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ABSTRACT Many patients with genetic syndromes have special facial features, which boast significant
potential value for clinical diagnosis. Deep learning and computer vision technology can be employed to
diagnose genetic diseases by analyzing facial features of patients. As a matter of fact, the application of
deep learning technology in the area of genetic diseases is confined owing to the difficulties of patient
data acquisition. This study develops BioFace, a deep learning framework that can recognize multiple
genetic diseases facial attributes based on limited datasets. BioFace is a deep neural network architecture
designed premised on Resnet. To increase the weight of effective features and weaken the weight of invalid
or unobvious features during extraction of facial features, we add Squeeze-and-Excitation (SE) blocks in the
network. In combination with this network architecture, we designed a cross-loss training method based on
transfer learning. This method can transfer the ability learned from the task of face identification to the task
of recognition of genetic diseases facial attribute, and improve the inter-class distance of different genetic
diseases and the intra-class distance of similar genetic diseases simultaneously. These render it possible
for deep learning to be applied to recognition of multiple genetic diseases facial attribute with very small
amount of data. In this research, we tested 10 syndromes with our framework and the Top-1 accuracy was
93.5%, which is the state-of-the-art in multiple genetic syndromes recognition research. In practical clinical
applications, our framework and methods can be extended to the disease identification of more small datasets,
potentially offering valuable assistance for the auxiliary clinical application of genetic diagnosis and other
related genetic research.

INDEX TERMS Genetic syndromes, convolutional neural network, deep learning, transfer learning, cross-
loss training.

I. INTRODUCTION
The associate editor coordinating the review of this manuscript and Genetic diseases affect almost 8% of the world’s popula-
approving it for publication was Kin Fong Lei . tion [1] and have a significant impact on the entire life
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course of those who are affected. Currently, there are over
7,000 kinds of known genetic diseases, but most patients
with genetic diseases are unaware of their conditions, and
neglect to go to professional medical institutions for diagno-
sis [2]. Prompt and early detection, prevention and treatment
can help patients avoid some potential health-threatening
problems, so the research on diagnosis and diagnostic
methods of genetic diseases is of crucial significance and
value [3].

Many genetic diseases affect the facial features of
patients. Different genetic diseases carry their own unique
facial features [4], [5], [6], [7], [8]. Premised on these
facial features, clinical experts on genetic diseases can
give some diagnosis or diagnostic suggestions accordingly.
Nevertheless, diagnosis of genetic diseases for atypical
clinical manifestations of some rare syndromes may be
confined by the personal experience of clinical experts of
genetic diseases. In some experimental studies, the expert’s
diagnostic accuracy for typical facial features of Cornelia de
Lange Syndrome is only 87%, 54% for mild features [9],
and the average accuracy is 77% [10]. In the study of
Angelman Syndrome, the expert’s diagnostic accuracy for
its features is 71%, sensitivity is 60%, and specificity is
78% [11]. In general, on account of the rarity of some
diseases and the numerous possibilities of diagnosis results,
it takes a rather long time to realize a correct diagnosis [12].
Thus, many researches diagnose genetic diseases [13], [14],
[15], [16], [17] by using different methods combined with
computer vision.

Early research generally extracted artificial features by
means of traditional image processing methods or traditional
machine learning methods. Saraydemir et al. [18] proposed a
representation extraction technology based on Gabor wavelet,
then conducted Principal Component Analysis and Linear
Discriminant Analysis (LDA), and then employed Support
Vector Machine (SVM) and K-Nearest Neighbors, with
97.3% and 96% accuracy rates, respectively. Burcin and
Vasif [19] used Local Binary Pattern (LBP) and template
matching to detect Down’s Syndrome from artificially
cropped images, and applied local binary pattern to signif-
icant face markers to capture significant aspects of face,
and manually marked all images with three-dimensional face
representation, then classified by LDA and SVM respectively.
Zhao et al. [4], [20], combined the representation methods
based on local geometry and local texture to recognize
Down’s Syndrome, and proposed a local model of facial
recognition based on hierarchical constraints. This method
was used to test 130 subjects, including 50 Down’s Syndrome
patients and 80 healthy subjects.With the aid of the SVM,
its accuracy reaches 97%. S Hadj-Rabia et al. studied the
automatic recognition of XLHED phenotypes using face
photographs [21]. In the research of Basel-Vanagaite [10],
the Facial Dysmorphology Novel Analysis (FDNA) method
was used to identify the face image of Cornelia de Lange,
and the detection rate was 94%. Despite the promising
results achieved in these efforts, they can identify only a
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single disease and can not meet the actual needs of clinical
diagnosis. Kuru et al. [22] proposed a facial genotype
phenotype diagnosis decision support system capable of
detecting genetic diseases of patients. The system then tested
92 patients suffering from 15 different diseases, and the
accuracy rate reached 53%. There is some other research
on the identification and classification of multiple genetic
diseases [13], [14], [23], but the accuracy of their results is
too low to be applied in clinical applications.

In recent years, the Convolutional Neural Network (CNN)
has been successfully applied to many image recognition
tasks. Some researchers have also applied CNN to face recog-
nition tasks for genetic diseases. Shukla et al. [24] proposed
a framework to extract features using CNN, and SVM was
used as a classifier to identify six genetic diseases. The
average accuracy rate of the framework was 48% [25]. Yaron
came up with a deep learning framework DeepGestalt [26] in
face2gene application, which can recognize multiple genetic
diseases. This work has collected over 26,000 cases of
patients to train their model and achieved 61.3% top-1
accuracy in clinical test dataset. These works only used
shallow neural networks, which cannot make full use of the
feature extraction ability of deep learning and their results can
not meet the needs of clinical diagnosis.

In consideration of the deficiencies in the above research
in related areas, we put forward a new deep learning
framework and cross-loss training strategy. Our method
and framework can extract genetic disease face attribute
features using only a small batch of data sets and achieve
good recognition accuracy. Deep learning and improved
Resnet64 are the foundations of our framework. In CNN,
models with deeper layers can express more strongly, but
the deeper network does not converge well since the gradient
disappears during training. Thus, we cannot simply add many
layers. The residual network can help solve this problem so
that more layers can be built in the CNN. In comparison
with face recognition methods, the task of identification of
genetic diseases needs not merely local features of specific
individuals, but more global information about a type of
syndrome. We added SE block to Resnet to extract more
global information in the deep layer [27], which helps to
boost the effectiveness of extracting genetic disease features
in tasks. Apart from that, the added block can help to enhance
the weights of valid regions and weaken the weights of
invalid regions. We also designed cross-loss training in the
framework. Applying deep learning to the task of small
data sets is extremely challenging. Thus, facial recognition
model is taken as pre-training and fine-tuning is done with
syndrome data [28]. However, there is a big gap between
facial recognition and the identification of genetic diseases,
and rich genetic disease features cannot be well extracted
using a facial recognition model alone. To decrease the
individual redundant information to be identified, we adopted
the loss alternation method to train the model to maximize
the interval between syndrome categories and minimize the
individual interval in the same syndrome category. Finally,
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we designed the improved network structure and carried
out transfer learning in combination with cross-loss training,
so that deep learning can achieve excellent recognition effects
in recognition of genetic syndromes facial attribute in small
data sets.

In this study, we tested our framework with 10 most
common genetic diseases. Our framework is not confined
to the recognition of these 10 genetic diseases. Rather, it is
a universal framework model for recognition of various
genetic diseases facial attribute. Combining more kinds of
data, our framework can be extended to the recognition
tasks of hundreds of genetic diseases with facial features.
The contributions of this research are summarized as
follows:

e We design a deep learning framework, which is
applicable to recognition of multiple genetic syndromes.
It is a Resnet64 network architecture designed premised
on the deep residual network Resnet and added with
SE block, which can increase the weight of effective
features and weaken the weight of invalid or unobvious
features during extraction of facial features, thus keeping
redundant information to a minimum during recognition
to gain a more ideal recognition effect.

o In combination with this network architecture, we
designed a cross-loss training method for transfer learn-
ing. This method can transfer the ability learned from
the task of face identification to the task of recognition
of genetic diseases, and improve the inter-class distance
of different genetic diseases and the intra-class distance
of same genetic diseases simultaneously. This renders it
possible for deep learning to be applied to the task of
recognition of genetic diseases facial attritubes with a
small data size.

« Combined with the above methods, our study achieved
state-of-the-art performance in the task of identifying
multiple genetic diseases. This makes it possible for
recognition of genetic syndromes facial attribute to be
applied in clinical practice.

Il. METHODS

Our framework consists of face detection, image preprocess-
ing, feature extraction and disease discrimination. As an end-
to-end discrimination framework, our model is equivalent to
a mapping function f(x), which inputs the patient’s facial
image and maps to the probability list of genetic disease
discrimination. The overall flow is exhibited in the following
figure:

FIGURE 1. Overall flow of the genetic disease identification.
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A. FACE DETECTION AND PREPROCESS

Face detection means that the input is an image containing
human faces and the output is the bounding boxes of all faces.
Face detection is supposed to be able to detect all faces in the
image without missing or wrong detection. In order to get this
result, firstly we use face detection algorithm to process all
raw images. Then we manually review each detected result.
For the wrong cases, we will conduct secondary detection
or manually crop the face. After obtaining the face, the
face is aligned. As the face in the original image may have
differences in pose and position, the face should be aligned
for the sake of unified processing afterwards. Our model is
suitable for 2D images of patients without limiting scenes,
in which the face detection algorithm is responsible for
detecting the patient’s facial landmarks and facial regions
and correcting the face. The part of face detection and
correction uses the algorithm of Multi-Task Convolutional
Neural Network (MTCNN) [29] to put detection of face
region and detection of face landmarks together for face
detection and correction.

For the input original image with borders, this step is to
detect the landmarks in the face, and then align the face based
on these landmarks. The so-called landmarks are usually the
positions of canthus, nose, contour of face and so on. With
these landmarks, we can “calibrate” or “align” the face.
It means that the original face may be crooked, and affine
transformation is used here to “straighten” the face, so as to
eliminate the errors caused by different postures [30].

Preprocessing of the detected face images principally
includes face clipping, size change and other operations. The
processed facial image is used to input the model to extract
features and achieve disease discrimination.

When processing the raw images with MTCNN algorithm,
only 93% of the faces were correctly detected, and the wrong
results (7%) would be corrected in subsequent manual review.
After these processes, we can create a dataset with valid faces
to ensure that the data input to BioFace are 100% correct.

B. NETWORK ARCHITECTURE FOR IDENTIFICATION OF
MULTIPLE GENETIC DISEASES

In the application of deep learning, the depth of network
layers is crucial. The deeper the network layers, the better
the feature extraction ability. However, for the reason of the
disappearance of gradients, etc, the representation ability of
the network will be weakened when the depth reaches a
certain level. The emergence of batch standardization and
residual network solves the problem to a certain extent
through the jump connection [31].

For some tasks of computer vision, CNN extracts features
through receiving field, which is much small in shallow
layers, so it cannot extract global information unless through
downsampling in the deeper layers. But in the shallow
layer, the global information is helpful for improving
the effectiveness, such as inception network. Squeeze and
Exception [27] is a network block with light magnitude

VOLUME 10, 2022



J. Wang et al.: Multiple Genetic Syndromes Recognition

IEEE Access

X
3X3 BN ReLU | wxHxC
3X3 BN WXHXC
~sso
Global Pooling IX1XC
FC RelLU 1x1xC/x
FC Sigmoid 1X1%C
— SE Biock
Scale WXHXC
+ ) wxHxC
X

FIGURE 2. Structure of SE-Resnet Block. 3 x3 means the size of
convolution kernel. BN means the batch normalation layer and FC means
fully connection layer. WxHxC and 1x1xC means the size of output
feature map.
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FIGURE 3. Overall network architecture. A SE-Resnet rectangular box
represents a SE-Resnet block. The number under the box is the number of
the blocks in each column. /2 means that the stride is 2.

and small resource consumption. We can utilize the global
information extraction capability of SE Block to make the
network fully use the global information of the shallow
layer. This can boost the network’s ability to extract global
facial features of genetic diseases. The structure of SE-Resnet
block is shown in Figure2. In comparison with task of
facial recognition, the target of genetic disease identification
requires more global information about the same diseases
besides the local features of specific individuals. Moreover,
the added SE Block can enhance the weights of valid regions
and weaken the weights of invalid regions.

In the principle of residual network, we have designed
the residual network architecture SE-Resnet64 that integrates
SE-Resnet Block. The structure of the overall network is
shown in Figure3.

The main structure of the network consists of four sets of
SE-Resnet blocks, and the number of each set of SE-Resnet
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blocks is 5,9,12,5 respectively. After a convolution, the input
image will enter the SE-Resnet sets to gradually extract the
genetic disease attribute characteristics, and the extracted
characteristics will enter the full connection layer after
an average pooling, finally realizing the identification of
multiple types of genetic diseases.

C. CROSS TRAINING FOR FACIAL RECOGNITION OF
GENETIC DISEASES IN SMALL DataSets

Deep learning applications premised on small data sets are
easily prone to over-fitting,which makes the network not
have good generalization ability. The method of pre-training
model combined with fine-tuning training can solve this
problem [32]. Fine-tuning is based on a pre-training model
that was trained on large data sets. On this basis, the
target data set is used in fine-turning process to make the
pre-training model have the ability to express the target
data. For transfer learning with similar tasks, the fine-turned
network can have better representation ability. We use
large-scale facial recognition data in pre-training, then use
genetic disease data to fine-tune. In face identification and
recognition of genetic diseases, the two tasks are of some
similarity, but there are also great differences. The target
of face identification is to identify the different images of
the same person, while recognition of genetic diseases is to
identify face clusters with the same genetic disease. To reduce
the individual redundant information in the task of face
identification, we compared the loss functions softmax and
A-softmax [33], expressed by the following formula (1) and
formula (2), respectively. Softmax can be used to improve
the inter-class spacing, but the optimization of intra-class
spacing is relatively poor. A-softmax has a good effect on the
optimization of intra-class spacing. In this work, we need a
large intra-class spacing in pre-training to avoid the network
learning the individual redundant information and a small
intra-class spacing to keep the faces of the same diseases
together as possible in the fine-turning stage.

1 el
L= Z _log(W) (1)

oIillg(@y,.)

L : E log( )
A= = —1o - , )
NZ 8 Trille @y, T Y, el

2
@(0y,.1) = (=D cos(mby, ;) — 2k, 0y, € ['ﬂ, M1
m m
?3)

In formula (1), f; represents the j-th element in vector f (j
e [1, K], K is the number of classes), N is the number of
training samples. In formula(2), formula(3), ke[0, m - 1],
“m” is an integer greater than 1 and it controls the angular
spacing. We use the loss function of softmax to train the
facial recognition network with a large amount of facial
recognition data, and then use the loss function of A-softmax
to fine-tune the network with genetic diseases small datasets.
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TABLE 1. Data situation.
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FIGURE 4. Process of optimizing the spacing among the subjects with
cross-training. The circles with same number are the faces with same
identity and the same color are the same syndromes.

In this way, we can optimally distinguish different types of
genetic diseases by maximizing the inter-class spacing and
minimizing the intra-class spacing. This process is shown
as Figure4. The circles with the same number are classified
as the same identity and the circles with the same color
are classified as the same type of genetic disease. The
network can optimize the spacing among classes but can not
optimize the inter-class spacing well in the first stage. With
the loss-alternating training in the second step, the network
can minimize the distance among the subjects in the same
classes and ignore the redundant information in the face
identification.

lIl. EXPERIMENTS

A. DATASETS

We used Casia Webb-Face dataset [28] for facial recognition
pre-training. Casia Webb-Face is the most commonly used
public facial recognition dataset, containing 490,000 face
photos of over 10,000 different people.

Our application BioFace is deployed by many Chinese
healthcare professionals, and BioFace collects data through
clinical users. For the test set, we only use cases in the
clinical data that have clear clinical or molecular diagnostic
results. The amount of clinical data is limited. Therefore,
in addition to clinical data, our training set also collects some
Internet data as a supplement,so that the number of test sets
accounts for about 10 % of the total data. We totally collected
face photos of 10 kinds genetic disease syndromes patients
and data with very low resolution and no full front face are
excluded. The collected data and numbers are exhibited in
Table 1. This study also collected the data of healthy people
from public dataset CAS-PEAL [34] as a category and added
them to model learning.

B. EXPERIMENTAL SETUP

We use Pytorch for deep learning architechture. For initial
method we use Xavier. For the optimizer, we use Stochastic
Gradient Descent (SGD), momentum 0.5, weight decay of
Se-4. The batch size is 512 and the learning rate is 0.01.
We train for 100 epochs and keep a constant learning rate
in the training process. After 100 epochs, the pre-training
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No. | Name of genetic dis- | Total Training Test set
ease quantity set
Angelman syndrome 471 424 47
Cornelia de Lange syn- | 194 175 19
drome

3 Downs syndrome 672 605 67

4 Sotos syndrome 141 127 14

5 CHARGE syndrome 162 146 16

6 Noonan syndrome 263 237 26

7 DiGeorge syndrome 280 252 28

8 Williams-Beuren syn- | 209 188 21
drome

9 Rubinstein-Taybi syn- | 225 203 22
drome

10 Fragile x syndrome 158 142 16

0 Health 400 360 40

with softmax loss is done and we test the model on Labeled
Faces in the Wild (LFW) [35] dataset, which is very popular
for person verification test, and the accuracy of the result is
98.4%. After the pre-training stage, we change the softmax
loss function with A-softmax and train for 200 epochs. In this
step, the “m” for A-softmax is set as 4. For all training,
we use online data augmentation method, randomly rotation
within 5 degrees and vertical and horizontal shifts randomly
within 20 pixels, randomly scaled by 0.05 times of the size
and shear transformation.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. THE EVALUATION OF CROSS TRAINING

We conducted comparative experiments to verify the effect
of cross-training on the spatial distribution of data features.
The first experiment does not use cross-training, that is,
softmax is used in the pre-training and fine-tuning training
stages. The second experiment uses the cross-training method
described above. In order to make a fair comparison, all the
experimental settings are the same except for the comparative
components in the two experiments. When the training
of the two experiments is completed, we take the output
of the previous layer of classifier as the characteristic
representation of the data. For visualization, we reduced
the characteristic representation to two dimensions. The
representation distribution for both is shown in FigureS5.
As can be seen from the figure, using the cross-training
method, the data feature distribution has been significantly
optimized. The intra-class data are more gathered and the
inter-classe are more separate by cross-training compared
with all using softmax loss function.

When the spatial distribution of data features is optimized,
the performance of model recognition is improved accord-
ingly by using cross-training compared with using softmax
loss function in both pre-training and fine-turn stages. The
test accuracy is exhibited in Table 2. Softmax Loss means that
softmax is used in both face identification pre-training and
the fine-tune of genetic disorders recognition. Through the
experimental results, we can conclude that transfer learning
based on our cross-training can make the model more suitable

VOLUME 10, 2022
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FIGURE 5. Visualization results of representation spatial distribution. The
upper part is the distribution of softmax loss and the lower part is the
distribution of cross-loss training.

TABLE 2. Cross-loss training and softmax loss comparison.

Training Top-1 accuracy
Softmax Loss 90.6%
Cross-loss Training |93.5%

for the classification task of genetic disease attributes of small
data sets.

B. IDENTIFICATION OF MULTIPLE GENETIC SYNDROMES
In order to evaluate the results, we use precision, recall as
metrics, which are defined as below:

o TP
Precision = —— “4)
TP + FP
TP
Recall = —— (@)
TP + FN

TP or True Positive refers to the number of predicted results
being the same with the annotation for a certain genetic
syndrome. FP or False Positive is the number of samples of
other types that are wrongly classified as samples of this type
for a certain genetic syndrome. FN or False Negative is the
number of samples of this type that are wrongly classified
as samples of other types for a certain genetic syndrome.
In addition, we calculate the Top-1 accuracy, which is defined
as all correctly classified numbers divided by the total number
of test sets.

In the research related to recognition of genetic syndromes,
most of the work is only about identification of a single kind
of disease or binary classifications, syndromic or normal, and
it is rather difficult to acquire good accuracy in identification
of multiple genetic disorders. Our framework is designed
for accurate identification of multiple genetic disorders.
In this work, we tested ten of the most common genetic
disorders. Our framework application is not confined to the
identification of these ten genetic diseases, but theoretically
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TABLE 3. Confusion matrix of test results (BioFace).

rediction
0 1 2 3 4 5 6 7 8 9 10
Label
0 40 0 0 0 0 0 0 0 0 0 0
1 1 44 | 0 1 0 0 0 0 1 0 0
2 0 0 19 0 0 0 0 0 0 0 0
3 0 1 0 66 0 0 0 0 0 0 0
4 0 0 0 0 13 0 0 0 0 0 1
5 0 0 0 1 0 14 0 0 0 1 0
6 0 1 0 0 1 0 23 1 0 0 0
7 0 0 0 1 0 0 1 25 0 1 0
8 0 1 0 1 0 0 0 0 19 0 0
9 0 0 1 0 0 1 0 0 0 20 0
10 0 0 0 0 0 0 0 0 0 1 15
TABLE 4. Confusion matrix of test results (DeePGestalt).
rediction
0 1 2 3 4 5 6 7 8 9 10
Label
0 23 0 0 0 1 0 0 1 1 0 0
1 9 32 1 3 0 1 1 3 1 2 0
2 0 0 17 0 0 0 0 0 0 0 0
3 1 3 0 55 0 3 0 0 1 0 0
4 3 2 0 2 9 0 0 0 3 0 1
5 0 0 0 1 0 8 1 2 0 0 0
6 0 0 0 0 1 1 19 2 1 2 1
7 1 3 1 3 0 3 0 18 1 1 1
8 2 2 0 0 3 0 0 1 6 2 1
9 1 0 0 1 0 0 3 1 2 14 0
10 0 5 0 2 0 0 2 0 0 0 18
TABLE 5. Results of test set.
No. | Syndromes Precision | Recall Precision | Recall
(ours) (ours) (DeeP- (DeeP-
Gestalt) | Gestalt)
1 Angelman syndrome 93.6% 93.6% 68.1% 60.4%
2 Cornelia de Lange syn- | 95% 100.0% | 89.5% 100.0%
drome
3 Downs syndrome 94.3% 98.5% 82.1% 87.3%
4 Sotos syndrome 92.9% 92.9% 64.3% 45.0%
5 CHARGE syndrome 93.3% 87.5% 50.0% 66.7%
6 Noonan syndrome 95.8% 88.5% 73.1% 70.4%
7 DiGeorge syndrome 96.2% 89.3% 64.3% 56.3%
8 Williams-Beuren syn- | 95.0% 90.5% 37.5% 35.3%
drome
Rubinstein-Taybi syn- | 87.0% 90.9% 66.7% 63.6%
drome
10 | Fragile x syndrome 93.8% 93.8% 81.8% 66.7%
0 Healthy 97.6% 100 % 57.5% 88.5%

supports the accurate identification of hundreds of genetic
diseases.

To test our method, 10 % of the dataset is randomly
reserved as the test set. The confusion matrix of the test results
is displayed in Table 3. The test distribution of the model in
the whole test set can be seen from this table. The precision
and recall can be calculated from the confusion matrix and
are shown in Table 5. For precision, the result of Rubinstein
Taybi syndrome is 87.0%, and the results of other syndromes
are higher than 92.9%. For recall, the result of CHARGE
syndromes is 87.5%, Noonan is 88.5%, DiGeorge is 89.3%,
and other syndromes are above 90%. In addition, our Top-1
accuracy rate of 10 diseases is 93.5%. The result is 94.3%
if the healthy samples are included in the Top-1 accuracy
calculation.
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Among the research related to identification of various
genetic diseases, DeePGestalt [26] is the most similar to our
work. This research dose not disclose the image datasets,
so we reproduced DeePGestalt to predict genetic diseases in
the same training and test sets as BioFace. The confusion
matrix of DeePGestalt is exhibited in Table 4, and the
precision and recall is shown in Table 5. Besides, the Top-
1 accuracy rate of DeePGestalt is only 71.0%, while the
accuracy of BioFace is 93.5%. Our model can accurately
identify the types of genetic diseases in clinical application.

V. CONCLUSION
In this study, we came up with an application framework for
deep learning for recognition of genetic diseases based on
small data sets. By adding SE block to the residual network
Resnet64 and through cross-loss training, we can extract
rich facial features of genetic diseases. This can improve
inter-class and intra-class spacing during transfer learning of
the network model, which can realize accurate identification
based on small data sets. Our Top-1 accuracy for 10 genetic
diseases is 93.5%. In the identification of multiple genetic
diseases, our Top-1 accuracy is higher than that of related
research work [26]. In future research, our framework will
add more kinds of genetic diseases, and is expected to be
applied to clinical auxiliary diagnosis of genetic diseases.

Data availability

To protect patient privacy, the facial images in this research
are not publicly available.

Ethic statement

The authors affirm that all human research participants
in clinical data provided informed consent, including the
publication of the images in Figurel and Figure3.
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