
Received 21 September 2022, accepted 18 October 2022, date of publication 28 October 2022, date of current version 4 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3218060

Investment Cost Forecasting for Low Carbon
Power System Planning Considering Technical
Progress and Scale Effect
WEI SUN 1,2, JINYU XIAO 1,2, (Associate Member, IEEE), JINMING HOU1,2,
CHEN JIN1,2, AND YUANHONG NIE3
1Global Energy Interconnection Group Company Ltd., Xicheng, Beijing 100031, China
2Global Energy Interconnection Development and Cooperation Organization, Xicheng, Beijing 100031, China
3State Grid Anhui Electric Power Company Ltd., Economic Research Institute, Hefei, Anhui 230061, China

Corresponding author: Jinming Hou (jinming-hou@geidco.org)

This work was supported by the Science and Technology Project of State Grid Corporation of China: Model Research and Key Technology
Evaluation on Low Carbon Development of Energy and Power in China under the Background of Carbon Peak and Carbon Neutralization
under Grant 1300-202155460A-0-0-00.

ABSTRACT Low carbon power system with high penetration of clean energy is an effective way to realize
the carbon emission target. Long term power system planning should consider both technical constraints
and reasonable investment cost forecasting. For reasonable investment cost forecasting in long term, the
effect on investment cost by technical progress and scale effect should be taken into consideration both.
Investment cost can affect the planning results of installed capacity, while installed capacity affects the
investment cost forecasting result mutually. There is no paper that takes technical effect into investment cost
forecasting or analyzes the mutual effect between planned installed capacity and investment cost forecasting.
Technical progress can be quantified by TRL (Technical Readiness Level) while scale effect can be quantified
by installed capacity. The novelty of this paper is proposing the 3D curve function which qualified the
relationship between investment cost and technical progress & installed capacities for the first time to realize
investment forecasting in long term. And the 3D curve is combined with the GESTP model by feedback
the forecasting investment cost to power system planning which reveals the mutual effect between installed
capacity planning and investment cost forecasting for the first time. The study case indicates that accelerating
of technical progress will decrease the investment cost and increase the installed capacity of this technology
and affect other technologies with interaction in the whole power system.

INDEX TERMS TRL, learning curve, curve fitting, log-log regression, low carbon power system, long term
planning, onshore wind power, LCOE, investment cost.

I. NOMENCLATURE
Symbol Description
a Learning rate.
b Saturation value of investment cost in

this paper.
c The ramp rate of the curve.
C0 Initial investment cost in USD/kW.

The associate editor coordinating the review of this manuscript and

approving it for publication was S. Ali Arefifar .

C inv
gen, C

inv
line, C

inv
sto Investment cost of power source, power

grid and power storage respectively.
Coper
sys O&M cost of power system.

d The location parameter which is the year
when the technology has been mature
and started to decline.

FLl,t Transmission power.

FL,Maxl Maximal transmission capacity.
HB
b Continuous charging and discharging

time of storage.
GBb Installed capacity of power storage units.
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GGg Installed capacity of thermal power
plants.

k The shape parameter of log-log regres-
sion model which is the ramp rate of the
curve.

L Saturation value of log-log regression
model which is the up limit of patent
numbers in this paper.

Ln,t ,LCurn,t The load at node and load shedding rate
respectively.

l The number of transmission line.
OGg,t The operational capacity of thermal

power unit at t time.
p The annual accumulative patent num-

bers.
PGg,t The output of thermal power unit at t

time.
PB,chab,t ,PB,disb,t The charging power and discharging

power at t time of storage respectively.
SBb,t The remaining electricity in storage

equipment.
XB,chab,t ,XB,disb,t 0-1 valuables which represent the charg-

ing or discharging states.
TG,ong , TG,offg The minimal start and stop time respec-

tively.
UG,on
g,s,t , U

G,off
g,s,t The operational capacity and stopped

capacity at t time respectively.
x The annual accumulative installed

capacity in GW.
y Annual TRL which should be less

than 1.
z Annual investment cost in USD/kW.
αG,Rdg Low limit of ramp rate.
αG,Rug Up limit of ramp rate.

ηBb The charging or discharging efficiency.
λG,Ming Proportion of thermal unit minimum

output.
τ The location parameter which is the year

when patents number start to increase
quickly.

II. INTRODUCTION
As more and more serious of carbon emission and global
warming, clean energy development become more and more
important. The ‘‘Paris Agreement’’ signed in 2016 proposed
the global goal of controlling temperature rise no more than
2◦C and striving to control below 1.5◦C. To realize this target,
the global carbon emission in 2050 should be lower than
9.7 billion tons [1].

To realize the ‘‘Paris Agreement’’, many countries in the
world have laid out a carbon emission reduction plan. For
example, European Union claimed a carbon emission reduc-
tion of 60% by 2030, Russian claimed a carbon emission
reduction of 30% by 2030 and China claimed a Carbon

intensity reduction of 60% [2]. On 22nd September 2020,
Chinese President Xi Jinping mentioned in the general debate
of the seventy-five UN General Assembly that China should
strive to achieve carbon neutralization by 2060, which means
that from 2020 to 2060, China’s carbon emissions should
be reduced from 160 million tons per year to almost no
emissions.

Most clean energies need to be converted to electricity
before they can be utilized. So the low carbon power system
with high penetration of clean energy is an effective way
to achieve the ‘‘Paris Agreement’’. It takes a long time to
achieve this target and reasonable planning for a low carbon
power system would promote its development. The existing
power system planning method is to calculate the minimal
LCOE (Levelized Cost of Electricity) based on technical
constraints or investment forecasting.

Some of the planning methods are only focused on tech-
nical constraints such as carbon emission, ramp rate of gen-
eration units, transmission limit, power storages charging
rate, and balancing between power generation and load. The
medium or long term power generation planning methods
considering carbon emission ([3] and [4]) or balancing capac-
ity ([5] and [6]) have been proposed. The power generation
planning methods considering power generation ramp rate
([7]) or power storage charging rate ([8] and [9]) have been
proposed, and the power grid planning methods under trans-
mission limit have been present in [10] and [11].

Some of the planning methods are only focused on invest-
ment forecasting. LCOE is an important evaluation indicator
for low carbon power system planning. According to [12],
LCOE is the sum of investment cost, operation & mainte-
nance cost (O&M cost) and fuel cost (for renewable energy,
the fuel costs are low-to-zero), divided by total electricity
generation in a lifetime. The investment cost is separated into
three categories: equipment cost, construction & installation
cost and grid integration cost. To simplify, in this paper, the
investment cost is forecasted as a whole. The O&M cost
is a fixed proportion of investment cost. So the reasonable
investment cost is important to realize reasonable LCOE
calculation in the future. The learning curve is a widely used
method for investment cost forecasting. The investment costs
forecasting for wind power and PV by learning curve are
proposed in [13] and [14] respectively.

Some of the planning methods are focused on both tech-
nical constraints and investment cost forecasting. But only
the scale effect is taken into consideration in these models.
The ETP model from IEA (International Energy Agency)
is a bottom-up, technology-rich model that depicts primary
energy supply and transformation to final energy demand up
to 2070. The supply model of ETP integrates the technical
and economic characteristics of new technologies that could
be added to the energy system in the future. The model can
then determine the least-cost technology mix needed to meet
the final energy demand calculated in the ETP end-use sector
models for agriculture, buildings, industry, and transport [15].
The NEMS model from EIA (U.S. Energy Information
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Administration) is an energy-economy modeling system for
the United States. NEMS projects the production, imports,
conversion, consumption, and prices of energy, subject to
assumptions on macroeconomic and financial factors, world
energy markets, resource availability and costs, behavioral
and technological choice criteria, cost and performance char-
acteristics of energy technologies, and demographics [16].
In ETP, NEMS, and IRENA model [12], a learning curve
was used to forecast the investment cost. The learning curve
depicts the development of investment cost as a function
of increased cumulative installed capacities of technologies.
It reflects the impact of scale effect of technologies on invest-
ment cost reduction.

For long term investment cost forecasting, the technical
progress and scale effect of technologies promote investment
cost reduction both. Technological progress can improve
energy efficiency and reduce unit investment cost. But in the
existing models or methods, technical progress hasn’t been
taken into consideration, since technical progress is difficult
to be quantified. There are many papers that researched the
quantitative analysis methods of technical progress, [17] and
[18] proposed that patent numbers can be used to quan-
tify TRL (Technology Readiness Level) of ocean energy
generation technology and thermal generation technology
respectively. Investment cost can affect the planning results
of installed capacity, while if installed capacity changes,
it means the scale effect changes, and the investment cost
forecasting result would change. So there is a mutual effect
between planned installed capacity by power system planning
and investment cost forecasting.

But there is no paper that takes technical effect into invest-
ment cost forecasting and no paper analyzes the mutual effect
between power system planning and investment cost forecast-
ing. ETP or NEMSmodel is long term planning model for the
whole energy system including oil, gas, coal, and electricity.
The investment costs are forecasted by the learning curve
in these models. Learning curve is a widely used, simple,
and effective way to forecast investment cost which can be
used for many different technologies in power system such as
onshore and offshore wind power, PV, solar thermal, power
storage, and so on since little historical data such as installed
capacity, patent numbers and investment cost are needed for
each technology. Compared to artificial intelligence methods
such as neural network or PSO, see in [19] and [20], less
historical data is needed for the learning curve. There are
some papers researched the improved learning curve method
in recent years. Reference [21] presented the self-similarity-
based learning curve for onshore wind investment forecasting
which forecast the cost of multi-level components of onshore
wind farms. Reference [22] presented the inter-regional learn-
ing curve for investment cost forecasting of li-ion battery
which reflects spillover effect on cost reduction and esti-
mates the impact of local-regional learning experience on
the overall region. But the technical progress isn’t taken
into consideration in these papers. The learning curve can
reflect the decrease of investment cost caused by increasing

of installed capacity, but the technical progress still can affect
the investment cost, especially at the early stage of the whole
life of technology. But technical progress is not included in
the learning curve. And in these models, forecasting result of
learning curve is only used for energy planning, it isn’t feed-
back to energy planning, so the mutual effect between invest-
ment cost forecasting and energy planning can’t be analyzed.
Different from ETP and NEMS models, GTSEP (Generation
Transmission Storage Expansion Planning, GTSEP) is pro-
fessional model for electrical power system planning which
has a time interval of one hour rather than one year of the
ETP or NEMS model. GTSEP has more detailed technical
constraints for power system technologies but it doesn’t have
a function of investment cost forecasting.

According to the above reference papers, technical
progress can be quantified by TRL while scale effect can
be quantified by installed capacity. In this paper, the 3D
relation function between investment cost, installed capacity,
and TRL of technologies is derived for the first time. Then
the investment cost can be forecasted by the relation function
which means the technical progress is taken into considera-
tion for the first time. Then the forecasting investment cost
is transmitted to the existing GTSEP model which realizes
optimal power system planning under technical constraints.
With the forecasted investment cost, the GTSEP will carry on
annual hourly calculations and give comprehensive LCOE of
whole low carbon power system and installed capacities of
different technologies. The LCOE is compared with empir-
ical value, and the comparison results and installed capacity
are feedback to the 3D curve. The coefficients of the 3D curve
can be adjusted by the feedback of LCOE comparison result.
It means that the 3D prediction curve and GTSEP model are
combined by feedback.

This paper analyzed the effect on investment cost of
technology caused by technical progress at different devel-
oping stages. Based on the analysis, this paper proposed
an improved investment costs forecasting method of 3D
curve which quantified effect caused by technical progress
for the first time. Then this paper combined the improved
investment costs forecasting with GTSEP model for the first
time, analyzed the mutual effect between investment costs
forecasting and installed capacity planning of power system.
The proposed forecasting method is a worthy complement to
GTSEP model. So the novelty of 3D curve method proposed
in this paper is that the technical progress can be qualified
and involved in power system optimal planning for the first
time.

The study case indicates that: 1 at the early stage of the
whole life of a specified technology, and the technology is not
mature, the decreasing of investment cost is mainly caused
by technical progress. At the mature stage when technology
has been mature, the decreasing of investment cost is caused
mainly by increasing of installed capacity, the effect caused
by technical progress becomes less and less weak. 2 If the
development of a specified technology accelerates, the invest-
ment cost will be future reduced and the installed capacity
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FIGURE 1. Flow chart of low-carbon power system planning.

will be increased, the installed capacity of other technology
such as power storage may be reduced.

III. LONG TERM PLANNING PROCEDURE OF LOW
CARBON POWER SYSTEM WITH INVESTMENT
COST FORECASTING
The existing GTSEP model can realize optimal planning
of low carbon power system under technical constraints.
In this paper, investment cost forecasting considering techni-
cal progress and scale effort is added to GTSEP model. The
whole procedure includes 5 steps, as shown in figure 1:

Step1 energy and electrical power system plan. Based on
the carbon emission target and initial forecasting investment
costs of all power sources (as shown in appendix table3)
in a specified level year (2060 is taken as the level year in
this paper), the initial installed capacities of renewable or
traditional power sources in future low carbon power system
can be given by MESSAGE model, as shown in appendix
table3. Similar to ETP or NEMS model, MESSAGE is a
global systems engineering optimization model used for long
or medium term energy system planning [23]. It is not only
for electrical power system planning but for the whole energy
system planning including petroleum, gas, coal, etc.

Then the investment cost and installed capacity of a
specified generation technology can be optimized by the

following steps (There are three main kinds of technologies in
power system: power generation technologies, transmission
technologies, and power storage technologies, as shown in
figure 1. Onshore wind power is taken as an example in this
paper).

Step2 scale effect. Based on annual installed capacities,
the annual investment costs and initial forecasting invest-
ment costs of onshore wind power (as shown in appendix
table1), through curve fitting, learning curve (see in (1)) of
onshore wind power is derived which describes the relation-
ship between investment costs and installed capacities.

Step3 technical progress. Based on annual patent numbers
(as shown in appendix table2), through log-log regression,
the TRL curve (see in (2)) of onshore wind power is derived
which describes the trend of technical development. Through
TRL curve, the future TRL can be calculated (as shown in
appendix table1). Then based on the annual TRLs and annual
investment costs (as shown in appendix table1), through curve
fitting, the Z curve (see in (4)) of onshore wind power is
derived which describes the relationship between investment
costs and TRLs is derived.

Step4 investment cost forecasting. Based on annual
installed capacities, annual TRLs and annual investment costs
(as shown in appendix table1), add equations (1) and (4),
through curve fitting, the 3D relation function between
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investment costs, TRLs and installed capacities is derived, see
in (5). Based on the future installed capacity planned in Step1
and future TRL calculated in Step2, the future investment
cost of onshore wind power can be forecasted using the
3D relation function. The forecasting result can be found in
appendix table3, the first forecasting result.

Step5 Optimal planning.With the planned installed capaci-
ties of different technologies in Step1, forecasting investment
cost of the specified technology in Step4 and forecasting
investment costs of other technologies by export experi-
ence (as shown in appendix table3), the optimal planning
of the 2060 power system by GTSEP model is carried on
and the comprehensive LCOE is calculated. Different from
MESSAGE model, GTSEP model is a professional model
for power system planning, it is in full time scale with time
interval of one hour and total of 8760 hours in a year.

If the comprehensive LCOE of future low carbon power
system decreases to an unreasonable value according to
expert experience, then the coefficients of 3D relation func-
tion should be adjusted with a step of 10% of initial value,
then second, third and more times forecasting results can be
calculated until reasonable LCOE is achieved.

IV. FACTORS AFFECTING INVESTMENT COST
A. SCALE EFFECT
The scale effect means the rise in output of products will
lead to a decline in investment costs [13]. Scale effect can
be quantified by total quantity of product. For power gen-
eration or power storage technologies, total quantity refers
to accumulative installed capacities; for power transmission
technology, total quantity refers to accumulative transmission
capacities. Learning curve also known as experience curve is
the relation function that describes the relationship between
investment cost and total quantity of products.

With the increasing of accumulative installed capacities of
power sources, the investment costs of these technologies will
decrease in a certain proportion. So the learning curve of these
technologies is:

z = C∗0 x
a (1)

where, z is annual investment cost in USD/kW, C0 is initial
investment cost in USD/kW, x is the annual accumulative
installed capacity in GW, a is learning rate. The larger the
learning rate ‘‘a’’ is, the faster the investment cost decreases.

B. TECHNICAL PROGRESS
1) TRL CURVE
The technology readiness level (TRL) evaluation method
can be used for quantitative analysis of key technical
progress, supporting project decision-making and milestone
control [17]. In the 1980s, based on an analysis of a large
number of patents, Professor Altshuller found that the accu-
mulative annual number of patents is closely related to the
development and evolution of technology, which can be used
for TRL analysis and prediction [18]. In the whole life of
technology, the growth law of TRL is similar to the pattern of

biological evolution which looks like an ‘‘S’’ curve. It means
that when a technology develops to a new stage, the number
of relevant patents will change. Log-log regression model is a
kind of ‘‘S’’ curve. It belongs to the category of multivariate
analysis and is a common method of statistical empirical
analysis. The mathematical equation of log-log regression
model (be called as TRL curve) is:

p =
L

1+ e−k(t−τ )
(2)

where, p is the annual accumulative patent numbers, L is
saturation value of log-log regression model which is the up
limit of patent numbers in this paper, k is the shape parameter
of log-log regression model which is the ramp rate of the
curve, τ is the location parameter which is the year when
patents number start to increase quickly.

TRL of a specified technology is defined as y:

y =
p
L

(3)

The patent numbers can be found in the top five patent
offices which are European Patent Office (EPO), China
National Intellectual Property Administration (CNIPA),
United States Patent and Trademark Office (USPTO), Japan
Patent Office (JPO) and Korean Intellectual Property Office
(KIPO). All the patent offices have patent literature resources
and advanced patent information retrieval systems which pro-
vide the database for TRL analysis.

2) RELATION FUNCTION BETWEEN TRL AND
INVESTMENT COST
The technical progress can promote investment cost reduc-
tion. Based on the quantitative assessment of TRL, by curving
fitting, we derive the relation function between TRL and
Investment cost can be derived, as (4) which is also called
as ‘‘Z’’ curve.

z = b−
b

1+ ec(y−d)
(4)

where z is annual investment cost in USD/kW, y is annual
TRL which should be less than 1, b is saturation value of
investment cost in this paper, c is the ramp rate of the curve,
d is the location parameter which is the year when the tech-
nology has been mature and started to decline.

V. RELATION FUNCTION OF TRL&INSTALLED CAPACITY
AND INVESTMENT COST
According to chapter 2, the investment cost of technology is
affected by TRL and installed capacity. The development of
a specified technology goes through three stages:

At the early stage, the technology develops slowly and is
not mature, while the installed capacity is small, the invest-
ment cost is very high.

At the fast developing stage, the TRL of technology
increases fast and installed capacity becomes larger and
larger, the investment cost has a fast decreasing. Both TRL
and installed capacity have a strong influence on the invest-
ment cost decreasing during this period.
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FIGURE 2. Frame work of GTSEP.

At the mature stage, technology has been mature and TRL
curve is almost flat which means the influence on investment
cost by TRL is weak in this stage. The investment cost
decreasing is caused mainly by installed capacity increasing.

To describe the mathematical relationship between TRL&
installed capacity and investment cost, we derive the
3D (three-dimensional) relation function by adding learn-
ing curve equation and ‘‘Z’’ curve equation, see in (5).
MATLAB/Curving fitting tool provides a function to fitting
curves or surface to data, we can conduct regression analysis
using the library of linear or nonlinear models provided or
specify our own custom equations. In this paper, the custom
equation is (5). The tool provides optimized solver coeffi-
cients to improve the quality of the fits. So by curve fitting,
the 5 coefficients of this equation can be calculated, these
coefficients are the same as in (1) to (4).

z = C∗0 x
a
−

b
1+ e−c(y−d)

+ b (5)

The independent variables of (5) are installed capacity
(x) and TRL (y). Installed capacity is calculated by GTSEP
model and TRL is calculated by TRL curve. With the known
independent variables, the dependent variable (investment
cost) can be calculated according to (5).

VI. OPTIMIZATION PLANNING FOR LOW CARBON
POWER SYSTEM
GTSEP (Generation Transmission Storage Expansion Plan-
ning) model can realize optimal calculation for power system
planning [24], [25], [26]. The model optimizes the installed
capacities of power sources, power storages and transmission
lines in power system to achieve minimal LCOE. The model
carries on annual hourly calculation under technological con-
straints such as power balancing constraint, charging and
discharging constraint, and ramp rate constraint, etc. The time
duration is one year which means the hourly data number is
8760. It calls equation server CAPLX to realize optimization
calculation. The model has three parts: input, output and
optimal calculation.

The inputs of GTSEP are separated into two categories:
economical inputs and technical inputs. The economical
inputs include the investment costs of the power sources,

transmission lines and power storage. The technical inputs
include the load characteristics (annual hourly data), the
output characteristics of fluctuating power sources (annual
hourly data), and installed capacities of power sources that
don’t need to be optimized (in chapter6, except for onshore
wind power and power storage, the installed capacities of
other power sources don’t need to be optimized).

The outputs of GTSEP are installed capacities of power
sources that need to be optimized, power generation of power
sources, installed capacity of power storage and transmission,
the penetration rate of renewable energy, and the comprehen-
sive LCOE.

The optimal calculation is tominimize the total system cost
(or power consumption cost) which is expressed by objective
function (6). The total cost of the system divided by the power
generation equals the comprehensive LCOE. The calculation
should under operation constraints which includes power
balancing constraint, transmission limit, charging and dis-
charging constraint of power storage and ramp rate constraint
of thermal power unit.

A. OBJECTIVE FUNCTION
The objective function means that the function of gtsep opti-
mal model is realizing the minimal cost of the whole power
system composed of investment cost and operation cost.

minCsys = C inv
gen + C

inv
line + C

inv
sto + C

oper
sys (6)

where, C inv
gen, C

inv
line, C

inv
sto are investment cost of power source,

power grid and power storage respectively, Coper
sys is O&M

cost of power system.

B. POWER BALANCING CONSTRAINT
Power balancing constraint means power supply should be
equal to power consumption. Power supply is power gener-
ation plus power storage (discharging power minus charging
power) and minus transmission losses. Power consumption is
available load which is total load minus shedding load.∑
g∈�nG

PGg,t +
∑
b=�Bn

(
PB,disb,t − P

B,cha
b,t

)
−

∑
l∈�LSn

FLl,t +
∑
l∈�LEn

FLl,t = Ln,t − LCurn,t , ∀n, ∀t

where, PGg,t is the generation output power, PB,disb,t ,PB,chab,t are
the charging and discharging power of storage respectively,
FLl,t is transmission power, Ln,t ,LCurn,t are the load at node and
load shedding rate respectively.

C. TRANSMISSION LIMIT
Transmission limit means the transmission power of a trans-
mission line should be lower than the line’s maximal trans-
mission capacity.

−FL,Maxl ≤ FLl,t ≤ F
L,Max
l , ∀l, ∀t

where, FL,Maxl is maximal transmission capacity. L is the
number of transmission lines.
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FIGURE 3. Learning curve of onshore wind power.

D. CHARGING AND DISCHARGING CONSTRAINT
Charging and discharging constraint means the charging or
discharging power should be lower than the nominal power
of storage equipment and can’t be operated at same time (see
in first and second equations). The charging and discharg-
ing efficiency at t time should be lower than the efficiency
of storage equipment (see in third equation). The charging
and discharging electricity should be lower than the storage
capacity of storage equipment (see in fourth equation).{

0 ≤ PB,chab,t ≤ XB,chab,t GBb
0 ≤ PB,disb,t ≤ X

B,dis
b,t GBb

∀b, ∀t

XB,chab,t + XB,disb,t = 1, ∀b, ∀t

SBb,t − S
B
b,t−1 = η

B
bP

B,cha
b,t − P

B,dis
b,t /ηBb , ∀b, ∀t

0 ≤ SBb,t ≤ H
B
b G

B
b , ∀b, ∀t

where, PB,chab,t ,PB,disb,t are the charging power and discharging
power at t time of storage respectively, GBb is installed capac-
ity of power storage units, SBb,t is the remaining electricity
in storage equipment, ηBb is the charging or discharging effi-
ciency, HB

b is continuous charging and discharging time of
storage, XB,chab,t ,XB,disb,t are 0-1 valuables which represent the
charging or discharging states.

E. RAMP RATE CONSTRAINT
Ramp rate constraint means the output and its ramp of thermal
power unit should be lower than technical limit value (see in
first and second equations). The output of thermal power unit
should be larger than the minimum technology output and
lower than the total operational capacity and total operational
capacity is equal to the previous operational capacity plus
current start capacity (see in third to fifth equations).

0 ≤ PGg,t ≤ G
G
g , ∀g, ∀t

−αG,Rdg GGg ≤ PGg,t − P
G
g,t−1 ≤ α

G,Ru
g GGg , ∀g, ∀t

λG,Ming OGg,t ≤ PGg,t ≤ O
G
g,t , ∀g, ∀t

OGg,t = OGg,t−1 + G
G,on
g,t − G

G,off
g,t , ∀g, ∀t

FIGURE 4. TRL curve of onshore wind power.

TG,Ong∑
τ=1

GGg,t−τ ≤ OGg,t ≤ G
G
g −

TG,Offg∑
τ=1

GGg,t−τ , ∀g, ∀t

where, PGg,t is the output of thermal power unit at t time,GGg is
installed capacity of thermal power plants, αG,Rdg is low limit
of ramp rate, αG,Rug is the up limit of ramp rate, OGg,t is the
operational capacity of thermal power unit at T time, λG,Ming is

proportion of thermal unit minimumoutput,UG,on
g,s,t andU

G,off
g,s,t

are the operational capacity and stopped capacity at T time
respectively, TG,ong and tg,offg are the minimal start and stop
time respectively.

VII. CASE STUDY
In this chapter, the investment cost forecasting of onshore
wind power is carried out considering technical progress and
scale effect.

A. STEP1: ELECTRICAL POWER SYSTEM PLANNING
According to the ‘‘Paris Agreement’’, the global goal of
controlling temperature rise no more than 2 ◦C, so the
total captured CO2 minus CO2 emission in 2060 should
be more than 6400 million tons of standard coal. In power
system, the power generation of renewable energy should
account for more than 95% of total power generation [27].
Based on these constraints and initial forecasting investment
costs, the installed capacities of renewable energy and tradi-
tional energywere calculated byMESSAGEmodel. appendix
table3 gives installed capacities and initial forecasting invest-
ment costs of onshore wind power, offshore wind power, PV,
CSP and power storage [28], [29], [31]. Since the investment
costs of renewable power generation technologies and power
storage will decrease greatly in the future, so these technolo-
gies are chosen to list in table 3, and other technologies are
not listed in this paper which can be found in [28].

The following step is to optimize the forecasting invest-
ment cost and installed capacity of onshore wind power.

B. STEP2: SCALE EFFECT
According to the statistical data from IRENA [33], the his-
torical annual installed capacities and investment costs of
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FIGURE 5. Z curve of onshore wind power technology.

FIGURE 6. 3D relation function map of onshore wind power.

onshore wind from 2010 to 2018 can be found, as shown
in appendix table1. Through equation (1), the learning
curve of onshore wind power is shown in figure 3 and the
equation is:

z = 6494× x−0.228 (7)

The learning rate of onshore wind power is 22.6%.
In 2021, the installed capacity of onshore wind power is about
830GW, the TRL is 0.71, so the investment cost of onshore
wind power is 1459 USD/kW as calculated by (7).

C. STEP3: TECHNICAL PROGRESS
According to database of top five patent offices, the annual
patent numbers of onshore wind power from 1990 to
2020 can be found, as shown in appendix table2. The
patent numbers had a quick increasing during 2010-2020.
By MATLAB/fitting curve tool, the coefficients of (2) are:
τ = 2016, L = 49250, k = 0.226, see in (8). With these
coefficients, the R-square of fitting curve is 0.9952 which
is approximate to 1. It means that (8) matches the patent
numbers well.

p =
49250

1+ e−0.226(t−2016)
(8)

TRL of onshore wind technology is defined as y =
p/49250, so the TRL curve equation is:

y =
1

1+ e−0.226(t−2016)
(9)

FIGURE 7. Relation function map of onshore wind power with different
coefficient.

FIGURE 8. Investment costs of onshore wind power forecasted by
different methods.

According to (9), the TRL of onshore wind in future years
can be calculated, as shown in appendix table1. The TRL
curve is shown in figure 4. Before 2000, the onshore wind
power technology has not been mature and the accumula-
tive annual patent numbers had a slow increasing. During
2000-2030, the technology develops fast and the annual
installed capacities of onshore wind farms increase fast while
patent numbers also increase fast. After 2030, the onshore
wind technology still keep an increasing trend, but its devel-
oping speed will slow down. The patent numbers will tend to
be saturated.

According to chapter 2.2, the Z curve (4) can be used to
describe the relationship between investment cost and TRL.
Based on the TRLs and investment costs of onshore wind
power generation technology from 2010 to 2018 in appendix
table1, through curve fitting, the coefficients can be derived,
see in (10) and Z curve is shown in figure 5. When the
technology starts to develop fast while TRL is larger than
0.2, the investment costs start to decrease fast. When the tech-
nology have been matured while TRL is approximate 1, the
investment costs will have a slow decreasing. The R-square
of the fitting curve is 0.967 which means the curve matches
the data well.

z = 2178−
2178

1+ e−3.411(y−0.8)
(10)
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D. STEP4: INVESTMENT FORECASTING
Based on the annual TRLs, annual installed capacities and
initial forecasting investment costs (as shown in appendix
table1), through MATLAB 3D curve fitting, the relation
function is derived, see (11). With the same method, the 3D
curve of offshore wind power, PV, CSP and power storage
(Lithium ion battery) are given in Appendix Table5. The
S-square of curve fitting is 0.9806 which means (11) matches
the data well. The fitting curve is shown in figure 6, this
is a 3D surface map. The X axis represents global annual
accumulative installed capacities of onshore wind farms in
GW, the Y axis represents the annual TRLs of onshore wind
power technology and Z axis represents global annual aver-
age investment costs of onshore wind power. TRLs have a
fast increasing from 0.2 to 0.85, during this period, techni-
cal progress affected investment cost strongly, and technical
progress promote fast reduction of investment cost. When
technology is mature enough while TRL is larger than 0.85,
technical progress slows down and TRLs tend to saturation
value 1. Effect on investment cost by technical progress
becomes weak, investment cost is effected by increasing of
installed capacity strongly.

z = 7000∗x−0.2753 −
320

1+ e−9.117(y−0.85)
+ 320 (11)

In 2060, the x is 6750 GW and y is 0.99 (see in appendix
table 1), so z is calculated to be 688, see in appendix table 4.
This is the result of first forecasting.

According to chapter 2, the coefficient a and c affect the
shape of 3D curve. In (1), the investment cost (z) will decrease
faster as the installed capacity(x) increases by decreasing
coefficient a. In (4), the investment cost (z) will decrease
faster as the TRL(y) increases by decreasing coefficient c.
In (5), coefficients a and c have the same effort, the investment
cost will decrease faster by decreasing a and c, as seen in
figure 7.

In 2021, the installed capacity (x) of onshore wind power
is about 830GW, the TRL (y) is 0.756, so the investment
cost of onshore wind power is 1404 USD/kW calculated
by (11). According to stpe2 in this chapter, the investment
cost of onshore wind power is 1459 USD/kW calculated
by learning curve (7). From statistical data of IRENA, the
investment cost of onshore wind power is 1349 USD/kW
[32]. The forecasting results by 3D function are similar to
statistical investment cost, it is less than results by learning
curve because technical progress is taken into consider-
ation which causes investment cost reduction. The error
between forecasted result by 3D curve and statistical result is
about 4%.

E. STEP5: OPTIMAL PLANNING
By first forecasting, the investment cost of onshore wind
power is 688 USD/kW in 2060. The investment costs of other
power sources in power system except for onshore wind have
been given by export experience and the installed capacities
of all the power sources have been calculated by MESSAGE

FIGURE 9. Optimized results of power system in 2060.

in step1. With the input data, the installed capacity of power
storage and the comprehensive LCOE are calculated by
GTSEP. The results can be found in appendix table4, the
comprehensive LCOE of power system is 3.3 cents/kWh
under first forecasting scenario. Since power storage is the
adjustable power source to balance the electrical power and
generation, so it was listed in table 4with onshore wind power
and comprehensive LCOE.

If 3.3 cents/kWh is higher than expected, then coefficients
a and c could be adjusted by iteration step of 10% (as shown
in figure 8). When a and c decrease (which means accel-
eration of technical progress), the forecasting investment
cost of onshore wind power will decrease to 540 USD/kW,
so the installed capacity of onshore wind power calculated by
GTSEP will increase to 7114 GW since onshore wind power
becomes cheaper. The installed capacity of power storagewill
decrease since less power storage is needed with more cheap
onshore wind power, as shown in figure 9. This is the second
forecasting, under this scenario, the comprehensive LCOE of
power system is 3.2 cents/kWh which is cheaper than in first
scenario.

If 3.2 cents/kWh isn’t lower enough, then the same proce-
dure could be carried on as in second forecasting scenario.
For third forecasting, the installed capacity of onshore wind
increases to 7269 GW and comprehensive LCOE decreases
to 3 cents/kWh.

In this study case, the comprehensive LCOE decreases
from 3.3 cents/kWh to 3 cents/kWh as the investment cost
of onshore wind power decreases from 688 USD/kW to
428 USD/kW. If the comprehensive LCOE does not decrease
to a reasonable value according to export experience, this
means the technology development needs to speed up, coef-
ficient a and c can be adjusted to achieve reasonable com-
prehensive LCOE. According to the expert experience from
IRENA report [34], the reasonable investment cost of onshore
wind power is between 400 USD/kW to 800 USD/kW. So all
the forecasting results in this range are reasonable. The differ-
ent forecasting results of first forecasting, second forecasting
and third forecasting in Table4 mean the low, average and
high scenarios in which the technical progress have a low,
average and high developing speed.
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TABLE 1. Data for curve fitting of onshore wind technology.

TABLE 2. Annual patents number from 1990 to 2020.

The study case indicates that the accelerating of technical
progress of onshore wind would decrease its investment cost
and increase the installed capacity in future. The increase of
installed capacity will cause the decreasing of investment cost
future and the decreasing of regulatory power supply such as
power storage.

VIII. CONCLUSION
The low carbon power system is an effectiveway to realize the
carbon emission target. For power system planning, the tech-
nical constraints and reasonable investment cost forecasting
should be included. The existing GTSEP model has included
technical constraints, the improved investment cost forecast-
ing model is combined with GTSEP in this paper. Since it
is long term planning which means, technical progress and
scale effect will both affect the investment cost of technolo-
gies. This paper used TRL to quantify technical progress and
installed capacity to quantify scale effect, then the 3D relation
function between investment cost, TRL and installed capacity
was established by MATLAB/curve fitting tool. Then the
3D curve was combined with GTSEP model with feedback.
Based on the improved GTSEP model, the planning of low
carbon power system in 2060 was given and the investment
cost of onshore wind power in 2060 was forecasted. The main
conclusions are:
• For long term planning of power system, the effect on

investment cost by technical progress and scale effect
should be taken into consideration;

• Investment cost would decrease faster either by speeding
up technical progress or by increasing installed capacity;

• At the early stage, the technology is not mature and
installed capacity is little, the investment cost is very
high. At the developing stage, the TRL increases fast and
installed capacity becomes larger and larger, the invest-
ment cost has a sharp decreasing. At the mature stage
when technology has been mature and start to decline,
the decreasing of investment cost is caused mainly by
increasing installed capacity and the effect caused by
TRL becomes less and less weak.

• There is a mutual effect between technical progress
and power system planning. If the development of a
specified technology accelerates, the investment cost
will be future reduced and the installed capacity will be
increased, the installed capacity of other technologies
such as power storage may be reduced.

The presented 3D curve is a simple and effective way to
forecast investment cost in the future, only historical invest-
ment, installed capacity and patent numbers are needed. So it
can be used for all the technologies in power system such
as onshore and offshore wind power generation technologies,
PV technology, CSP technology and so on. Compared to
IRENA model, the limitation of this method is that detailed
cost can’t be forecasted, such as equipment cost, construc-
tion cost, grid integration cost and O & M cost, etc. Since
these detailed costs need very detailed project level data.
Compared to learning curve, 3D curve needs more historical
patent numbers to qualify technical progress. Compared to
complicated artificial intelligence methods such as neural
network or PSO, the 3D curve is simple and effective, since
the former methods need lots of historical data to train the
model.

The novelty of 3D curve method proposed in this paper
is that the technical progress can be qualified and involved
in power system optimal planning for the first time. It takes
technical progress into investment cost forecasting in long
time, and it combined investment cost forecasting and power
system planning by feedback which can be used to analyze
the mutual effect between technical progress and power sys-
tem planning. The proposed method is an improved method
based on learning curve, so it can be used in the exist-
ing models such as ETP (IEA) or NEMS (EIA) which
adopt learning curve to realize investment forecasting now.
So it is a worthy complement to the existing models. It has
been used in GEIDCO model, see in [27], [28], [29], [30],
and [31].
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TABLE 3. Investment cost and installed capacity of difference technology in 2060.

TABLE 4. Forecasted installed capacity of major power sources in china 2060.

TABLE 5. 3D curve function of renewable energy power generations.

APPENDIX
See Tables 1–5.
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