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ABSTRACT Principal component analysis (PCA) and kernel PCA allow the decorrelation of data with
respect to a basis that is found via variance maximization. However, these techniques are based on pointwise
correlations. Especially in the context of time series analysis this is not optimal. We present a novel gener-
alization of PCA that allows to imprint any desired correlation pattern. Thus the proposed method can be
used to incorporate previously known statistical dependencies between input variables into the model which
is increasing the overall performance. This is achieved by generalizing the projection onto the direction of
maximum variance—as known from PCA—to a projection onto a multi-dimensional subspace. We focus on
the use of cyclic correlation patterns, which is especially of interest in the domain of time series analysis.
Beneath introducing the presented variation of PCA, we discuss the role of this method with respect to other
well-known time series analysis techniques.

INDEX TERMS PCA, discrete Fourier transform, filter, correlation, time series, kernel PCA, circulant
matrices.

I. INTRODUCTION
Principal component analysis (PCA) is a widely-used method
that is well-established in machine learning, statistics and
signal processing. Being at the core of machine learning and
statistics, it is one of the best known data analysis tech-
niques [1]. Hence, examining the basic concept of PCA
enables a deeper understanding of the relations between all
the different fields of application. From this perspective, the
intention of this paper is twofold. First of all we introduce
a generalization of PCA (respectively kernel PCA) for time
series analysis. Secondly we aim to relate our theory to the
classical methods of statistics and signal processing in order
to deepen the understanding of the interrelations between the
methods used.

In the context of machine learning PCA is typically used
to achieve dimensionality reduction in order to overcome
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the ‘‘curse of dimensionality’’ [2]. As in many applications
the data dimension is quite large, it is worthwhile seeking a
low dimensional data representation. Such a representation
is likely to be found, when the observed data stems from a
process that is sparse with respect to an appropriately chosen
basis. Principal component analysis can be understood as an
attempt to find such a basis (cf. [1]). Practically, PCA formu-
lates the optimization problem of finding a vector that points
into direction of maximum variance (according to the data set
at hand). As a result, we find a set of uncorrelated vectors that
correspond to the eigenvectors of the empirical covariance
matrix. Dimensionality reduction can then be achieved by
projecting the data under consideration onto the subspace
spanned by these vectors. Typically this subset of eigenvec-
tors is chosen with respect to the corresponding eigenvalues.
Notably, it is possible to formulate PCA as a kernel algorithm,
which is widening the application spectrum considerably [3].

Beyond its applications in machine learning PCA is con-
nected to many classical signal processing and time series
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analysis techniques. As an example PCA is tightly linked
to the Karhunen-Loève transform.1 Due to the fact that the
discrete Fourier transform decorrelates certain stochastic pro-
cesses (see for example [5]) the connection between PCA
and the discrete Fourier transform (DFT) becomes evident.
In this regard, there are several interesting time series analysis
methods that are closely related to PCA. Singular spectrum
analysis (SSA, cf. [6]) is a technique that decomposes time
series into meaningful components, such as trend, seasonality
and noise. Dynamic PCA (DPCA, cf. [7]) is a variation of
PCA that is based on data set augmentation. Hence, in the
context of temporal data PCA is related to SSA, DFT and
DPCA. These connections are research subject in different
contexts (see for example [6], [8], [9], [10]). While classical
PCA is based on pointwise correlations, especially in the
context of time series analysis it is desirable to incorporate
prior knowledge about the data or the generating process.
As an example, DPCA picks up the idea of shift-invariance
by augmenting the data set with cyclic permutations of itself.
As shown in [11] this is equivalent to hypothesizing a shift-
invariant model. Singular spectrum analysis embeds the data
at hand into a (trajectory) space and only afterwards performs
PCA on the embedded data set.2 The embedding in SSA is
related to the so-called delay embedding (Takens’ embed-
ding) known from dynamical systems theory [12]. Here previ-
ous knowledge about the dynamics of the underlying process
can be incorporated via such an embedding.

Reference [11] generalizes PCA towards shift-invariance,
by matching κ-circulant matrices to the data set under con-
sideration and shows that this framework resembles PCA as
a special case. The fact that these κ-circulant matrices actu-
ally implement FIR filtering indicates the similarity of this
method to SSA (see [10], [13]). From an algebraic perspective
matching a κ-circulant matrix, means that the data at hand
is projected onto a multi-dimensional subspace instead of a
single vector. This subspace is spanned by a single vector and
its cyclic permutations. Practically, this can be understood as
an analog to the step from classical neurons to those in con-
volutional neural networks, because regarding the underlying
correlation structure image processing is very similar to time
series analysis.

In this work, we pick up the idea of PCA via projections
onto cyclic subspaces and generalize it towards freely defin-
able correlation patterns. This way, prior knowledge about
the data under consideration or the generating process can
be incorporated into the model, thus increasing the overall
performance. In fact, the proposed method allows to model
any desired correlation pattern, subsequently enhancing the
recognition of such patterns.Moreover, we introduce a way to
perform the proposed method in a high-dimensional feature

1The definitions of KLT and PCA are often used interchangeably. A dis-
tinction between the Karhunen-Loève transform and PCA is for example
given by [4].

2Embedding and eigendecomposition of the data are the first two steps
of SSA. The complete SSA algorithm also intends the reconstruction of the
decomposed data based on a subset of eigentriples [10].

space without explicitly computing the feature map, i.e., we
kernelize the proposed method.

To sum it up, the first contribution of this work is a
generalization of PCA with respect to arbitrarily structured
subspaces. As aforementioned, classical PCA projects data
onto an optimal 1-dimensional subspace (see Section I-A).
In Section II we show a generalization for cyclically struc-
tured subspaces. In this regard, we build on the work
of [11], which is reviewed in Section II-A and extended in
Section II-B. However, while [11] limits these subspaces to
have a κ-circulant structure, we introduce an extension of
this theory that allows the projection onto any P-dimensional
subspace in Section III. Examples on this theory that allow to
find guidelines on how to use the proposed method are given
in Section V.
The second important contribution is the formulation of the

presented theory as a kernel method in Section IV. Here we
build on the idea of embedding the data set at hand such that
the basic theory of kernel PCA (KPCA), which is reviewed in
Section I-B is sufficient. In Section VI we briefly go through
some examples followed by a discussion of the presented
theory and a conclusion.

A. RELATED METHODS
In the following, we review classical PCA and kernel PCA in
order to pave the way to a more general method.

1) PRINCIPAL COMPONENT ANALYSIS
Suppose we have a data set consisting of N observations
xν ∈ RD. We may also write this dataset as

X =

 | |

x1 · · · xN
| |

 ∈ RD×N .

Seeking a vector u ∈ RD that is most similar to the obser-
vations in X leads to the optimization problem

max
u∈RD

{∥∥∥uTX
∥∥∥2
2

}
s.t. ‖u‖22 = 1. (1)

Equating the derivative of the Lagrange function to zero leads
to

XXTu = λu ⇐⇒
∂L(u, λ)
∂u

= 2XXTu− 2λu = 0.

The sought vector u is found as the eigenvector of XXT cor-
responding to the largest eigenvalue λmax as by definition the
maximum of

∥∥uTX
∥∥2
2 is found as uTXXTu = λmaxuTu =

λmax.
The complete set of eigenvectors of the symmetric matrix

XXT forms an orthonormal basis forRD. The projection onto
this basis, which can be considered as the analysis of some
signal x ∈ RD with respect to the set of (eigen)vectors can be
written as UTx, where XXTU = U66T with 6 ∈ RD×D

being a diagonal matrix that holds the square roots of the
eigenvalues of XXT. When PCA is applied in order to reduce
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dimensionality, data is projected onto Q eigenvectors. Typi-
cally only Q eigenvectors belonging to the Q largest eigen-
values are kept.

2) STATISTICAL INTERPRETATION OF PCA
A closer look at the Lagrange function L(u, λ) = uTXXTu+
λuTu resulting from (1) substantiates a statistical point of
view, as XXT is proportional to the empirical covariance
matrix S ∈ RD×D if the data has zero mean,3 i.e.[

XXT
]
j,k
=

N∑
ν=1

xj,νxk,ν ∝ [S]j,k

where

[S]j,k = sjk =
1

N − 1

N∑
ν=1

(xj,ν − x j)(xk,ν − xk ) (2)

when the sample mean x i = 0 for all i = 1, . . . ,D.

3) PCA AND SINGULAR VALUE DECOMPOSITION
Any matrixX ∈ RD×N can be decomposed intoX = U6VT,
where 6 ∈ RD×N is a diagonal matrix holding the singular
values (the roots of the eigenvalues of XXT and XTX). The
orthogonal matrices U and V hold the eigenvectors of XXT

and XTX respectively, i.e. XXTU = U66T and XTXV =
V6T6.

For zero-mean data the left eigenvectors U of X stem from
the empirical covariancematrix, i.e., SU ∝ XXTU = U66T.
Hence, the left eigenvectors U correspond to the orthonormal
basis that is found by PCA.

B. KERNEL PCA
The kernelized version of principal component analysis
is—as any kernel method—based on a formulation of the
algorithm by means of inner products between data set ele-
ments. Assuming zero-mean data, we may reformulate the
principal components by means of the SVD X = U6VT,
i.e.,

UTx =
(
6†
)T

VTXTx. (3)

Exploiting the fact that an inner product in a reproducing
kernel Hilbert spaceH (RKHS) can be written as k(xi, xj) =
〈φ(xi), φ(xj)〉wemay now compute the principal components
in H. Here φ : RD

→ H is the feature map associated to
the kernel function k . In the following we use the index H to
indicate that a matrix or vector is associated to the RKHS H
defined by a kernel k(·, ·). Now (3) can be formulated in an
RKHS as

UT
Hφ(x) =

(
6

†
H

)T
VT
H

k(x1, x)...

k(xN , x)

 , (4)

where UH,VH and6H refer to the singular value decompo-
sition of the mapped data XH = [φ(x1), . . . , φ(xN )]T. Note

3This is not a strong assumption. In machine learning data is often stan-
dardized to zero-mean and unit-variance by default.

that UH is computed via outer products, which means it is
required to explicitly compute the map φ in order to findUH.
Only VH can be computed using the kernel trick, because

XT
HXHVH = VH6

T
H6H

solely involves the data in terms of inner products. The matrix
XT
HXH is known as kernel matrix

K̃ =

k(x1, x1) · · · k(x1, xN )...
. . .

...

k(xN , x1) · · · k(xN , xN )

 ∈ RN×N .

As VH and 6H can be found from the eigendecomposition
of K̃, we can compute the nonlinear projection in (4) without
explicitly using φ.

Again we may assume XHXT
H ∝ SH. However, in order

to be sure that the sample covariance matrix SH ∈ RN×N of
the mapped data is found via

SH ∝
N∑
ν=1

φ(xν)φ(xν)T

we have to assume zero-mean data. Yet, since the mapped
data is not available, the kernel matrix has to be centered
according to (see [14])

K = K̃− K̃1N − 1N K̃+ 1N K̃1N .

The matrix 1N ∈ RN×N has elements [1N ]i,j = 1/N . Hence,
the nonlinear mapping of a data set X ∈ RD×N is found from

YH =
(
6

†
H

)T
VH

TK,

where

KVT
H = VT

H3H (5)

with 3H = 6
T
H6H holding the eigenvalues of K. New data

X′ ∈ RD×N ′ is mapped via

Y′H =
(
6H

†
)T

VT
HK′,

where [K̃′]i,j = k(x′i, xj) is centered as

K′ = K̃′ − 1′N K̃− K̃′1N + 1′N K̃1N

and 1′N ∈ RN ′×N with
[
1′N
]
i,j = (1/N ).

II. CYCLIC CORRELATION PATTERNS
We begin with the formulation of PCA for cyclic correlation
patterns as proposed by [11], i.e., we formulate PCA for a
circulant structure. However, we directly extend the definition
of basic κ-circulant matrices by involving down-sampling in
the input space via a parameter ρ and truncation of C. While
the parameters L, κ and ρ are known from Wavelet theory4

4The parameters κ and ρ realize down-sampling of the filtered or the input
signal respectively. The latter can be used for up-sampling. All together, these
structures are essential to an algebraic (polyphase) formulation of the discrete
multi-level wavelet transform (cf. [15] or [16]).
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and CNNs, the parameter M is used for DPCA, SSA and
CNNs.

Possibly, the most common access to these parameters is
via CNNs, as L corresponds to the filter width, ρ realizes a
dilated convolution, κ is a down-sampling factor (stride) and
M avoids undesired boundary effects5 (see [17]).

A. TRUNCATED κ-CIRCULANT STRUCTURES
As aforementioned instead of solving (1) for a vector we solve
it for a circulant matrix, i.e., we project the data set onto a
subspace that is defined via a truncated κ-circulant.

A basic circulant matrix C can be written as

C =
L∑
l=1

clPl−1 with P =


0 1 0 · · · 0
0 0 1 0
...

. . .
...

0 1
1 0 0 · · · 0

 ∈ RD×D.

(6)

This may be generalized to a truncated κ-circulant with
parameters L, κ , M and ρ as

G =M
L∑
l=1

glPρ(l−1), (7)

where the masking matrixM is down-sampling by a factor κ
and truncating from theM -th row onward, i.e.,

[M]j,k =

{
1 ifM ≥ j = k ∈ M
0 else

(8)

with M = [1, κ + 1, 2κ + 1, · · · , bD/κ − 1cκ + 1]. Some
examples are given in Fig. 1 (panels (a)-(f )).
Analogously to PCA, the solution of

max
g∈RD

{
‖GX‖2F

}
s.t. ‖g‖22 = 1. (9)

is found from an eigenvalue problem. Yet, the covariance
matrix is replaced by a scattering matrix Z ∈ RL×L with

[Z]j,k =
N∑
ν=1

〈xν,P−ρ(k−1)MPρ(j−1)xν〉. (10)

Solving

Zg = λg (11)

leads to a set of L decorrelated6 vectors that span RL .

B. PROJECTIONS ONTO STRUCTURED SUBSPACES
For a reasonable choice of parameters L,M , κ and ρ the
eigenvectors {g1, . . . , gL} from (11) constitute a finite frame
(cf. [18]). Each eigenvector gi defines a matrix Gi according

5With M = D− L + 1 zero-padding is not necessary.
6Since Z is necessarily symmetric its eigenvectors are orthogonal.

to (7), hence, the set of matrices {Gi}i=1,...,L typically consti-
tutes a frame7 for RD.
The fact, that mapping to {Gi}i=1,...,L potentially leads to

an over-complete representation results in a major difference
to classical PCA. Namely, a single data point x ∈ RD may
have a set of counterparts, i.e., y1, . . . , yP where

P = dM/κe.

First of all, this contradicts the idea of dimensionality reduc-
tion. However, as we optimize with respect to variance, it is
evident that the new axis hold ‖Gix‖22 ∈ R instead of Gix ∈
RP when P > 1. Noting that Gix is related to linear filter-
ing of x with respect to the filter kernel8 g allows a simple
interpretation: each eigenvector corresponds to a band-filter
Gi and ‖Gix‖22 is the power of x within this frequency band.
Geometrically Gix is the projection of x onto the subspace
defined by Gi and ‖Gix‖22 is the corresponding variance.
Here, actually our measure for variance is the total dispersion
(cf. [19]). Note that this is non-linear and not invertible.

From the statistical point of view, the structure of G
encodes dependencies between different (time) coordinates.
As an example, let L = D and M = 3 and ρ = κ = 1, i.e.,

G =


g1 g2 g3 g4 · · · gL
gL g1 g2 g3 · · · gL−1
gL−1 gL g1 g2 · · · gL−2
0 0 0 0 · · · 0
...

...
...

...
...

 .

In fact, the above matrix hypothesizes, that each coordinate
is coupled to its direct left and right neighbor. In other words,
with such a structure of G we encode the assumption that
(temporally) neighboring observations are correlated.

More examples on possible patterns are given in Fig. 1.9

A mentionable special case arises when using a struc-
ture that prospects for global coupling (Fig. 1, panel (a))
between all variables. In this case the matrix Z becomes
a symmetric circulant (the auto-covariance matrix) whose
eigenvectors resemble the discrete Fourier basis. Thus
under the assumption that all variables are coupled we
return to Fourier analysis—independently of the data under
consideration (cf. [11]).

III. ARBITRARY CORRELATION PATTERNS
Using a cyclically structured matrix G is a constraint when
modeling correlation patterns. Although circulant structures
are reasonable in the domain of time series analysis, for other
types of data different patterns could be desirable. Especially

7For special choices of the parameters κ,L,M and ρ such a linear map
might be singular, i.e., not a frame. However, such considerations are out of
the scope of this work.

8The filter kernel should not be confused with a kernel function associated
to a RKHS (cf. Section I-B).

9Regarding Fig. 1 the question arises of whether a matrix is cyclic or non-
cyclic.We refer to a ‘‘cyclicmatrix’’ in the context of (7) using the parameters
L,M , κ and ρ, i.e., any truncated κ-circulant matrix is referred to as cyclic.
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FIGURE 1. Some examples of possible matrices G encoding different
correlation patterns. For each matrix the defining vector g ∈ RL has
randomly chosen components gj in order to visualize the hypothesized
coupling between (time) coordinates [x]j .

FIGURE 2. Examples on arbitrary correlation structures (visualized via
randomly chosen components gj .

the condition of global shift-invariance on a certain scale—
typically useful in image and time series analysis—is not
alwaysmet. In the following, we propose a generalization that
drops these constraints.

Instead of using a cyclic permutation matrix P ∈ RD×D

(cf. (6)) we use a set of arbitrary real-valued matrices 5l ∈

RP×D. Now we solve

max
g∈RD


∥∥∥∥∥

L∑
l=1

gl5lX

∥∥∥∥∥
2

F

 s.t. ‖g‖22 = 1. (12)

Some examples on non-circulant10 correlation patterns are
shown in Fig. 2, where all examples except for panel (a) visu-
alizes binary coupling, i.e., the correspondingmatrices5l are
(0, 1)-matrices. The matrix in panel (a) is the same as in panel
Fig. 1, (a), yet, correlation is fading out over time/distance,
i.e., the closer the closer the variables, the stronger the
coupling. Panel (b) shows a symmetric correlation and in

10Actually all correlation patterns depicted in Fig. 1 can be applied to (12),
because (12) generalizes (9).

panel (c) the underlying hypothesis is that all variables are
coupled to the first. The example in panel (c) shows that vari-
ables that occur often (here the first variable) will pronounced
strongly compared to the others (more details in Section V).
Solving (12) follows the solution to (9). The partial deriva-

tive of the corresponding Lagrangian L(g, λ) is

∂L
∂gk
=

N∑
ν=1

xT
ν

(
g1
(
5T

15k +5
T
k51

)
+ . . .

· · · + gL
(
5T
L5k +5

T
k5L

))
xν + 2λgk .

Again the optimal vector g ∈ RL is found from an eigenvalue
problem Zg = λg. Using distributivity and symmetry of the
dot product we find xT(5T

i 5j +5
T
j 5i)x = 2xT5T

i 5jx such
that the components of Z ∈ RL×L can be written as

[Z]i,j =
N∑
ν=1

〈xν,5T
i 5jxν〉.

Note that (12) generalizes (9) and hence also may resemble
(linear) PCA, i.e., when [5i]1,i = 1∀i ∈ [1,D] and all other
entries are zero (12) is analogue to PCA.

As there are no other restrictions put on the matrices 5i
than being real-valued, any statistical dependency can be
incorporated to the model. More specifically, it is possible
to hypothesize specific statistical dependencies between dif-
ferent variables (coordinates) by coupling the corresponding
entries inG. Notably, one is not restricted to binary coupling,
i.e., an arbitrary real coupling factor can be chosen in order
to encode a certain strength of correlation.

IV. KERNELIZED CORRELATION ANALYSIS
Our next step is the kernelization of (9), i.e., we formulate the
above linear optimization problem respectively its solution by
means of inner products between data points. This allows to
find vectors in someRKHSH, that are optimal with respect to
a certain correlation pattern. We begin with cyclically struc-
tured correlation patterns that are defined by the parameters
κ,L,M and ρ.

A straightforward approach can be deduced from
Section I-B after realizing that the product GX is equiv-
alent to the matrix-vector multiplication gTW, where W
is a restructured data set. The restructuring according to
Section II-A simply has to follow the correlation-pattern
defined by G. In fact,

‖GX‖2F =

∥∥∥∥∥∥∥M
L∑
l=1

glPρ(l−1)

x1,1 · · · x1,N...
. . .

...

xD,1 · · · xD,N


∥∥∥∥∥∥∥
2

F

=

∥∥∥gTW
∥∥∥2
2
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with

W =


x1,1 · · · xD,1 · · · xD,N
x1+ρ,1 · · · xD+ρ,1 · · · xD+ρ,N
...

...
...

x1+ρ(L−1),1 · · · xD+ρ(L−1),N

MR,

where MR ∈ RDN×DN performs a reduction of the aug-
mented matrix according to the choice of κ and M . It is a
block-diagonal matrix with sub-matrices being equal to M
on its diagonal.

We refer to the above restructuring of X as ‘‘embedding’’
(cf. Section I). We formalize this as E : RD

→ RL×P. More
specifically, a single observation x ∈ RD is embedded asx1...

xD

 7→


x1 xκ · · · xP
x1+ρ xκ+ρ · · · xP+ρ
...

...
. . .

...

x1+(L−1)ρ xκ+(L−1)ρ · · · xP+(L−1)ρ

 (13)

Generalizing this embedding process to arbitrary correlation
patterns based on a set of matrices {5l}l=1,...,L—as proposed
in Section III—leads to the map

x 7→ E (x) =

 | |

51x · · · 5Lx
| |

 (14)

Rewriting ‖GX‖2F according to (14), the optimization
problem in (9) takes the form of classical PCA (cf. (1)).
Hence, we may proceed as described in Section I-B, i.e., we
rewrite the projection onto the loadings11 in H using the
eigendecomposition of a centered kernel matrixK associated
to W (respectively WH). Clearly, mapping new data points
again requires the embedding of those.

In Section II-A the result of the projection of an observation
x onto a subspace defined by an eigenvector gi of Z was
given as ‖Gix‖22. It is of particular importance, that this can
not be adopted in H, because the embedding E (x) is not a
single vector. Instead, the result is computed from the set of
embedded vectors. More precisely, assume we have a single
observation x′ that is embedded as

E (x′) =W′ =

 | |

w′1 · · · w
′
P

| |


and a data set consisting of observations {xν}ν=1,...,N with
embeddings {wν}ν=1,...,NP. The total variance within a sub-
space defined by vH is then given as∥∥∥yT

H

∥∥∥2
2
=

∥∥∥σHvT
HK′

∥∥∥2
2

where K′ is the centered version of the matrix K̃′ ∈ RP×NP

with components

[K̃′]i,ν = k(w′i, xν).

11According to [1] we refer to the eigenvectors of S as loadings.

V. THEORETICAL EXAMPLES
Before continuing with numerical examples, we recapitulate
the presented theory by means of theoretical examples. For
this purpose let x be a D-dimensional real-valued random
vector with zero-mean, i.e., xT

= [x1 x2 · · · xD] with
x i = 0 ∀ i ∈ [1,D].

A. CYCLIC PATTERNS
We begin with the simple circulant correlation structure

G =

g1 g2 g3g3 g1 g2
g2 g3 g1

 =


| gT
1 |

| gT
2 |

| gT
3 |

 . (15)

As stated in Section II, this structure hypothesizes that there
are no positional dependencies. This becomes more obvious
when noting that:

‖Gx‖22 =

∥∥∥∥∥∥(g1 g2 g3)
x1 x3 x2x2 x1 x3
x3 x2 x1

∥∥∥∥∥∥
2

2

.

Hence the corresponding covariance matrix is

S =

s11+s22+s33 s12+s23+s31 s13+s21+s32
s21+s32+s13 s22+s33+s11 s23+s31+s12
s31+s12+s23 s32+s13+s21 s33+s11+s22

 ,
where sij is the covariance between the variables xi and xj
(cf. (2), note that sij = sji). From this example it can be seen
that each row gT

i ofG corresponds to a covariancematrix with
a certain structure, i.e.,

S=

s11 s12 s13
s21 s11 s23
s31 s32 s33

+
s22 s23 s21
s32 s33 s31
s13 s13 s11

+
s33 s31 s32
s13 s11 s12
s23 s21 s22

 .
This shows by example how the structure of G is reflected
in S. For larger D it becomes obvious, that for a structure
as in (15) (which stems from L = D = M , κ = ρ = 1,
cf. Fig. 1, panel (a)) the covariance matrix becomes the cyclic
auto-covariance matrix, i.e., a symmetric circulant matrix
(cf. Section II-B).

B. ARBITRARY PATTERNS
All the structures in Fig. 1 are well-known from time series
analysis and signal processing. Yet, it suggests itself to gen-
eralize these approaches. We start with an example, that is
still motivated by time series analysis, namely the structure
shown in Fig. 2, panel (a). This is equivalent to a structure
as in Section V-A only that the time shifts are weighted.
We define the new structure G with row vectors g1 := g1,
g2 := 0.5g2 and g3 := 0, i.e.,

G =

g1 g2 g3g3
2

g1
2

g2
2

0 0 0

 =


| gT
1 |

| gT
2 |

| gT
3 |

 .
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such that

‖Gx‖22 =

∥∥∥∥∥∥∥∥∥
(
g1 g2 g3

)

x1

x3
2 0

x2
x1
2 0

x3
x2
2 0


∥∥∥∥∥∥∥∥∥
2

2

.

Hence the corresponding covariance matrix is

S =

s11 s12 s13
s21 s22 s23
s31 s32 s33

+ 1
4

s22 s23 s21
s32 s33 s31
s13 s13 s11

 .
Of course, this is more useful for larger D, yet, we chose
D = 3 for the sake of layout.

In the previous examples, each variable appeared only once
per row. However, this is not necessary. Although a further
discussion is out of the scope of this work, we give a short
example: let

G =
[
g1 g2 g3
g2 0 g2

]
,

then

E (x) =

x1 0
x2 x1 + x3
x3 0


such that

S =

s11 s12 s13
s21 s22+s11+2s31+s33 s23
s31 s32 s33

 .
One possible application for non-cyclic structures is in

image processing, where more complex correlation patterns
can be used in order to define templates for pattern matching.

VI. NUMERICAL EXAMPLES
First of all, it is important to note that the implementation of
the proposed method relies on classical (kernel) PCA using
a data set that is restructured according to (13) (or more
generally (14)). Hence, the algorithmic steps are analogous
to classical (kernel) PCA, except for preliminary embed-
ding of the data set at hand via X 7→ E (X) and subse-
quent ‘‘de-embedding’’ by means of the 2-norm (‖Gx‖22 or∥∥∥σHvT

HK′
∥∥∥2
2
for kernel PCA). This his makes all results eas-

ily reproducible.
In the following, we demonstrate the theory presented

above based on a few different data sets. We use two rather
different data sets from the UCR Time Series Archive [20],
synthetic data drawn from a stochastic process and a toy
example inR3 for visualization of the proposedmethod. In all
examples, if a kernel is used, we use the radial basis function
kernel, i.e., k(x1, x2) = exp(−‖x1 − x2‖22 /σ ) with σ = D
where x1, x2 ∈ RD.

For all time series classification data sets, we give the accu-
racy of a simple 1-nearest neighbor classifier and as a baseline
we compare our method to the classical PCA respectively
kernel PCA. The classifier is trained on the transformed data

FIGURE 3. Comparison of KPCA and cyclic correlation patterns according
to Section II. The data set consists of observations Xa ∈ R256×50 and
Xb ∈ R256×50 defined by two differently parameterized MA processes
(examples in the left panels). The generating functions and the
corresponding spectral densities of these processes are shown in the
middle two panels. The projections of the original data and test data—a
50/50 split—are shown in the right panels (test data points are marked
with a cross). The given values are test-data classification accuracies for a
1-nearest-neighbor classifier (50/50-split).

FIGURE 4. In this toy example the data set (upper panel) consists of three
clusters, namely the observations lie around three concentric circles with
different radius and inclination. In the middle panel the result using
kernel PCA is depicted. The bottom panel shows the decorrelation
according to the structure defined in (16). As can be seen, the coupling
between the first two variables is decisive.

set (inR3, i.e.,Q = 3) using a 50/50 train-test-split, i.e., 50%
of the data set are used to determine the adaptive feature map.
The accuracy is evaluated from the test-data.
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FIGURE 5. Comparison of kernel PCA and circulant component analysis at
the example of the Beetle Fly data set from the UCR Archive. L = 32 as the
data points seem to be correlated within this range (D = 512). Sample
data is plotted in the left graph.

The data in Fig. 3 is obtained from moving-average (MA)
processes (cf. [21]). The two different MA processes have
generating functions of the form

p = sin(2π f t)� exp(−t2)

where t = [−4, . . . , 4]T ∈ RD. The first cluster in Fig. 3 has
a generating function pa with f = 2 while the second cluster
is based on pb with f = 2.5.
Notably, the two classes are hard to distinguish in time

domain12 (see KPCA in Fig. 3) and the distributions are
overlapping in frequency domain, yet, we are able to separate
the classes. This is because our method allows a compromise
between time and frequency resolution.

Fig. 4 shows a toy example that is well-known in the
context of kernel PCA. The data includes three clusters that
correspond to samples drawn in the surrounding of three
concentric circles around the x3-axis. Hence, the first two
variables x1 and x2 are coupled. Knowing, that the coupling
between x1 and x2 is of importance we set up the following
matrix

G =
3∑
l=1

gl5l = g1

[
1 0 0
0 1 0

]
+ · · ·

· · · + g2

[
0 1 0
1 0 0

]
+ g3

[
0 0 1
0 0 0

]
12Note that KPCA fails on the test data.

FIGURE 6. Example on kernel PCA and nonlinear circulant component
analysis used on a subset of the ‘‘Electric Devices’’ data set of the UCR
Archive (Q = 3). For better visualization here only three of the originally
7 classes are used.

=

[
g1 g2 g3
g2 g1 0

]
. (16)

Via 51 and 52 we hypothesize that there is a relevant cou-
pling between the first two variables while the third variable
is assumed to be independent. Note that we ignore the fact
that the third variable is also coupled to the second (observe
the inclination). Of course, this knowledge could be included
by setting [53]2,2 = 1.
Finally, the examples in Fig. 5 and Fig. 6 are based on

the ‘‘Beetle Fly’’ data set and the ‘‘Electric Devices’’ data
set out of the UCR Time Series Archive. These examples
demonstrate that the proposed approach also allowsmeaning-
ful decorrelation of data without knowing the generating pro-
cess, i.e., visual patterns in the data can be utilized. However,
the choice of the two data sets is not arbitrary. Here we have
chosen data sets with a (weakly) shift invariant characteristic
as the projection onto cyclic subspaces is a tool that is made
for this kind of data.

VII. CONCLUSION
Provided that certain correlations or structures of the data
under consideration are known, it should be possible to use
this knowledge in order to improve results. We have proposed
a generalization of PCA that can be used to incorporate prior
knowledge into adaptive data analysis. With regard to time
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series analysis we presented a framework that allows to use
cyclic structures that are tightly linked to common signal
processing techniques, which enables a simple interpretation
and application. Beyond that, we generalized this theory to
arbitrary structures making it possible to involve any kind
previous knowledge about dependencies in the data. Finally,
we formulated this method as a kernel algorithm thus enlarg-
ing the field of applications.
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