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ABSTRACT Stroke is a leading cause of disability among elderly individuals, and gait impairment is a typical
characteristic related to the stroke severity experienced by patients. The aim of this study is to propose a novel
stroke severity classification method using symmetric gait features with recursive feature elimination with
cross-validation (RFECV). An experiment was conducted on data acquired from thirteen chronic stroke
patients and eighteen elderly participants. They walked on a treadmill at four different speeds based on
their preferred speed. Symmetric gait features representing the ratio between the left- and right-side values
were used as inputs along with the general gait features that did not completely contain the patients’ gait
characteristics. We used four different machine learning (ML) techniques to determine the optimal subset
for differentiating between the elderly and stroke groups according to severity based on RFECV. In addition,
to verify the performance of RFECV and the symmetric gait features, four different feature sets were used:
1) all forty-five general features, 2) all twenty-one symmetric features, 3) the optimal general feature subset
obtained by using RFECV, and 4) the optimal symmetric feature subset obtained by using RFECV. The best
classification result was obtained by RF-RFECV with an RF classifier derived from the symmetric features
(accuracy: 96.01%). The result proved that the stroke severity classification performance increased when
symmetric gait data and the RFECV technique were applied. The findings of this study can help clinicians
diagnose the stroke severity experienced by patients based on information obtained using ML technology.

INDEX TERMS Machine learning, assessment of stroke severity, symmetric gait data, feature selection,
rehabilitation.
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approving it for publication was Yongming Li .

I. INTRODUCTION
Stroke is a leading cause of disability among elderly individ-
uals, and the number of stroke patients is increasing rapidly
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every year with the aging of the global population [1], [2],
[3]. A stroke causes neurological deficits due to an acute
focal injury in the central nervous system (CNS) caused by
cerebral infarction, a subarachnoid hemorrhage (SAH), or an
intracerebral hemorrhage (ICH) [4]. Because of these fac-
tors, stroke patients experience posture, balance, and motor
function difficulties. According to a previous study, one-third
of post-stroke (PS) survivors require care in more than one
activity of everyday life [5], and only approximately 25% of
patients return to their daily lives with normal physical func-
tion [6]. This not only reduces a stroke patient’s individual
quality of life but also incurs considerable social costs [7].
Appropriate patient-specific motor rehabilitation techniques
can reduce the disability resulting from a stroke and quickly
return patients to society [8]. To this end, a proper diagnosis
that can accurately evaluate the patient’s current condition
needs to be made. In fact, accurate diagnosis helps to improve
the effectiveness of rehabilitation treatments by eliminating
unnecessary treatments and maximizing the use of necessary
rehabilitation treatments [8].

Traditional assessment methods, such as the National Insti-
tute of Health Stroke Scale (NIHSS), Fugl-Meyer Assess-
ment (FMA), and Berge Balance Scale (BBS), are widely
used in clinical practice for evaluating the severity levels and
recovery degrees of patients. The NIHSS is an assessment
method proposed by Thomas Brott et. al. [9], consisting of a
total of 15 neurologic examination items, such as conscious-
ness level, language, visual field loss, motor strength, sensory
loss, etc. The NIHSS has the advantage of requiring few
tools and having high interrater reliability [9]. However, the
NIHSS is a score system that includes factors such as mental
statuses, eye movements, and functional abilities, so this
scale is not sufficient for use as an evaluation indicator in
terms of functional rehabilitation. The FMA was proposed
by Fugl-Meyer et. al. as a method to evaluate physical perfor-
mance, such as motor recovery, sensation, and range of joint
motion in patients [10], and it is well known as a compre-
hensive quantitative measure of motor impairment in stroke
patients [11]. The BBS is a score that evaluates patients’
balance abilities through a task consisting of 14 items, such
as sitting, standing, and turning. Even though the BBS was
originally designed by Berg et. al. as a measurement method
for assessing the balance abilities of older adults [12], it is also
used to assess the degrees of rehabilitation exhibited by stroke
patients who have balance deficits due to its advantages of
reliability and validity in the clinical field [13]. The above
mentioned methods are widely used in research and clinical
practice to evaluate the severity of stroke patients, but they
consume much time for completing each trial and require
a highly experienced expert rater to maintain reliability and
repeatability [14].

To solve this problem, this paper proposes a simple gait
test-basedmethod that can quantitatively evaluate the severity
of stroke symptoms. Gait, which requires both balance and
motor function, is a simple and important movement used
during rehabilitation training to return patients to their daily

lives. In addition, gait reflects the main physiological char-
acteristics of neurological disorders, and gait dysfunctions
are common features of neurological disorders in the initial
and progressive states of diseases [15]. For these reasons,
we hypothesize that gait characteristics can effectively rep-
resent stroke severity.

In several recent studies, gait performance was utilized as
one of the medical indicators for predicting the severity of
neurodegenerative disorders based on the relationship con-
cerning the degradation of gait performance in accordance
with the progression of brain-related disorders [16], [17].
Schmid et. al. used gait speed as an important indicator
of function and prognosis after a stroke [18]. They classi-
fied patients into household ambulation, limited-community
ambulation, and full-community ambulation groups accord-
ing to their gait speeds. S Mulroy et. al. classified hos-
pitalized stroke patients into four different groups using
gait speed, peak mid-stance knee extension, and peak dor-
siflexion in the swing phase [19]. B Balaban et. al. uti-
lized quantitative three-dimensional gait analysis features,
such as temporal-spatial, kinematics, and kinetics, to under-
stand the complex gait dysfunctions in hemiparetic patients
[20]. F Wahid et. al. applied multiple regression normal-
ization methods for spatial-temporal gait parameters and
then classified Parkinson’s disease using the corresponding
parameters [21].

However, these previous studies that used gait for the
diagnosis of neurodegenerative disorders have several limi-
tations. First, in most studies, experiments were conducted
only at the preferred gait speeds of participants. Generally,
many gait features can be influenced by different preferred
gait speeds, which makes it difficult to determine whether a
gait feature difference between groups is due to impairment
caused by stroke or the walking speeds of the patients [22].
Therefore, a classification algorithm that is less affected by
gait speed is necessary, as such an approach can distinguish
between patients and elderly people even under various gait
speeds. Second, the complexity of the data makes it dif-
ficult to understand the observed gait characteristics based
on the severity of stroke patients and reduces the accuracy
of diagnosis [23]. As the number of calculated gait param-
eters increases, it becomes increasingly difficult to deter-
mine the type and the optimal number of gait features that
are relevant to patient severity among the various available
features. Identifying the optimal subset of gait features to
better understand stroke patients’ gait characteristics is nec-
essary to aid the diagnosis process. Third, when analyzing
patient gait characteristics, only the gait analysis value of the
paretic side is used as an assessment index. Generally, gait
performance is described by lower limb kinematics, kinetics,
and spatial-temporal parameters. However, since a patient’s
physical condition or walking habits can affect their walking
characteristics, it is inappropriate to identify the patient’s
walking characteristics only with paretic leg walking factors.
Several previous studies have shown the correlations between
various gait features and the degree of symmetry between the
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paretic and non-paretic sides [24], [25]. From this viewpoint,
we think that the symmetric ratio between the paretic and
non-paretic side values is an important factor for evaluating
the severity of stroke patients, and we expect stroke patients’
symmetric gait performance to degrade as the degree of stroke
severity increases.

Machine learning (ML) strategies have gained popularity
because they offer clinically relevant gait features for dis-
ease diagnosis [17], [21]. ML provides a feature selection
method to identify the optimal subset combinations of gait
parameters that are clinically relevant to stroke severity. The
selected features help to understand abnormal gait patterns
and improve the accuracy of stroke patient severity assess-
ments by minimizing redundancy. In this study, four different
ML strategies were employed to select optimal gait features
and classify stroke patients and elderly people based on their
gait characteristics: a support vector machine (SVM) [26],
gradient boosting (GB) [27], a decision tree (DT) [28], and
a random forest (RF) [29]. The wrapper method, which has
the advantage of powerful classifier interactions for feature
selection, was applied in this study [30], [31].

The purpose of this study was to use the symmetry in mul-
tiple gait parameters for the classification of stroke patients
who had different severity levels at diverse speeds. Further-
more, we proposed a robust algorithm based on an opti-
mally selected feature subset (constructed with the minimum
number of features using recursive feature elimination) to
achieve improved stroke severity classification performance.
The results of this study have future implications for stroke
diagnosis strategies and can be clinically utilized for sever-
ity diagnosis through the gaits of stroke patients in the
future.

FIGURE 1. Experimental environment settings for gait data collection
from elderly people and stroke patients.

II. MATERIALS AND METHODS
A. EXPERIMENTAL PARTICIPANTS
This study was approved by the Korea Institute of Sci-
ence and Technology (KIST) Institutional Review Board

(IRB No. 2020-010). Written informed consent was obtained
from each participant prior to the experiment, and the exper-
iments were conducted in strict accordance with the KIST
Ethics guidelines. Participants were recruited with the follow-
ing exclusion criteria: (1) unable to walk without any support,
(2) possessed a history of neurophysiological or muscu-
loskeletal problems in the past six months, and (3) unable to
understand the instructions of the researcher, with less than
24 points in the mini-mental status examination (MMSE).
During the experiment, participants were allowed to stop at
any time if they did not want to continue to participate.

In this study, an experiment was conducted on stroke
patients with more than 6 months of onset and the elderly
in the control group. Total thirteen post-stroke patients (mean
age: 52.6± 10.80 years; height: 165.9± 9.47 cm; bodymass:
67.6 ± 10.37 kg; gender: 9 males, 5 females) and eighteen
healthy elderly people (mean age: 74.9 ± 2.71 years; height:
157.7± 7.18 cm; bodymass: 60.9± 8.73 kg; gender: 9males,
9 females) were recruited for research.

B. GAIT DATA ACQUISITION
Gait data were acquired using a motion analysis system
that was embedded with a force platform and included
ten 3-dimensional motion capture cameras (Vicon Nexus,
Oxford, United Kingdom). Sixteen reflective markers were
attached to each participant’s lower limb according to a Plug-
in-Gait model marker set to calculate kinetic, kinematic, and
spatial-temporal data at a sampling frequency of 100 Hz [32],
[33]. All marker data were passed through a low-pass filter,
which was a fourth-order Butterworth filter with a 4 Hz cutoff
frequency [21].

After practicing enough to become used to walking on
a treadmill (M-Gait, Motek, Amsterdam, Netherlands), the
participants were initially asked to walk at their preferred
walking speeds for one minute. Then, the participants walked
at a 30% faster speed and a 30% slower speed for 1 minute
to determine whether the differences in their gait character-
istics were caused by the speed of the gait or the severity of
the disease. Last, the participants were requested to walk at
0.2 m/s, which was the slowest speed among participants,
to make them all walk at the same speed. All experiments
were conducted with sufficient rest in the middle of the trial
and were carried out wearing a safety harness, as shown
in Fig. 1. The average preferred walking speeds of the PS
patients and the elderly were 0.65 ± 0.15 m/s and 0.8 ±
0.27 m/s, respectively. Each participant walked for a total of
4 minutes, with 1 minute at a different speed, and a total of
forty-five general gait parameters and twenty-one symmetric
gait parameters were extracted for each gait cycle.

The 45 general gait parameters comprised kinetics, kine-
matics data, and spatial-temporal parameters. The kinetic
data were calculated separately by dividing the paretic side
and the non-paretic side to extract the maximum forces,
moments, and power values of both lower extremities at
the hip, knee, and ankle joint. Each of the data points was
calculated in the sagittal plane while considering the gait.
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Likewise, kinematics data were also extracted from both
lower extremity multi-joints in the sagittal plane, and the
range of motion (ROM) maximum angle value were cal-
culated at the foot-off and foot strike points. The spatial-
temporal data consisted of cadence, stance time, swing time,
stride time, step time, strike length, step length, and step
width data. To classify severity based on gait parameters
representing the differences between the groups, in the case
of elderly participants, the foot on the dominant side was
assumed to be the non-paretic side. Since the general gait
parameters on one side may have been affected by each
participant’s usual gait habits, gender, height, and muscle
mass, the symmetric ratio between the paretic and non-paretic
side values was calculated in this study. In a previous study,
the symmetry ratio (SR) value between the non-paretic side
and paretic side was calculated as shown in Equation (1)
[34]. The better the patient’s left-right symmetry, the closer
the SR value is to 1, and it can be interpreted that when the
SR value is higher than 1 and less than 1, the paretic side
and non-paretic side are dominant, respectively. However,
a larger or smaller value may be obtained on the paretic side
depending on the participants or parameter types from the
perspective of symmetry, which makes it difficult to use the
SR value itself as a value for indicating left-right symmetry.
Therefore, in this study, the symmetry of each patient was
evaluated by using the symmetry normalization ratio (SNR)
value, which becomes close to 1 as the degree of symmetry
increases and less than 1 as the degree of asymmetry increases
regardless of whether the left or right side is examined,
as shown in Equation 2. In addition, the gait parameter tem-
poral symmetry ratio (TSR), which has been widely used in
previous studies, was added as a symmetric parameter for
classifying patients. All general and symmetric gait feature
data were collected with a sampling frequency of 100 Hz.
As a result of the gait analysis, a total of more than 4000 gait
cycles were obtained from 31 participants.

Symmetry Ratio (SR)

=
(Affected side parameters)

(Non Affected side parameters)
(1)

Symmetry Normalization Ratio (SNR)

= 1− |
Affected side parameters

Non Affected side parameters
− 1| (2)

Temporal Symmetry Ratio (TSR)

=
Paretic swing time/Paretic satnace time

Non paretic swing time/Non paretic satnace time
(3)

C. CLINICAL TEST FOR SEVERITY CLASSIFICATION
The BBS consists of 14 different scales that assess balance
and fall risk [12]. It contains various tasks that require the
participant to maintain positions while keeping their balance
and perform specific behaviors such as sitting, standing, turn-
ing, and stepping. [35]. The BBS is one of the indicators
for evaluating the rehabilitation degrees of stroke patients
and is widely used in clinical practice [13]. An experienced

rater directed a PS patient to perform the specific motions in
order and evaluated their performance by providing a score
between 0 to 4 points according to the guidelines. In this
study, the PS patients were divided into two groups, a severe
stroke group with less than 40 points and a mild stroke
group with more than 40 points, based on the total BBS
scores.

D. FEATURE SELECTION AND CLASSIFICATION
1) FEATURE SELECTION
Feature selection is required in classification tasks to lessen
the learning time by reducing the number of training data
and to increase accuracy by removing information that is
unnecessary for classification [30]. In this study, the recursive
feature elimination with cross validation (RFECV) method
was applied. RFE is a wrapper-style feature selection method
that selects the most relevant subset by removing unnecessary
features until the desired number of features remains. How-
ever, the number of features is an important hyper-parameter
that must be tuned during the training process, and it is
difficult to know the proper number of features to select with
the RFE technique from the beginning. To address this issue,
RFECV, a feature set derivation method that automatically
corresponds to the best number of features yielding the high-
est classification performance by averaging the model per-
formance based on cross-validation, can be a solution. In this
study, four different kinds of methods, SVM-RFECV, GB-
RFECV, DT-RFECV, and RF-RFECV, were used to select the
optimal gait parameter subset.

• SVM-RFECV: An SVMwith a linear kernel function is
an efficient feature selection tool that finds a separating
hyperplane with the maximal margin from the optimal
decision function. [36], [37].

• GB-RFECV: GB is an ensemble algorithm of boost-
ing methods that sequentially combines weak classi-
fiers to create strong classifiers with high classification
performance [27].

• DT-RFECV: A DT is an algorithm that analyzes data
and presents patterns that exist between the data as a
combination of predictable rules; it is a typical classifi-
cation model and is among the most intuitive methods
that have the advantage of representing results in a
visually readable form [28].

• RF-RFECV: An RF is an ensemble algorithm of bag-
ging methods; this approach achieves increased predic-
tion performance by creatingmultiple DTs for the same
data and combining their results [29].

The optimal number and type of gait features relevant to
the disease were different for each model, and the details
are shown in Table 2 below. Student’s t test was con-
ducted to investigate the differences between the selected
features of two different groups (elderly-mild stroke & mild
stroke-severe stroke & elderly-severe stroke). The signifi-
cance level was set to α = 0.05, and the number of fea-
tures demonstrating statistical significance (p < 0.05) and
the percentage of features out of the total are represented in
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FIGURE 2. ML modeling framework using RFECV for stroke patient severity classification.

Table 3. These analysis results helped identify gait features
that influenced the groupwise classification process.

To validate the effectiveness of using a feature selection
method to classify stroke patients, feature selection algo-
rithms were separately applied for general features and sym-
metric features. The optimal features were determined by
applying the SVM, GB, DT, and RF learning algorithms
for 45 general features and 21 symmetric features through
a feature selection method that was conducted to improve
classification accuracy and hasten the learning process by
eliminating redundant features.

2) CLASSIFICATION & STATISTICAL ANALYSIS
In this study, three groups, elderly, mild stroke, and severe
stroke, were classified using the diverse data obtained from
the gait test. The classification process was conducted for
the following four different types to verify that symmetric
parameters are important for the diagnosis of stroke among
the numerous gait parameters and that feature selection tech-
nology is important for achieving increased classification
accuracy.

Types I-IV represent 1) all 45 general features, 2) all 21
symmetric features, 3) the optimal general feature subset
obtained by using RFECV, and 4) the optimal symmetric
feature subset obtained by using RFECV. For types I and II,
the model was trained using all general gait parameters and
all symmetric gait parameters in each cycle, respectively.
All 45 and 21 data were used as input values for each
type, and four different classifiers, SVM, GB, DT, and RF
classifiers, were applied for classification without a feature
selection process. For types III and IV, the model was trained
using the optimal general gait parameters and symmetric gait
parameters obtained through the RFECV feature selection
method, respectively. The data obtained via the four different
feature selection algorithms were applied to each of the four

classifiers, and 16 classification performance results were
obtained for each type, as shown in Table 8 below.

TABLE 1. Four different types of gait parameters were used as input
values for classification.

The gait data were split into an 80% training set and a 20%
testing set for classification. We used tenfold cross-validation
to prevent data overfitting, calculate statistically unbiased
classification results, and find each classifier’s optimal hyper-
parameters, as shown in Fig. 2.

To validate the notion that symmetric parameters are
more important than general gait parameters when classify-
ing stroke patients, the classification results obtained with
only general parameters consisting of spatial-temporal, kine-
matics, and kinetics parameters were compared with those
obtained using the symmetric parameters representing the
left-to-right ratio. We also compared the classification per-
formances achieved using all gait parameters and utilizing
only the optimal gait data obtained through ML to verify
the importance of feature selection when classifying stroke
patients through a gait test. To evaluate the performance
of the feature selection-based stroke patient severity clas-
sification algorithm presented in this study, five different
measures were used: sensitivity, specificity, precision, F1
score, and average accuracy. Each measure was calculated
as written in equations (4) – (8). Every true positive (TP),
true negative (TN), false positive (FP), and false negative
(FN) was calculated for the test set. The data acquisition and
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classification analysis processes were conducted using the
Python 3.10 programming environment.

Sensitivity =
TP

(TP + FN)
× 100 (4)

Specificity =
TN

(TN + FP)
× 100 (5)

Precison =
TP

(TP + FP)
× 100 (6)

F1score = 2×
(Precision× Sensitivity)
(Precison+ Sensitivity)

×100

(7)

Ave.Accuracy =
(TP + TN)

(TP + TN + FP + FN)
× 100 (8)

III. RESULTS
A. OPTIMAL GAIT FEATURES FOR CLASSIFICATION
As a result of selecting the features related to the classi-
fication performance among the 45 total general features
based on the RFECV method, 25, 24, 16, and 19 features
were selected by the SVM, GB, DT, and RF algorithms,
respectively. As a result of selecting the features among the
total 21 symmetric data features, 16, 5, 12, and 9 features
were selected for each algorithm, as shown in Table 2 below.
Regarding the general gait features, the RF-RFECV algo-
rithm achieved decreased classification performance when
the selected number of subsets was greater than the num-
ber of optimal features. In contrast, the SVM-, GB-, and
DT-RFECV produced similar classification accuracies even
if the selected number of subsets exceeded the number of
optimal features, as shown in Fig. 3. For symmetric features,
the GB and RF algorithms yielded decreased classification
performance when the number of subsets was greater than the
number of optimal features, and the SVM and DT algorithms
achieved similar classification performance in this situation,
as shown in Fig. 4. The numbers and types of optimal fea-
tures selected by each algorithm were different. In terms of
general and symmetric features, several gait characteristics
were commonly selected by each algorithm.

TABLE 2. Feature selection results obtained using four different ML
algorithms (SVM, GB, DT, RF) for general and symmetric gait features.

Table 3 represents the numbers of features that were signif-
icantly different based on the t test results between the binary
groups. The numbers of gait features that were different from
the binary groups were obtained separately from general and
symmetric gait characteristics.

In the symmetric gait feature set, more than 30% of the
selected features (out of the 21 total gait features) exhibited

TABLE 3. The number of features that showed significant differences
among each group out of all selected parameters based on the results of
a t test.

FIGURE 3. Average classification accuracies achieved according to the
number of general gait features selected by (a) the SVM, (b) GB, (c) the
DT, and (d) the RF. The dots and shaded areas represent the average
accuracy and the variability of 10 cross-validations, respectively.

FIGURE 4. Average classification accuracies achieved according to the
number of symmetric gait features selected by (a) the SVM, (b) GB, (c) the
DT, and (d) the RF. The dots and shaded area represent the average
accuracy and the variability of 10 cross-validations, respectively.

significant differences in all three binary comparisons. On the
other hand, in the general gait feature set, among the 45 total
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gait features, a significant difference of more than 30%
was observed between the elderly and severe stroke patient
groups alone. The highest rates of significant difference were
observed between the elderly and the severe stroke patients in
both the general feature and symmetric feature tests, at 71%
and 31%, respectively, and the lowest rates of significant
difference were observed between the elderly and mild stroke
patient groups at 11% and 33% in the general and symmetric
feature tests.

B. SEVERITY CLASSIFICATION BASED ON GAIT TEST
The stroke patient classification accuracy achieved using each
ML strategy with gait data is represented in the tables below.
Tables 4-7 are the results of calculating confusion matrices
based on the algorithm that achieved the highest classifica-
tion performance using gait feature types I-IV, respectively.
For type I (using all 45 general gait parameters), the DT
classifier yielded the best performance (sensitivity: 84.98%,
specificity: 92.94%, precision: 88.19%, F1 score: 86.36, and
average accuracy: 89.47%). For type II (using all 21 sym-
metric gait features), the best performance was achieved
when using theGB classifier (sensitivity: 91.09%, specificity:
94.59%, precision: 96.26%, F1 score: 93.11, and average
accuracy: 93.36%), and better performance was obtained
in this scenario than for type I in all areas regardless of
the employed classification algorithm method. For type III
and type IV, where the optimal features were determined
among the general and symmetric features using RFECV, the
highest classification performance was achieved by the GB
classifier using SVM-RFECV and the SVM classifier using
GB-RFECV, respectively. In the case of type III, the speci-
ficity of the GB classifier with SVM-RFECVwas higher than
those of RF-RFECVwith the RF classifier and SVM-RFECV
with the DT classifier, but the sensitivity and the average
result were not superior. Among all four types, type IV using
RF-RFECV with the RF classifier yielded the best classifica-
tion performance (sensitivity: 95.32%, specificity: 97.03%,
precision: 96.51%, F1 score: 95.88, and average accuracy:
96.01%). At this time, the nine selected features used as
inputs among the 21 symmetrical characteristics were the
TSR, foot progression angle ROM ratio, ankle joint angle
ROM ratio, knee joint angle ROM ratio, hip joint angle ROM
ratio, foot progression maximum angle ratio, ankle joint max-
imum angle ratio, knee joint maximum angle ratio, and hip
joint maximum angle ratio.

In addition, the overall performance was higher for type II
and type IVwhen using symmetric features than that achieved
for type I and type III using general features. After selecting
the optimal features, a comparison between type I and type III
showed no significant change in the general features, but
the comparison between type II and type IV showed that
improved classification performance was achieved with the
symmetric features. The overall results are detailed in Table 8,
as shown below.

TABLE 4. The confusion matrix result obtained for type I (all general gait
features) using the DT classifier, which achieved the best classification
performance.

TABLE 5. The confusion matrix result obtained for type II (all symmetric
gait features) using the GB classifier, which achieved the best
classification performance.

TABLE 6. The confusion matrix result obtained for type III (optimal
general gait features) using SVM-RFECV with the GB classifier, which
achieved the best classification performance.

TABLE 7. The confusion matrix result obtained for type IV (optimal
symmetric gait features) using RF-RFECV with the RF classifier, which
achieved the best classification performance.

IV. DISCUSSION
The aim of this study was to classify elderly, mild-stroke,
and severe-stroke patients by a simple gait test using an ML
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strategy. General gait features representing spatial and tem-
poral information and symmetric gait features quantitatively
representing the left- and right-side differences were used as
gait characteristics. In addition, a feature selection technique
consisting of a total of four ML algorithms was applied for
each type of feature to compare and analyze the classification
accuracy differences observed before and after application.

The main findings from this research can be summarized
as follows. (1) When using gait to classify the severity of
stroke patients, the symmetrical characteristics representing
the left-right ratio are crucially important factors. (2) Through
the feature selection method, it was confirmed that the gaits
of stroke patients could be classified with higher accuracy
when utilizing features that were relevant to the severity of
the disease.

Higher classification performance was achieved when per-
forming classification with symmetric features than with only
general features. Gait involves movement that requires both
motor function and sensory feedback and uses both legs
simultaneously [38], and it is performed by the coordination
of the nervous and muscular systems. Therefore, it can be
said that the difference between the left and right sides is
an important factor for an appropriate gait evaluation anal-
ysis. Additionally, several limitations are encountered when
using only general features, such as the joint angle or the
time and length of a particular side, as criteria for classi-
fying the elderly and stroke patients according to severity.
First, the general gait features may be affected by physical
conditions. Participants with long lower limbs are expected
to have greater values for their spatial gait features, such
as length-related parameters [39]. From the viewpoint of
biomechanics, they can be expected to have smaller ranges
of joint motion if they have similar walking speeds and stride
lengths to those of other patients. As another example, for
obese participants, the range of motion of the knee joint
in the stance phase, the ratio of the stance time during the
whole gait cycle, and the stride width are less than those
of typical people [40]. Second, people’s usual gait habits
or fall histories may also affect their general gait features
[41]. The habits of dragging legs and toeing out affect not
only the spatial gait characteristics but also the angle-related
parameters. In addition, a stroke patient has compensation
movements that occur on the contralateral side to replace
the insufficient movement of the paretic leg [42]. Due to the
above reasons, it is difficult to classify elderly people and
stroke patients with only general gait parameters. Therefore,
it is necessary to observe the difference between both legs to
understand a patient’s gait characteristics. For example, the
TSR, which was selected as an important factor by all four
ML algorithms as a result of RFECV, compares the ratios
of the stance phase to the swing phase between the left and
right legs. In the case of general gait characteristics, which
calculate absolute values of the stance and swing phases,
identifying patient gait characteristics is difficult because of
the effects of gait speed and habit. On the other hand, since
stroke patients have lower stance-phase ratios and higher

swing-phase ratios on the paretic side than on the non-paretic
side, they generally exhibit high TSR values according to
equation 3, helping to determine the patients’ gaits [25]. For
these reasons, we hypothesized that symmetric gait features
would better represent patient gait characteristics, and the
actual classification results showed that higher performance
was achieved with symmetric gait features than with general
gait features.

The RFECV technique selected in this study helped
improve accuracy by determining the optimal type and
number of features required for classification. RFECV
achieved improved classification performance by selecting
only informative features while excluding redundant features.
In some feature selection algorithms, a higher number of
features led to higher classification performance, as shown
in Figs. 3 and 4, but in other algorithms, similar classifica-
tion performance was maintained even when the number of
features than was larger than the selected optimal number
of features. This can be interpreted as the ML algorithm not
finding informative features that presented significant differ-
ences between groups or judging that none of the features
were redundant. Nevertheless, RFECV reduced the number
of features to be calculated, shortening the training time and
preventing overfitting. Above all, RFECV could help clini-
cians understand a patient’s gait characteristics by calculating
the specific gait input values that are the representational
features for each group.

This research has several potential limitations. First, the
number of participants in this study was insufficient, and
an imbalance between the elderly and mild & severe stroke
patients was observed, which may have caused a statistical
problem. This study was conducted on 13 chronic stroke
patients and 18 normal elderly patients; the former were
divided into 5 severe stroke and 8 mild stroke patients based
on their BBS scores. To overcome the limitations and imbal-
ances regarding the number of data, repeated experiments
conducted at various speeds yieldedmore than approximately
130 walking cycles per participant, and classification was
conducted with a total of more than 4000 cycles. Second,
all experiments in this study were performed on a treadmill.
The same participant’s over-ground walking and treadmill
walking characteristics may have been different because of
this condition [43]. For example, constant-speed gait is unlike
over-ground walking, and fear of falling may have caused the
participants to exhibit abnormal gait patterns. For this reason,
it is thought that the classification accuracy was not improved
further because there was a limit to fully understanding walk-
ing characteristics according to a patient’s severity. Third,
the patient severity was divided into only two simple levels
based on the BBS score. The BBS is an assessment tool
for evaluating balance ability through an exercise evaluation
and has high simultaneous correlations with gait-requiring
balance and exercise ability. However, in clinical fields, the
severity of patients is determined not only by the BBS but
also by the NIHSS or FMA. Therefore, when using a differ-
ent classification assessment tool, a different classification
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TABLE 8. Stroke severity classification results obtained using the gait characteristics in types I-IV.

performance is expected. In the future studies, experiments
will be conducted to obtain additional data by recruiting
multiple subjects who have varying degrees of severity.

V. CONCLUSION
When evaluating the severity of stroke patients, auxiliary
measurement methods are necessary to overcome the limi-
tations of existing clinical evaluations that take a long time
and involve subjective evaluator judgments. In this study,
we proposed symmetric-based gait tests that can evaluate
a patient’s severity by measuring their balance and motor
abilities simultaneously. The results showed that elderly peo-
ple, mild stroke patients, and severe stroke patients could
be classified with 96.01% accuracy with only 9 symmetric
data regardless of their speeds. The nine selected characteris-
tics that were considered important for distinguishing stroke
patients from elderly people can be used as rehabilitation

indicators that can be evaluated to determine the effectiveness
of recovery if the patient’s corresponding values become
similar to those of the elderly group. This reliable ML-based
assessment approach is expected to play a complementary
role not only in evaluating the degree of severity but also
in planning rehabilitation treatments based on evaluations of
stroke patient information.
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