficulty in correctly classify-
ing the images. However, some versions present reasonable
performance in this situation, as is the case of the V5 and
V7, which have an accuracy greater than 80% when trained
with the Biometrika base and evaluated on the Italdata base,
both from 2011, and V6 and V7 which also present an accu-
racy greater than 80% when trained with the Italdata and
evaluated on the Biometrika. Finally, all the considered ver-
sions presented satisfactory performance, with ACC between
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TABLE 9. Classification results for cross sensors, following the notation ‘‘Training sensor × Test sensor’’. The used normalization is represented by: ‘‘Rob’’
for the robust, ‘‘Std’’ for the standard, ‘‘MM’’ for the max-min and ‘‘UnS’’ when no normalization is used. The average ACC and the average ACE
considering all sensors are represented respectively by µ

(
ACC

)
and µ

(
ACE

)
.

89% and 99.15%, in cases where the training and test bases
are composed of spoofing images of poor quality with differ-
ent sensors, which demonstrates the generalization capacity
of the proposed method when the spoofing strategy is the
same, even if different sensors are used.

C. COMPARISON WITH THE STATE OF THE ART
In order to validate the scientific advance in the problem,
comparisons are made between the results obtained by the
proposed material and by methods that make up the state
of the art of fingerprint liveness detection solutions. Specif-
ically, the best values of the ACC and ACE are presented
considering all versions of the proposed framework that were
addressed in Section VI-B and these values are compared
with the results presented by the methods gathered in Table 1.
Thus, in the Tables 10, 11, 12 and 13 these results are summa-
rized according to the sensors of LivDet competitions from
the years 2009, 2011, 2013 and 2015, respectively. These
tables contain information on the ACC and/or ACE, when
existing in the original works for each technique. The best

value of these metrics regarding the techniques submitted
for evaluation in each year of the competition is also pre-
sented. Such values are represented by the ‘‘Best on LivDet’’
indicator.

According to the values in Table 10, we can see that
most current techniques present a satisfactory performance
on all 2009 bases, since they classify more than 90% of
the images correctly and/or rate less than 10% of images
wrongly. Even so, the results of the proposed material stand
out, corresponding to accuracies greater than 99% in all cases.
In fact, only the CNN-VGG technique presents an ACE value
of 0.31% lower than that presented by the proposal in the case
of the CrossMatch sensor. However, the proposal presents the
lowest average ACE, equivalent to 0.5%, which is less than
1/3 of the average ACE presented by CNN-VGG.

The proposal also presents high ACC, above 90%, for the
bases of the LivDet 2011, which corresponds to a competitive
performance. In this case, among the thirteen considered
techniques, only two presented a higher average ACC and
only four presented an average ACE lower than the same
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TABLE 10. Comparison with the state of the art for the LivDet 2009 database. ACC and ACE values are given in percentage. The symbol ‘‘-’’ means that the
information is not available in the cited work. If the value is highlighted in bold, then this value is better than the one presented by the proposed
technique. If the value is in bold, but is also italicized and underlined, then the value is the best seen in the column.

TABLE 11. Comparison with the state of the art for the LivDet 2011 database. ACC and ACE values are given in percentage. The symbol ‘‘-’’ means that the
information is not available in the cited work. If the value is highlighted in bold, then this value is better than the one presented by the proposed
technique. If the value is in bold, but is also italicized and underlined, then the value is the best seen in the column.

TABLE 12. Comparison with the state of the art for the LivDet 2013 database. ACC and ACE values are given in percentage. The symbol ‘‘-’’ means that the
information is not available in the cited work. If the value is highlighted in bold, then this value is better than the one presented by the proposed
technique. If the value is in bold, but is also italicized and underlined, then the value is the best seen in the column.

values presented by the proposed material. Furthermore, the
average ACC of the proposed technique, which is 95.61%,
is 0.78% less than the best observed, which is 96.39%.

Analyzing the results for the LivDet 2013, we note that
the proposal presents a lower performance compared to most

other techniques for the Swipe. In detail, the technique’s ACC
differs by 3.09% from the best observed ACC and the tech-
nique’s ACE differs by 4.40% from the best observed ACE
value. However, the proposed material achieves the best ACC
and ACE for the Italdata sensor and the second best value for
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TABLE 13. Comparison with the state of the art for the LivDet 2015 database. ACC and ACE values are given in percentage. The symbol ‘‘-’’ means that the
information is not available in the cited work. If the value is highlighted in bold, then this value is better than the one presented by the proposed
technique. If the value is in bold, but is also italicized and underlined, then the value is the best seen in the column.

FIGURE 9. Number of versions of the proposed framework that achieved
the best ACC with respect to all sensors per year of the LivDet
competition according to the normalization strategy used, in (a), and
according to the number of dimensions used by the feature vector, in (b).

the Biometrika. In addition, the proposal obtained the second
highest average ACC of 98.10%, being only 0.18% below the
highest observed one.We can also see that the averageACEof
the technique, which corresponds to 1.88%, is higher than the
five average ACE presented by the other fourteen techniques,
with 1.18% being the smallest of these values.

Regarding the sensors of LivDet 2015, the proposed mate-
rial also presented satisfactory performance compared to the
other techniques. In detail, for the GreenBit, the proposal
obtained the best ACC and ACE. At the same time, for the
other bases of this edition, the proposal presented the second
highest ACC and the second lowest ACE. In this case, the
proposal is the technique that most correctly classified fin-
gerprint images, since it presented the highest average ACC
and the lowest average ACE.

Thus, as summarized in Table 14, the proposed material
presents competitive values for ACC and ACE. In fact, with
respect to the considered techniques and their respective
average values of ACC and ACE obtained on their respective
evaluated benchmarks, the proposed material is the method
with the highest average ACC and the lowest average ACE
among such techniques.

The proposed method was also compared with other tech-
niques on the challenge of using cross sensors in the training
and testing of the classifier. This evaluation, which aims to
analyze the method’s ability to generalize, is not as com-
mon in the literature as the previous ones, since only a
portion of the considered studies addresses this situation.
Even so, the results obtained by the proposal are com-
pared with the results of six other techniques, as shown in
Table 15.

We can notice that the proposed material presents perfor-
mance comparable to the other techniques when an image
base is used for training and another is used for tests. In detail,
the technique obtained the lowest ACE in three cases, the
most significant being the case in which the classifier was
trained on the Biometrika base of the year 2011 and was
evaluated on the Italdata base of the year 2011. In this situa-
tion, the method presented an ACE equal to 17.80%, which
corresponds to less than 60% of the ACE of the coALBP+GF
technique, which is equal to 29.75% and corresponds to the
second lowest ACE for this same situation. In addition, the
proposed method obtained the best ACE value for situations
in which the model is trained on 2011 bases and tested on
2013 bases, specifically the cases I11× I13 and B11 × B13,
which also proves the generalization ability of the method
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TABLE 14. Average performance of all techniques considered for comparison. ACC and ACE values are given in percentage. The symbol ‘‘-’’ means that the
information is not available in the cited work. If the value is highlighted in bold, then this value is better than the one presented by the proposed
technique. If the value is in bold, but is also italicized and underlined, then the value is the best seen on the line.

TABLE 15. State-of-the-art comparison for cross-based training and testing with respect to ACE (%). Four sensors are considered in this case: Biometrika,
from the 2011 (B11) and 2013 (B13) editions, and Italdata, from the 2011 (I11) and 2013 (I13) editions. The symbol ‘‘-’’ means that the information is not
available in the cited work. If the value is highlighted in bold, then this value is better than the one presented by the proposed technique. If the value is in
bold, but is also italicized and underlined, then the value is the best seen on the row.

regarding cross-materials, since the materials used to make
spoofings in the 2011 edition are different from those used in
the 2013 edition. The proposal was also able to present the
second lowest ACE in four situations and the third lowest
ACE in one situation. Finally, we note that the proposed
technique presented the lowest average ACE among all the
analyzed techniques.

D. LIMITATIONS
For the execution of the proposed method, many parameters
need to be configured, since it is defined in a generalized
way. Thus, as we could see in this section, many variations
of the method can be configured, but they must be analyzed
together, which can make the stages of experimentation nec-
essarily extensive.

The proposed framework demands that a series of pro-
cesses be carried out to increase classification accuracy.
Among these, it is possible to mention image replica-
tion, multiple filtering routines, histogram equalization, ROI
detection, and pattern extraction by sets of descriptors.
All these processes require processing time and therefore
must be configured in a way that does not slow down the
material.

VII. CONCLUSION
In this work, two advances on the topic of fingerprint spoofing
detection were proposed for the purpose of improving the
security offered in BASs. The first advance consists in the
proposal of generalizing the vector representation of texture
descriptors based on matrices through the use of mapping
sets. The second advance is given in the form of a multi-step
framework that allows the definition of filtering sets and
texture pattern descriptors to increase the image representa-
tion capacity and, consequently, improve the accuracy of the
classifiers.

The contributions of the work were given in a general-
ized way and, therefore, it was necessary to define practical
instances, or versions, of the material in order to conduct
the appropriate evaluations of its execution. In detail, three
pattern descriptors — sBRISK, sSIFT and sDenseSIFT —
were defined using the proposed mapping representation
strategy, which were used to establish ten different versions
of the proposed framework. Experimentally, all these practi-
cal instances were evaluated in two situations. Since, in the
first situation, the instances were compared with each other
according to their results on the basis of LivDet compe-
titions and the influence of specific steps of the proposed
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framework, such as data augmentation and multi-filtering
processes, could have been found and their effectiveness has
been proven. Furthermore, in the second situation, the best
results presented by the proposedmaterial could be compared
with the results available in the specialized literature on the
topic. In this case, it was possible to observe that the pro-
posal presents numerical results, at least, competitive with
the state of the art with respect to the ACC and ACE metrics
considered.

As future experiments, more elaborate strategies should be
used to compose the steps of the proposed framework. It is
worth mentioning the fact that the simplest possible strategies
were considered in the practical versions evaluated and the
results obtained were satisfactory. Furthermore, it is believed
that the proposed material should present equally acceptable
results in problems of spoofing detection on other image-
based biometrics, such as faces, iris and ears. Finally, the
proposal must also be evaluated on other computer vision
problems that demand texture analysis and recognition.
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