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ABSTRACT The Closest String Problem (CSP) is an NP-Complete problem which seeks to find the
geometrical center of a set of input strings: given k strings of length L and a non-negative integer d ,
construct a solution string t , if it exists, such that the Hamming distance between t and each input string
is no larger than d . This paper proposes WFC-CSP, a novel heuristic algorithm inspired by Wave Function
Collapse (WFC) techniques to solve CSP. Experimental results show that WFC-CSP is highly reliable and
efficient in solving CSP across different configurations and instance sizes. Using extensive test data sets,
WFC-CSP’s performance was compared with multiple state-of-the-art algorithms including Gramm et al.’s
Fixed-parameter algorithm (FP-CSP), the Ant-CSP algorithm by Faro and Pappalardo using metaheuristic
techniques, the third IP formation algorithm by Meneses et al., the LDDA_LSS algorithm by Liu et al., and
a sequential version of the heuristic algorithm (Heuris_Seq) by Gomes et al. We observe that WFC-CSP
outperforms the other algorithms in solution quality or run time or both metrics. The WFC-CSP algorithm
has wide applications in solving CSP in the fields of computational biology and coding theory.

INDEX TERMS WaveFunctionCollapse, closest string problem, NP-complete, NP-hard, heuristic.

I. INTRODUCTION
The Closest String Problem (CSP), introduced in [1],
is known to be NP-complete. The problem is also known
as the Center String Problem, Hamming Center Problem or
Minimum Radius Problem, and has diverse applications in
computational biology and coding theory fields. Given a set
of strings of the same length L, the Closest String Problem
tries to find a solution string of length L that is as close as
possible to the input strings. The quality of the solution is
evaluated by its distance from the farthest input string, where
the distance between two strings is defined by their Hamming
distance. Hamming distance and a more formal formation of
the Closest String Problem is described in Section II.

The Closest String Problem ‘‘comes from coding theory
when we are looking for a code not too far away from a
given set of codes’’ [2]. It also has a variety of applications
in computational biology, ‘‘such as discovering potential
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drug targets, creating diagnostic probes, universal primers or
unbiased consensus sequences’’ [1]. A common task in these
applications is to design a new DNA or protein sequence that
is very similar to each given input sequence.

Due to the NP-completeness of the problem, it is unlikely
that CSP can be solved with an exact algorithm that has
a polynomial time complexity. Researchers have developed
different algorithms trying to solve CSP. These algorithms
can be characterized in the following categories: approx-
imation algorithms, fixed parameter tractable (FPT) exact
solutions, and heuristic algorithms.

The category of approximation algorithms guarantees a
bound on the ratio of the solution returned by the algorithm to
the objective value of the minimum solution. Lanctot et al. [1]
developed the first non-trivial approximation algorithm with
a 4/3 + ε approximation based on randomized rounding.
Li et al. [17] presented a Polynomial Time Approximation
Scheme (PTAS) solution to the closest string problem with
time complexity O(L · nO(ε

−5)). In [3] and [4], PTAS’s time
complexity was improved further, achieving O(L · nO(ε

−2))
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with approximation ratio 1+ ε with the improvements made
in [4]. These algorithms all involve solving integer linear
programming, making them not practical in computational
complexity in solving large-size instances of the CSP. Mene-
ses et al. [19] have empirically shown the practical use of inte-
ger programming techniques to solvemoderate-size instances
with 10-30 strings of length of 300-800 characters.

Some researchers also approached CSP by studying
its parameterized complexity, developing fixed param-
eter tractable (FPT) exact algorithms. In [5] Fixed-
parameter algorithms for closest string and related problems,
Gramm et al. proposed an exact solution that is fixed-
parameter tractable with respect to the maximum Hamming
distance parameter d and has a time complexity of O(kL +
kd ·dd ). The FPT algorithms find merits in solving CSP with
a small parameters, but becomes prohibitive in applications
when the parameters are large. In [22], Liu et al. presented an
exact algorithm called the Distance First Algorithm (DFA),
which is specifically for solving CSP with three strings and
of alphabet size of two.

Another approach to NP-hard problems is to use heuris-
tic algorithms. In practice, heuristic algorithms are of more
interest because of their relative high accuracy and low run
time. In [10], Liu et al. proposed heuristic algorithms to
solve CSP based on Simulated Annealing (SA) and Genetic
Algorithm (GA). In [11], Liu et al. presented a hybrid algo-
rithm that combined the genetic and the simulated annealing
approaches, although results were limited to a binary alpha-
bet. In [12], Faro et al. proposed the Ant-CSP algorithm,
which is based on the meta-heuristic Ant Colony Optimisa-
tion (ACO) in [13]. Ant-CSP showed positive results com-
pared to the GA and SA algorithms in [10]. In [20], Gomes
et al. proposed a heuristic (Algorithm 1 in [20]) and imple-
mented the sequential and parallel versions of the algorithm.
Later in [21], a slightly different version of the heuristic was
proposed and run on a parallel machine with 28 nodes for
larger instances of the CSP. In [23], Liu et al. presented a
polynomial time approximation algorithm, Largest Distance
Decreasing Algorithm (LDDA), based on the idea of the
Largest Processing Time algorithm for solving the Job Shop
Scheduling Problem. It was improved in [22], where Liu
et al. designed a polynomial heuristic LDDA_LSS which is a
combination of LDDA in [23] and local search strategies.

This paper proposes WFC-CSP, a new, efficient and reli-
able heuristic solution to CSP inspired by the WaveFunction-
Collapse (WFC) algorithm. Inspired by Paul Merrell’s Model
Synthesis algorithm [24], WFC was developed by game
developer Maxim Gumin [6] and generates procedural con-
tent patterns from a sample image. The application of WFC
to other NP-complete problems includes the preprint [25],
which uses concepts from WFC to heuristically attack the
Vertex Color problem.

Using extensive test data sets, we compare WFC-
CSP’s performance with a variety of algorithms including
Gramm et al. Fixed-parameter algorithm (FP-CSP) in [5],
the Ant-CSP algorithm using the (meta)heuristic techniques

proposed in [12], the third IP formation algorithm in [19], the
LDDA_LSS algorithm in [22] and a sequential version of the
heuristic algorithm in [21] referred to as Heuris_Seq.

This paper is organized as follows: Section II provides the
notations used in the paper and a mathematical description
of the Closest String Problem (CSP); Section III introduces
concepts of the Wave Function Collapse (WFC) technique,
describes the WFC-CSP algorithm in detail, and provides
experimental results running WFC-CSP; Section IV com-
pares performance of WFC-CSP with other CSP algorithms;
Section V summarizes the conclusion of this paper and
describes future research plans.

II. NOTATIONS AND CLOSEST STRING
PROBLEM FORMULATION
Let s be a string of length L over alphabet set 6. Let s[p]
indicate the pth character of s, given that p is an integer.
Definition 1 (Hamming Distance): The Hamming dis-

tance between two strings s1 and s2 of the same length L over
alphabet set 6 is denoted by dH (s1, s2). It is defined as the
number of positions at which the corresponding characters
differ:

dH (s1, s2) =
L∑
p=1

δ(s1[p], s2[p]),where :

δ(s1[p], s2[p]) =

{
1 if s1[p] 6= s2[p]
0 otherwise

(1)

For example, Strings s1 and s2 over alphabet {A,C,G,T } in
Figure 1 have a Hamming distance of 3, or dH (s1, s2) = 3.

FIGURE 1. Illustration of hamming distance between strings.

Definition 2 (Closest String Problem): The Closest String
Problem (CSP) is formulated as:

Input: Given k strings in input set S = {s1, s2, · · · , sk}
over alphabet 6 of length L each, and a non-negative
integer d
Question: Is there a string t such that dH (t, si) ≤ d for all

i = 1, · · · , k?
The notations used in this section also apply to the rest of

this paper, in which:

• k: Number of input strings
• L: Length of each input string
• S = {s1, s2, . . . , sk}: Set of k strings si (1 ≤ i ≤ k), each
of length L

• si[p]: Character at location p(1 ≤ p ≤ L) of string si
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• 6: Alphabet set that the characters of the strings belong
to,6 = {A1, . . . ,AN }, whereAj denotes the jth character
in 6, 1 ≤ j ≤ N

• | 6 |: Size of the alphabet; | 6 |= N
• d : Target maximum Hamming distance, or Hamming
distance between a solution string and the ‘‘farthest’’
input string as defined in definition 1

In addition to the decision problem version of CSP as defined
in Definition 2, another flavor of the CSP does not supply d
as an input to target for. Instead, it requires the algorithms to
come up with a solution string to minimizing the maximum
Hamming distance between the solution string and the input
strings.

III. PROPOSED WFC-CSP ALGORITHM
A. WAVE FUNCTION COLLAPSE
WaveFunctionCollapse (WFC) is a constraint-based algo-
rithm that was developed by game developer Maxim Gumin
in 2016 [6] for procedural content generation.WaveFunction-
Collapse is Constraint Solving in the Wild [7] examinesWFC
as an instance of a constraint solving method and describes
the algorithm in detail. The authors of [8] summarize the
ideology of WFC:

The key idea is an extension of standard con-
straint solvers with a ‘‘minimal entropy heuristic’’
that randomly directs the solver’s search in a way
that follows a user-specified frequency distribution
without compromising the efficiency of the search
procedure.

In case that a conflict is reached, Gumin’s algorithm glob-
ally restarts instead of backtracking locally. Key concepts
and ideas of WFC can be explained using a Sudoku game
(Figure 2) as an example. The objective of Sudoku is to fill
each cell in the 9× 9 grid with one number from 1 to 9, such
that they satisfy the following ‘‘constraints’’: each column,
each row, and each of the nine 3× 3 ‘‘boxes’’ within the grid
must contain all numbers from 1 to 9, and no number may
appear more than once within the same column, row or box.
With a blank Sudoku puzzle, every cell has the potential to be
any of the nine possible numbers; the cells are in a ‘‘super-
position’’ occupying all nine possible states at once. When a
Sudoku puzzle is initializedwith some cells filled, those cells’
superpositions have been ‘‘collapsed’’ to a single possibility.
As we try to solve the game, the logical thing to do is to look
for the cell with the lowest number of remaining possible
states, or the cell with the lowest ‘‘entropy,’’ and collapse
it to a single value. The knowledge of the newly collapsed
cell then ‘‘propagates’’ to its surrounded cells, affecting the
possible values that those cells could take. We continue this
process of iterating over the puzzle, collapsing and propagat-
ing until all cells have been collapsed to a single value and
the puzzle is solved.

B. WFC-CSP ALGORITHM
The proposed WFC-CSP algorithm utilizes the aforemen-
tioned ideology of WaveFunctionCollapse to solve the

Closest String Problem as defined in 2. WFC-CSP constructs
and returns solution string t if it satisfies dH (t, si) ≤ d for all
i = 1, . . . , k . If no such solution string can be found, WFC-
CSP returns ‘‘t not found’’.

The algorithm begins by initializing a solution string t
with L undetermined positions. Each position has an initial
superposition of all the characters in 6. The WFC-CSP
algorithm proceeds through multiple passes. In each pass,
a decision is made for one position of the solution string.
In other words, a certain position in the solution string will be
collapsed to a single character in 6. One iteration of WFC-
CSP is completed after L passes and when all positions of the
solution string have been determined.

In the Closest String Problem, the success of an algorithm
and the quality of the solution string is measured by the
Hamming distance between the solution string t and the string
in the input set that is farthest from t . If the Hamming distance
between the solution string and one or more input strings is
larger than d , the algorithm has failed. Therefore, the goal of
the algorithm is tominimize theworst ormaximumHamming
distance from the solution string to the input strings.

At pass l of the WFC-CSP algorithm, we denote the par-
tially formed solution string prior to this pass as t l−1, and
denote the current partial Hamming distance between t l−1

and input string si as d
l−1
H (t l−1, si). Its value is defined as

dH (t, si) with the assumption that all undetermined positions
in t at this point will eventually not match si for each position.
Note that d0H (t

0, si) = L for all 1 ≤ i ≤ k , as none of the L
positions have been decided at initialization and mismatches
would be assumed at all positions.

To determine which position will be collapsed to which
character, the WFC-CSP algorithm utilizes the WaveFunc-
tionCollapse idea of entropy. The WFC-CSP algorithm asso-
ciates the entropy of an input string si at pass l with its
current Hamming distance to t l−1, the current partial solution
string. The input string si with the largest current Hamming
distance d l−1H (t l−1, si) has the lowest entropy. During pass
l, WFC-CSP aims to find a position in t and collapses it
with a character such that it will reduce si’s partial Hamming
distance by 1: d lH (t

l, si) = d l−1H (t l−1, si)− 1.
While the algorithm aims to help si, the ‘‘worst’’ string

with the highest partial Hamming distance, when making
the collapsing decision for each pass, WFC-CSP also tries
to help as many other strings in set S as possible to reduce
their Hamming distances. With si identified as the worst
string in the current pass, WFC-CSP finds an ‘‘uncollapsed’’
(i.e. undetermined) position p and character Aj pair {p,Aj},
such that si contains Aj at position p, and {p,Aj} is the
position-character pair with the highest appearance frequency
in the other input strings across all undetermined posi-
tions. In Algorithm 1, the appearance frequency of position-
character pair is denoted with CharFreq, while scoreboard
denotes the array with CharFreq values sorted from highest
to lowest. This is how the algorithm completes one pass:
position p of the solution string t is collapsed to the character
at position p of the worst string si. The Hamming distance
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FIGURE 2. WFC concepts explained with sudoku game.

of each input string is then updated (or propagated) accord-
ing to the newly collapsed position by either reducing the
previous Hamming distance value by 1 or remaining at the
previous value. After L passes, the WFC-CSP algorithm will
have collapsed all positions in the solution string t .

In the case that multiple input strings are tied for having
the worst current Hamming distance, a randomly selected
string among them will be declared as the worst string. In the
case that there are ties when determining which position
has the highest frequency of the same character across all
strings, a random choice is similarly made from the subset of
positions that share the highest frequency of characters. These
randomization variations encourage solution exploration and
bring diversity inWFC-CSP’s solutions. They allow the algo-
rithm to produce alternate solutions in different iterations and
benefit from running multiple iterations in case of failure
within initial attempts.

The WFC-CSP algorithm completes one iteration when all
positions in t have been determined. If WFC-CSP is unsuc-
cessful after an iteration, it will globally restart with new
randomization until it either finds a solution string that sat-
isfies the requirements, or the maximum iteration parameter
(max_iter) set by the user is reached (whichever comes first).
If an application requires multiple solution strings that each
satisfy the maximum Hamming distance constraints, WFC-
CSP can also be run multiple times, even if it succeeds in the
first iteration and obtains different results each time.

The pseudocode of one iteration of the WFC-CSP algo-
rithm is described in Algorithm 1.
Table 1 illustrates the step-by-step procedure of WFC-

CSP solving an example CSP problem with 3 input strings
(k = 3). The string length L is 5, and the alphabet size
N is 4. At each pass, the input strings’ partial Hamming
distances are calculated (d1, d2, d3). The strings with the
largest partial Hamming distances are candidates for the
worst string. In case of ties, a random string is chosen among
the tied strings. A scoreboard march is then performed to
locate the entries with the highest score among the worst
string’s uncollapsed {p,Aj} entries. In case of ties, a random
{p,Aj} entry is chosen, and location p of the solution string is

TABLE 1. WFC-CSP example.

collapsed to character Aj, completing one pass of WFC-CSP.
The complete solution string is constructed after 5 passes.
In this example, WFC-CSP constructed a solution string with
a worst Hamming distance of 2.
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Algorithm 1WFC-CSP(S, 6, d)
Input:
S: Set of k strings S = {s1, s2, . . . , sk}, each length L
6: Alphabet, 6 = {A1,A2, . . . ,AN }, where N =| 6 |
d : Target maximum Hamming distance
Output:
Solution string t with max(dH (t, si)) ≤ d, i = 1, · · · , k ,
if exists;
otherwise ‘‘not found.’’

W1: Initialize t ← [A0,A0, . . . ,A0],A0 6∈ 6.
W2: CharFreq[l][n]←

∑k
i=1 δ(si[l],An),

(1 ≤ l ≤ L, 1 ≤ n ≤ N )

where: δ(si[l],An) =

{
1 if si[l] = An
0 otherwise

W3: Sort triplet {l, n,CharFreq[l][n]} by CharFreq[l][n]
from highest→ lowest
scoreboard[m]← sorted{l, n,CharFreq[l][n]}

W4: Initialize set of undecided positions P := {p | t[p] ==
A0}

Initialize partial Hamming distance di = dH (t, si)
• W4.1: P← {1, 2, . . . ,L}
• W4.2: {d1, d2, . . . , dk} ← {L,L, . . . ,L}

W5: while P not empty:
• W5.1: Choose ‘‘worst string’’ si such that its di =
max{d1, d2, . . . , dk}
In the case of ties, randomly choose one of the worst
strings as si.

• W5.2: March along scoreboard[m] to find entries with
the biggest CharFreq[p][j] value such that si[p] == Aj,
p ∈ P. In the case of ties, randomly choose one of the
tied {p, j} pairs.

• W5.3: t[p]← Aj
• W5.4: Remove p from P: P = P− {p}
• W5.5: Update {d1, d2, . . . , dk}

W6: Return t if max{d1, d2, . . . , dk} ≤ d .
Otherwise, return ‘‘t not found.’’

C. EXPERIMENTAL RESULTS
In this section, we describe the experimental procedures and
examine the performance of the WFC-CSP algorithm. WFC-
CSP algorithm is implemented in Python 3.8.3, the tests are
executed on a PC with a 4.00GHz processor and 16GB main
memory.

1) TEST CASE GENERATION AND TEST SETUP
Test cases were created in order to test the performance of
the algorithms. The following steps describe the procedure to
generate one test case for a given configuration of k strings of
length L over 6, with a specified target maximum Hamming
distance of d :

• T1: Randomly generate an ‘‘answer string’’ s of length
L over 6.

• T2: Initialize input strings: Copy s into each string of
S : s→ {s1, s2, . . . , sk}

• T3: For each string si ∈ S = {s1, s2, . . . , sk},
(i = 1, 2, . . . , k), randomly choose d different locations
and overwrite each chosen location with a randomly
selected, different character in 6

The resulting set of input strings S = {s1, s2, . . . , sk}, along
with6 and d are provided as one test case. With this test case
generation procedure, it is guaranteed that there exists at least
one string s (the answer string from the test case generation
procedure) that satisfies dH (s, si) ≤ d for all i = 1, . . . , k .
Upon running the algorithm with the test case, success is
declared if the algorithm finds a solution string t that satisfies
dH (t, si) ≤ d . This test case generation procedure and the
criteria for declared success is consistent with [5].

Test cases of the following various configurations and
parameters were generated:
• Alphabet size N = {4, 20}
• String length L = {10, 15, 20, 30, 40, 60, 80, 120, 160,
180, 240, 320}

• Number of strings k = {10, 20, 40, 80, 120}
The alphabet sizes 4 and 20 are important in CSP’s practical
applications, as they are the number of DNA bases and the
number of amino acids, respectively. For each configuration
of the parameter set, 1000 test cases were generated.

FIGURE 3. WFC-CSP run time per iteration.

2) WFC-CSP SINGLE ITERATION
COMPUTATIONAL COMPLEXITY
In order to study the complexity of the WFC-CSP algorithm
with respect to values of N , k and L, the run time of one
iteration of WFC-CSP was examined. The complexity of
one iteration of WFC-CSP does not depend on the target
maximum Hamming distance d . For each configuration of
the parameter set, 1000 test cases were run. Their average
run times (in milliseconds) were recorded and graphed in
Figure 3. As shown in Figure 3, the complexity of each
iteration of WFC-CSP is tractable with respect to k , L and
N , and does not have dependency on d .

3) WFC-CSP PERFORMANCE
The performance of the algorithm under each configuration
is measured by:

VOLUME 10, 2022 115873



S. Xu, D. Perkins: Heuristic Solution to the Closest String Problem Using Wave Function Collapse Techniques

FIGURE 4. WFC-CSP success rate (N = 4).

• Success rate: The percentage of test cases in which the
algorithm can find a solution string t for that satisfies
dH (t, si) ≤ d out of all test cases run

• Run time: Averaged among all test cases to obtain run
time per test case measurement

1000 test cases were run for each configuration and perfor-
mance results were collected.

The overall run time of the WFC-CSP algorithm is depen-
dent on the number of iterations that are performed. If a suc-
cessful solutionwas not found aftermax_iter was reached, the
run time of that test casewas recorded as the time it took to run
all max_iter iterations. Therefore, the run time performance
of an algorithm is affected by the max_iter parameter and the
number of iterations it actually takes to succeed.

Figure 4 and 5 showWFC-CSP’s success rate and run time
under different configurations when N = 4. max_iter is set
as 1000 in this experiment. Please note that experimental
results of some configurations (k > 40, L > 320) were not
plotted as their success rates are at or close to 100% in
conjuncture with having low run times. As shown in Figure 4
and Figure 5, the ‘‘difficulty’’ level of a test case varies
with different configurations. ‘‘Easier’’ cases have success
rates either close to or equal to 100%. The small number of
iterations needed to solve ‘‘easier’’ cases lead to shorter run
times. More ‘‘difficult’’ cases have lower success rates and
longer run times as a result of a larger number of iterations.

It is observed by running WFC-CSP that the ratio of L/d
has a large impact on the difficulty level of solving CSP:
under the same d parameter, the larger L is, the higher the
success rate that the algorithm can generally achieve. In other
words, problems with a larger L/d ratio are easier to solve.
Configurations with larger L/d ratios are of more importance
in CSP’s practical applications. The same observation has
been made in [5] by Gramm et al.

It is also notable that WFC-CSP succeeds with one itera-
tion in all test cases with L/d ≥ 6. In addition, WFC-CSP
is more efficient in finding solutions with larger k values: for
all cases with k = 40 and L/d ≥ 3, WFC-CSP succeeds with
only one iteration.

When the algorithm fails to find a solution string that
meets the target Hamming distance requirement, the actual

FIGURE 5. WFC-CSP run time (N = 4).

maximum Hamming distance that the algorithm’s achieved
solution achieves is examined to study the quality of the
solution. This is shown in Table 2 for selected (more ‘‘dif-
ficult’’) configurations (N = 4). As shown, when WFC-
CSP’s success rate is not 100%, the average of the maximal
Hamming Distance it achieves is very close (with difference
being < 1) to the target Hamming distance d .

Figure 6 and Figure 7 show WFC-CSP’s success rate and
run time under different configurations, with N = 20 and
max_iter = 1000. WFC-CSP has a generally easier time
(higher success rate) solving configurations with a higher
alphabet size. All configurations with d ≤ 40 have a success
rate equal to or close to 100%. Please note that experimental
results of some configurations (k > 20, L > 320) were not
plotted as their success rates are consistently at or close to
100% with low run times.

Table 3 examines the actual maximum Hamming distance
of the algorithm’s achieved solutions for selected (more ‘‘dif-
ficult’’) configurations (N = 20). As shown, when WFC-
CSP’s success rate is not 100%, the average of the maximum
Hamming distance is very close (with difference being <1) to
the target Hamming distance d .

4) WFC-CSP MAX_ITER PARAMETER CASE STUDY
For ‘‘difficult’’ configurations, WFC-CSP needs more iter-
ations to achieve a high success rate. The most difficult
configuration, or the configuration with the lowest success
rate (N = 4, k = 10, d = 60,L = 180) in III-C is further
examined in Figures 8. Figure 8a graphsWFC-CSP’s success
rate and run time for max_iter values varying between {200,
300, 500, 1000, 1500, 2000, 3000}. WFC-CSP’s success
rate improves from 52.6% to 67.4% as max_iter increases
from 200 to 3000. This, in turn, results in a longer run time.
Figure 8b shows a histogram that depicts the actual number of
iterations WFC-CSP takes to solve a test case. The histogram
contains 100 bins, each represents 30 iterations. Out of the
1000 test cases, 402 cases succeeded within 30 iterations;
634 cases succeeded within 1000 iterations; in 326 cases,
WFC-CSP was not able to find a solution satisfying the d
requirement after 3000 iterations. Even for a scenario such
a low success rate, it will be shown in section III-C5 that
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TABLE 2. WFC-CSP solution max HD (N = 4).

FIGURE 6. WFC-CSP Success Rate (N = 20).

the worst case solution WFC-CSP finds is not far from the
target d .

5) MORE STATISTICAL EXPERIMENTAL RESULTS
Next, we examine the consistency of WFC-CSP’s solution
quality by running the algorithm on large number of test cases

FIGURE 7. WFC-CSP run time (N = 20).

TABLE 3. WFC-CSP solution max HD (N = 20).

and collecting statistics of the solutions obtained. Test cases
generated in III-C1 are used, however instead of supplying
d as input for the algorithm to target for, in this experi-
ment, WFC-CSP was run 20 iterations on each test case, and
the minimal max HD obtained from those runs was taken
as WFC-CSP’s solution. Results for selected configurations
(same as the ones in Table 2 and 3) were collected.

For each configuration, 1000 test cases were run and
the minimum, average, maximum and standard deviation
statistics of the solutions were analyzed. The smaller WFC-
CSP number of iterations (20) and the large number of test
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FIGURE 8. WFC-CSP iterations case study
(N = 4, k = 10, d = 60, L = 180).

cases (1000) per configuration were chosen in order to
observe the robustness and consistency of WFC-CSP’s solu-
tion quality.

Table 4 and 5 show test results for N = 4 and N = 20
cases respectively, Out of the 1000 test cases run for each
configuration, minimum, average, maximum values of the
solutions found by WFC-CSP for those test cases, as well
as the standard derivation among solutions are provided in
‘‘Min’’, ‘‘Avg.’’, ‘‘Max’’ and ‘‘Std.’’ columns. The worst case
standard deviation is 0.79, which is with the configuration
(d = 80,N = 4, k = 10,L = 160), the difference between
the minimum and maximum solution values is 5 in this case,
which is 6.25% of the target d (80). The small differences
between minimum and maximum solutions and the small
standard deviation values in Table 4 and 5 demonstrated
that WFC-CSP is robust and consistent when tested on large
amount of test cases.

6) DISCUSSIONS
This section further discusses some of the findings from the
WFC-CSP experiments.

The computation complexity of each iteration of WFC-
CSP is tractable with respect to k , L, N , and does not have
dependency on d . This is because that during each iteration,
WFC-CSP constructs a solution string without the knowledge
of d to target for. Performance of WFC-CSP can be improved

TABLE 4. WFC-CSP solution statistics (N = 4).

by running more iterations of the algorithm. Each iteration
could potentially generate a different solution due to tie-
breaking randomization process of the algorithm. Running
more iterations in turn increases the run time of the algorithm.

It can be observed that configurations with smaller L/d
ratio, smaller alphabet size, and/or fewer number of strings
are more difficult to solve. An intuitive way to understand this

115876 VOLUME 10, 2022



S. Xu, D. Perkins: Heuristic Solution to the Closest String Problem Using Wave Function Collapse Techniques

TABLE 5. WFC-CSP solution statistics (N = 20).

is that, under these cases the entropy and scoreboard values
among different partial solutions may be more ‘‘clustered’’,
i.e. more choices have similar scores. Therefore it is more
likely that the algorithmmakes a locally optimal decision that
turns out to not be the best decision globally.

The WFC-CSP algorithm is robust in generating solutions
with consistency in solution quality. It also provides a simple
knob (themax_iter parameter) for trade-off between solution
quality and run time.

Being a heuristic algorithm, WFC-CSP can not guarantee
the optimal solution can be found. The randomness in solu-
tion exploration comes from breaking the ties as described
in algorithm 1. This randomization criteria and process could
be an area for future algorithm improvement to allow more
solution exploration.

One limitation with test cases generated using the proce-
dure in section III-C1 is: although d is used as target distance,
it is potentially possible that the actual maximum Hamming
distance among strings in S is less than d . As we use the same

test cases to compare performance of different algorithms,
this limitation does not affect the fairness as the same success
criteria is used across algorithms under comparison.

IV. COMPARING WFC-CSP WITH OTHER ALGORITHMS
A. WFC-CSP VS. FP-CSP
The Fixed-parameter algorithm for CSP (abbreviated FP-CSP
in this paper) is proposed by Gramm et al. in [5], the strategy
is described in [5] as:

Start with the one of the given strings, e.g., s1,
as a ‘‘candidate string.’’ If there is a string si, i =
2, . . . , k, that differs from the candidate string in
more than d positions, we recursively try several
ways to move the candidate string ‘‘towards’’ si;
moving closer here means that we select a position
in which the candidate string and si differ and set
this position in the candidate string to the character
of si at this position. We stop either if we moved the
candidate ‘‘too far away’’ from s1 or if we found a
solution. By a careful selection of subcases of this
recursion we can limit the size of this search tree
to O(dd ).

The pseudocode of Gramm et al.’s recursive algorithm
(referred to as FP-CSP) is described in Algorithm 2.

Algorithm 2 FP-CSP Recursive Procedure CSd(s,1d)
Global variables: Set of strings S = {s1, s2, · · · , sk}, integer
d .
Input: Candidate string s and integer 1d .
Output: A string ŝ with maxi=1,··· ,k , dH (ŝ,si) ≤ 1d if it
exists;

‘‘not found’’ otherwise.
(D0) If (1d < 0),then return ‘‘not found’’;
(D1) If (dH (s, si) > d + 1d) for some i ∈ {1, · · · , k} then
return ‘‘not found’’;
(D2) If (dH (s, si) ≤ d) for all i = 1, · · · , k then return s;
(D3) Choose some i ∈ {1, · · · , k} such that (dH (s, si) > d :

P := {p | s[p] 6= si[p]};
Choose any P′ ⊆ P with | P′ |= d − 1;
For all p ∈ P′ do

s′ := s;
s′[p] := si[p];
sret := CSd(s′,1d − 1);
Ifsret 6= ‘‘not found’’ then return sret ;

(D4) Return ‘‘not found’’

[5] proves the correctness of the algorithm, determines its
time complexity of O(kL + kd · dd ), and shows empirical
results with different k, d , and L parameters over 6 =

{A,C,G,T }. Aside from d , the ratio L/d also has a major
impact on the difficulty of the Closest String Problem.
Smaller L/d ratios significantly increase the running time of
the algorithm.

Both WFC-CSP and FP-CSP are implemented in the
same language and tested on the same machine as described
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TABLE 6. Comparison of WFC-CSP vs. FP-CSP algorithm.

in III-C. The same test cases generated with the procedure
in III-C1 were used in the experiments. The configurations
of the test cases include:
• N = {4, 20}
• k = {10, 20}
• d = {10, 12, 14, 16, 20}
• L = {30, 36, 40, 48, 60, 72}

FP-CSP is an exact algorithm, and runs recursively until it
successfully finds a solution. Therefore, its success rate is
always 100%. In this experiment, WFC-CSP’s max_iter is
set to 200. A test case ‘‘times out’’ (TO) if the run time
per test case exceeds 1000 seconds. As shown in Table 6,
WFC-CSP consistently has a higher run time than FP-CSP
while maintaining high success rates. When d ≥ 16, FP-CSP
times out in all configurations except one for both N= 4 and
N = 20.

B. WFC-CSP VS. ANT-CSP
In [12], Faro et al. proposed an Ant Colony Optimisation
(ACO)metaheuristic-based algorithm to solve CSP. ACOwas
first proposed by Dorgio et al. in [13] and [15] as an inno-
vative approach to the Traveling Salesman Problem (TSP).
Inspired by the foraging behavior of social ants in a colony,
ACO focuses on the indirect communication among ants with
chemical pheromone trails. In nature, these pheromone trails
help ants find the shortest path between a food source and
their colony.When ants walk from a food source to the colony
and vice versa, they deposit a pheromone substance. Ants can
smell pheromones, and are more likely to traverse paths with
strong pheromone concentrations. The pheromone evaporates
over time. Thus, the pheromone concentrations on shorter
paths are higher. They get walked over faster, resulting in
more pheromone deposits. There are several different variants
of the ACO. The algorithm this paper uses as a comparison to

the proposed WFC-CSP is based on and leveraged from [12].
The pseudocode is provided in [12] as follows:

Algorithm 3 Ant-CSP(S)
1: initialize table T
2: for i← 1 to L do
3: for j← 1 to | 6 | do
4: Tij← 1/ | 6 |
5: end for
6: end for
7: initialize COLONY
8: while not (TERMINATION_CRITERION) do
9: for i← 1 to u do
10: COLONYi← new_ant()
11: COLONYi.find_solution()
12: COLONYi.evaluate_solution()
13: end for
14: for i← 1 to L do F start pheromone evaporation
15: for j← 1 to | 6 | do
16: Tij← (1− ρ) · Tij;
17: end for
18: end for F end pheromone evaporation
19: COLONYbest .update_trails()
20: end while

TheAnt Colony System’s (ACS) state transition rule [15] is
described in find_solution() and applied when the ant makes
a decision, namely:

s =


argmaxu∈Jk (r){[τ (r, u)] · [η(r, u)]

β
}

if q ≤ q0 (exploitation)
S, otherwise (biased exploration)

(2)

where τ is the pheromone, η is a local performance metric,
β is a parameter which determines the relative importance of
τ versus η (β > 0), q is a random number uniformly dis-
tributed in [0. . . 1], q0 is the exploitation probability param-
eter (0 ≤ q0 ≤ 1), and S is a random variable selected
according to the probability distribution given in

pk (r, s) =


[τ (r,u)]·[η(r,u)]β∑

u∈Jk (r)
[τ (r,u)]·[η(r,u)]β if s ∈ Jk (r)

0, otherwise
(3)

An elitist strategy is adopted– only the ant that has produced
the best solution, COLONYbest , is allowed to update the
pheromone trails. The amount of pheromone deposited is
proportional to the quality of the solution built. In particular:

τ (t+1)[i, j] = τ (t)[i, j]+ (1−
HD
L

) (4)

where HD is the maximum Hamming distance of the current
string from all strings in S.

Both WFC-CSP and Ant-CSP are implemented in the
same language and tested on the same machine as described
in III-C. The same test cases generated with the procedure
in III-C1 were used in the experiments. The configurations
of the test cases include:
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• Alphabet size N = {4, 20}
• TargetmaximumHamming distance d = {5, 10, 20, 40,
60, 80}

• String length L = {10, 15, 20, 30, 40, 60, 80, 120, 160,
180, 240, 320}

• Number of strings k = {10, 20, 40}

In this experiment, WFC-CSP’s max_iter is set to 200. The
maximum iteration (max_iter) of the Ant-CSP is set to
1000 with 10 agents (ants) constructing solutions in each
iteration. Early termination is allowed in both algorithms (the
algorithm terminates if a solution is found before reaching
max_iter). The β, ρ and q0 parameters of the Ant-CSP algo-
rithm were optimized by running CSP experiments using
different parameter values and choosing the parameter com-
bination that yielded the highest success rate. The following
parameter values were tested in the process of parameter
optimization:

• β = {1, 2, 3}
• ρ = {0, 0.0001, 0.0005, 0.001, 0.002, 0.003, 0.004,
0.005, 0.01, 0.02, 0.03, 0.05, 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}]

• q0 = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}

Figure 9 and 10 graph comparisons between the success
rates and run times of WFC-CSP and Ant-CSP when N = 4.
Figure 11 and 12 compare the success rates and run times of
WFC-CSP and Ant-CSP when N = 20.

FIGURE 9. WFC-CSP vs. Ant-CSP success rate (N = 4).

In the case that the algorithm fails on a test case, the
difference between the target d and the maximum Hamming
Distance achieved by the algorithm is examined. Table 7
contains select comparisons of WFC-CSP and Ant-CSP on
success rate, average maximum Hamming distance, and run
time.

As shown in Figure 9, 10, 11, and Table 7, WFC-CSP per-
forms consistently better than Ant-CSP in achieving higher
success rates, while having similar run times. In many cases,
WFC-CSP offers both higher success rates and lower run
times than Ant-CSP. The average maximum Hamming dis-
tance achieved by WFC-CSP is also consistently lower than
that of Ant-CSP.

FIGURE 10. WFC-CSP vs. Ant-CSP run time (N = 4).

FIGURE 11. WFC-CSP vs. Ant-CSP success rate (N = 20).

FIGURE 12. WFC-CSP vs. Ant-CSP run time (N = 20).

C. WFC-CSP VS. MORE CSP ALGORITHMS
In [23], Liu et al. designed a polynomial time approxi-
mation algorithm: Largest Distance Decreasing Algorithm
(or LDDA in short). This algorithm, however, frequently
encountered local optima. In [22], Liu et al. improved the
efficiency of LDDA by combining it with local search strate-
gies, and named the new proposed heuristic LDDA_LSS. The
authors of [22] compared the performance of LDDA_LSS
with the third IP formulation algorithms in [19] (or ‘‘Exact’’
as it was called in [22]) and with a sequential version of the
heuristic algorithm in [21] (referred to as Heuris_Seq).

The authors of [22] use real and simulated biological data
to test their algorithms. The McClure instances in [18] are
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TABLE 7. Comparison of WFC-CSP vs. Ant-CSP algorithm.

TABLE 8. Results for McClure dataset with an alphabet of 20 characters.

TABLE 9. Results for small-size simulated data with an alphabet of 2 characters.

TABLE 10. Results for small-size simulated data with an alphabet of 4 characters.

protein sequences frequently used to test string compari-
son algorithms. In order to create a set of inputs strings of
equal length, [22] let the length of the strings to be equal
to the length of the shortest string in the set, and removed
the last characters for strings with length greater than the
minimum. Six instances with alphabet size 20 were chosen
from the McClure dataset [18]. For the simulated dataset,
small-sized and large-sized instances were generated with
the following procedure: with a given k (number of strings),

L (string length) and an alphabet 6, randomly choose a
character from 6 for each position in the resulting string.
Three different alphabet sizes are tested, including instances
with alphabet size of two representing binary strings with
applications in Coding Theory, and instances with alphabet
size of four and twenty which appear in applications involv-
ing DNA and amino acid sequences, respectively. For the
small-size instances, each algorithm was executed over a set
of 54 instances, with 18 instances for each of the alphabets.
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TABLE 11. Results for small-size simulated data with an alphabet of 20 characters.

TABLE 12. Results for large-size simulated data with an alphabet of 2 characters.

With large-size simulated instances, each algorithm was
exceuted over a set of 135 instances, with 45 instances for
each of the alphabets.

In this paper, we used the same six McClure instances
in [22], and generated simulated small-size and large-size
instances with the same procedure as described in [22]
to test WFC-CSP. Tables 8 through 14 shows the testing
results of different instances or test configurations. Results
for Exact (third IP formation algorithm in [19]), LDDA_LSS
(from [22]), and Heuris_Seq (from [21]) are from [22].WFC-
CSP algorithm was run with different max_iter configura-
tions. In this experiment, maximum HD d is not provided
as an input to WFC-CSP, WFC-CSP runs for max_iter iter-
ations, and the solution from the iteration resulting in the
smallest maximum HD is chosen as WFC-CSP’s solution.

In the comparisons, we only compare the quality of solu-
tions among algorithms without comparing algorithms’ run
times. Being heuristic, all algorithms except for the ‘‘Exact’’
algorithm are able to complete the tests in short times. The
‘‘Exact’’ algorithm has high computational complexity, and
is not viable for large-size simulated instances; therefore,
‘‘Exact’’ is not included in the comparisons that use large
simulated instances. The parameters for Exact, LDDA_LSS
and Heuris_Seq algorithms are as described in [22]:
To LDDA_LSS, B was set to 0.1n, b_rep is set to 0.5 for
large-size instances with twenty characters, and b_rep is set

to 2 for all of the other test instances. For Heuris_Seq, N is
set to 10,000. For WFC-CSP, our testing varies the max_iter
parameter.

In Table 8, columns labeled ‘‘k’’ and ‘‘L’’ are the num-
ber of strings and string length parameters, and columns
labeled ‘‘Exact’’, ‘‘Parallel’’, ‘‘LDDA_LSS’’, ‘‘Heuris_Seq’’
and ‘‘WFC-CSP’’ contains the max HD results running the
algorithms on the test case. Note that in addition to algorithms
included in [22], results from the ‘‘Parallel’’ algorithm came
from [21]. WFC-CSP is configured to run with maximum of
100 iterations. It is shown that WFC-CSP finds solutions at
most two away from the ‘‘Exact’’ algorithm, and is the best
performing algorithm among the heuristic algorithms.

In Table 9 to 11, minimum, average, maximum values
of the solutions as well as the standard derivation among
solutions are shown for LDDA_LSS, Heuris_Seq and WFC-
CSP algorithms in columns ‘‘Min’’, ‘‘Avg.’’, ‘‘Max’’ and
‘‘Std.’’. The best average solution among algorithms (other
than ‘‘Exact’’ algorithm) are in bold. ForWFC-CSP, max_iter
configurations of 10 and 200 were tested. It is shown
that for small-size alphabet size of 2 cases, running WFC-
CSP with 200 iterations yield better results except for the
(k = 20, L = 100) case, where Heuris_Seq performed better.
In cases where alphabet size is 4, running WFC-CSP with
200 iterations always yield best solution. When alphabet size
is 20, running WFC-CSP with 10 iterations already achieved
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TABLE 13. Results for large-size simulated data with an alphabet of 4 characters.

TABLE 14. Results for large-size simulated data with an alphabet of 20 characters.

best solutions, increasing the iterations to 200 did not result
in better solutions.

Similar observations are made in Table 12 to 14 for large-
size simulated data. In (k = 10, L = 3000) and (k = 20,
L = 1000) cases when alphabet size is 2, LDDA_LSS and
Heuristic_Seq performed marginally better (difference in
solution values being within 1) respectively than WFC-CSP;
in all other cases, WFC-CSP performed best.

Similar observations are made as previously noted: WFC-
CSP has an easier time solving instances with larger alphabet
size, it does not need to be run with large number of iterations
to achieve optimal solution, and its performance advantage is
bigger compared with other algorithms in large alphabet size
instances.

V. CONCLUSION AND FUTURE RESEARCH
This paper proposes the novel WFC-CSP algorithm to solve
the Closest String Problem by leveraging WaveFunctionCol-
lapse techniques, and demonstrates its merits in algorithm

complexity and performance compared to multiple previous
CSP algorithms.

Compared to previous CSP algorithms, WFC-CSP is
significantly simpler to implement. WFC-CSP is a non-
backtracking algorithm. Constructing a solution string with
WFC-CSP involves only simple operations of scoreboard
sorting, tie-breaker randomization, and bookkeeping of inter-
mediate results. WFC-CSP is also easier to use than many
other CSP algorithms.WFC-CSP provides a simple knob (the
max_iter parameter) for solution quality and run time trade
off, and does not have other parameters that need to be tuned
for performance optimization.

The complexity of each iteration of WFC-CSP is tractable
with respect to number of strings k , string length L, and
alphabet size |6|. The target maximum Hamming distance d
does not affect the algorithm’s complexity within an iteration.
WFC-CSP’s success rate or quality of solution increases as
more iteration is allowed, at the cost of increased run time.
It has also been shown that the WFC-CSP algorithm is robust
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in generating consistent high quality results on different test
cases.

Performance comparison between WFC-CSP and other
CSP algorithms are provided in this paper. Comparing with
exact and approximation algorithms such as the Fixed-
parameter algorithm (FP-CSP) in [5] and the third IP forma-
tion algorithm in [19], WFC-CSP, being heuristic, of course
does not have an advantage in success rate or solution quality,
but it enjoys high performance and short run time while
solving large instances that make the FP-CSP and the IP
formation algorithms unviable. Comparing with other heuris-
tic algorithms Ant-CSP, LDDA_LSS and Heuris_Seq algo-
rithms, WFC-CSP generally has higher success rate or higher
solution quality.

Future research plans include enhancing the WFC-CSP
algorithm to improve its performance in solving challenging
instances, such as configurations with smaller L/d ratio,
smaller alphabet size, and fewer number of strings. For exam-
ple, we plan to optimize the randomization portion of the
algorithm,where currently randomization only happenswhen
there are ties among worst strings or scores in the algorithm’s
scoreboard. We suspect that it may be beneficial to allow
more randomization to encourage exploration of the solution
space.

Another future research area is to customize WFC-CSP
for specific applications; for example, in some bioinformatics
applications, it may be desired to calculate ‘‘weighted’’ scores
in the scoreboard to accommodate the fact that certain DNA
mutation are more common than others. This customization
possibility is a unique advantage of score based algorithms
such as WFC-CSP.
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