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ABSTRACT Internal Combustion Engine based transportation rapidly increases the impact on the
environment. The burning of fossil fuels in the industries and transportation sector breadth of global
warming. However, Hybrid Electric Vehicle is not a permanent solution for emission-less road vehicles.
Therefore, electric vehicles are the most feasible technologies to attain the goals of energy savings and
zero-emission road vehicles. This paper sequentially surveys the key point of vehicles like; Powertrain
strategy, configuration, fuel economy, reduced emission, and control strategy expounds in terms of its basic
principles, pros, and cons. These key points make the energy management strategy more conclusive for the
more efficient vehicle. In addition, this paper review systematically qualitative and quantitative algorithm in
all type of EMS used in HEV and compare them with existing approaches in terms of pros & cons through
a comprehensive analysis. Furthermore, addressed the potential research gap and provide the directives for
further development in power train and ems in every respect.

INDEX TERMS Full electric vehicle, hybrid electric vehicle, architecture, online EMS, offline EMS,
optimization-based EMS, fuel economy, vehicle performance, optimal control strategy, real-time optimal
power management, intelligent transportation.

I. INTRODUCTION
This Concern over air contamination, the hydrocarbon-based
conveyance has been raising worldwide concerns. Interna-
tional Energy Agency (IEA) estimated 298 Mtoe biofuel
consumption in the transportation sector by 2030. This sector
consumes 49% of the oil resources and it seems that world
resources depleted by 2038 [1], and the U.S. EPA (Environ-
mental Protection Agency) reported that 29% of greenhouse
gas emissions (CO2, NO2, CO, NO) from the burning of fossil
fuel in transportation activities.

The associate editor coordinating the review of this manuscript and

approving it for publication was Huaqing Li .

Around 28% of all carbon dioxide (CO2) emissions are
attributed to the transportation industry, with road transport
responsible for more than 70% of those emissions, according
to studies by the European Union and other sources. In which
main contribution of light commercial vehicles 59%, interme-
diate and heavy commercial trucks 23%, aircraft 9%, ships &
boats 3 %, rail 2% other 4%.

Therefore, the governments of the majority of developed
nations are encouraging the use of electric cars in order
to minimize the concentration of air pollutants, including
CO2 and other greenhouse gases [2]. These days, public
consciousness of weather variation and importation of the
power savings is increasing the development of innova-
tive technologies for the green vehicle to the utilization of
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Plug-in Hybrid Electric Vehicle (HEV) and full electric vehi-
cles (FEV), which is a possible eco-friendly and economical
solution [3]. A wide range of automakers are working hard to
create new EVs [4]:

• General Motors intends to switch to all-electric vehicles
by 2023

• Ford will offer seven electrified and customized plug-in
hybrids in the future

• Mazda, Denso, and Toyota are working together to
develop technologies for EVs

• Renault, Nissan, and Mitsubishi are working to create
pure electric vehicles with the goal of releasing 12 EVs
by 2023

• 300 vehicles from the Volkswagen group, which also
owns the brands Audi and Porsche, will be available in
electric and hybrid versions by 2030.

At present HEV has thrived as a solution [5] due to the
discontinuity of renewable energy and battery life span. There
are some reluctances for public interest in Electric Vehicles
(EVs) as: the cost of EVs is higher than fossil-fueled vehicles,
EVs do not have much range, refueling of the fossil-fueled
vehicle is easy in comparison to EVs, and reluctant to spend
in current EVs technology while much-advanced technology
may be available in next 2-3 Years.

Existing electric vehicles having more than a single source
of power, hybrid powertrains provide a large design space
for the system and increase the complexity of the control
algorithm [6]. The objective function of the Energy Man-
agement Strategy (EMS) optimization problem is generally
coupled with powertrain topology collection, while technol-
ogy and the size of components are treated as optimization
constraints. Power management strategy will play a vital role
in the expansion of the new generation of green vehicles.
The highest challenges of a power management strategy are
to power split in optimum mode to provide intended perfor-
mance under system limitations.

A significant amount of research into energy management
strategy has been directed over the last era, not only for HEV
[7], [5] but also for FEV. However, with the improvement and
introduction of novel approaches in automotive technology,
the author perceives EMS for HEV and FEV as a constantly
developing area that will continue to draw fresh ideas for
many upcoming years.

The major goals of this review work are to contribute
to an emergent point of discussion about the latest EMS
approaches, as well as to provide an inclusive outline of
EMS generated for controlling power management in HEV
or FEV.

This research paper is structured as follows: a collection
of data sources in section 2, the architecture of the vehicle
and a range of powertrain systems & electric alignment of
HESS in FEV in section 3, and classification of optimization
techniques in power management represent in section 4, lat-
est developing trends & prospective opportunities for future
research trends in energy management strategies discussed in
Section 5 and some remarkable conclusion in section 6.

II. SOURCES OF DATA COLLECTIONS
All documents employed in this review paper were from the
database of reputed journals and conference papers in which
we found energy management strategies have been used in
the past and current. There was a total of article 267 in this
review paper have been used. The contribution of articles is
given in Fig.1.

FIGURE 1. Paper contribution in this article.

III. ARCHITECTURE OF HYBRID ELECTRIC VEHICLE
The primary powertrain-controlled structures fo HEV and
FEV HEV and FEV are discussed in this segment, along with
their main properties. The functional mode of a powertrain
topology is necessary to understand before expressing an
EMS optimization issue. There is numerous topology on
the powertrain of various competencies that can be imple-
mented via modification of the power source connections.
These connections may be mechanical or electrical links.
HEV powertrain has three major configurations, (1) Series
Connection; (2) Parallel Connection, and (3) Series-Parallel,
although FEV is further divided into three parts according
to the source of energy, battery, and solar-based or fuel cell-
based [3]. The Vehicle power train strategy of HEV and FEV
is given below in Fig.2.

A. HYBRID ELECTRIC VEHICLES
In the HEV, engine power is transferred across the ring gear
which is mechanically joined through the drive shaft while
another part of engine power is converted into electrical
power to drive the motor, which is hinged with gear, con-
nected into mechanical power again. The prior arrangement
is called as a parallel path and the second is called as a
series path [8]. The primary aim for HEVs development is to
decrease fuel intake and tailpipe emission [5]. According to
vehicle powertrain arrangement, HEV can be separated into
series, parallel, power-split/ series-parallel HEV, and Plug-in
HEV, which can make energy more efficient and relatively
high fuel economy [9], [10]. The vehicle configuration and
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FIGURE 2. (a) Classification of vehicle powertrain strategy. (b) Various configuration of a hybrid electric vehicle.

architecture are shown in Fig.2 (a & b)., while the summary
of HEV& FEV, and their application are shown in Table 1.

1) SERIES HYBRID ELECTRIC VEHICLES (S-HEV)
A series-HEV topology gives the best performance in a
stop-and-go driving pattern. There, ICE and wheels don’t
have a mechanical connection. The ICE is basically used to

generate the electrical power by driving the generator, which
is combined with an output power of electrical storage and
transmits that power by DC bus to an electric motor to drive
the wheels [3]. In this strategy, the engine runs efficiently in
varying vehicle speeds [6]. S-HEV are suitable for urban and
buses for highway only, while buses are not suitable for urban
area driving due to high conversion loss [7].
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TABLE 1. Summary of hybrid electric vehicle architecture and their application.

FIGURE 3. Plug-in HEV Configuration.

2) PARALLEL HYBRID ELECTRIC VEHICLES (P-HEV)
In Parallel HEVs, an electricmotor is used alone at low speeds
while the engine and wheels are mechanically connected
directly [11], such that their combined torque is transferred
to the wheels via a standard moving shaft and probably a
different gear. In this method energy loss is minimum but
they are less suitable for quick change stop-and-go traffic in
compared to the series HEV topology [6], [12], [3].

3) SERIES-PARALLEL HYBRID ELECTRIC VEHICLES (SP-HEVS)
A Series-Parallel HEVs, as well power-split HEV, have
an additional mechanical connection in between the motor
and generator through the transmission. This arrangement
provides the complementary benefits of series and parallel
HEVs [3], [6]. As a result, one of the main problems of
SP-HEV is power flow regulation of splitting power because
it combines functioning components from both series and
parallel systems, increasing the system’s complexity [13].

4) PLUG-IN HYBRID ELECTRIC VEHICLES (P-HEV)
Plug-in HEVs differ from conventional HEVs but have the
same configuration with additional electric charging plug,

and higher capacity electrical components shown in Fig.3.
In this way, the Energy Storage System (ESS) is considered
as the prime source, which provided a new dimension to
the EMS method in PHEV for a superior fuel economy by
operating in two modes as charge depleting (CD) and charge
sustaining(CS) modes [5]. PHEV can be run in full-electric
mode for a long time period due to high capacity electrical
components [1]. The plug-in HEV is a good initiative towards
reducing worldwide emissions, by which it proposed high
performance and fuel efficiency in both electric and hybrid
mode [3], [12]. In 2011, Nissan introduced, the company’s
first plug-in electric vehicle ‘Nissan Leaf’, while A Ford
Fusion Energi is a plug-in hybrid car that debuted in 2013.

B. FULL ELECTRIC VEHICLE
Presently, FEV has seven types of power transfer topology as
shown in Fig.4, in which only three types of topologies are
prominent for use via an auto-industrialist [14]. The compar-
ative configuration of various HESS is shown in Table 2.

In general, fully electric vehicles are divided into two
categories based on the energy source, it may be a fuel
cell or battery. Now a day, PV-based vehicle has captured
a considerable amount of interest from researcher to enhance
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TABLE 2. Comparison of various configurations of HESS [154].

FIGURE 4. Various Possible configurations of UC and battery.

the utilization of renewable resources which are available in
abundant amount in nature. The PV-based vehicle was also
used in my research project.

1) BATTERY-BASED FEVS
In this FEV, the battery is used as a primary source
that has high-energy content. It is combined with another
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FIGURE 5. FC- based FEV.

high-density power device like, Supercapacitor, known as
ultra-capacitor also to form the HESS. It is also known as an
electric double-layer capacitor (EDLC) [15]. In comparison-
-to a supercapacitor, batteries have a high energy density
but a poor power density. So, HESS store enough energy to
satisfy abrupt power demands to achieve the required vehicle
performance. H. He et al., presented the seven battery model
with enough precision and less complexity and provide the
optimal performance on experimental results [16]. An FEV
can be divided into two categories.

2) FUEL CELL-BASED FEVS
In this FEV, FC worked as a primary source, which uses
H2 and O2 to produce electricity. The FC’s specific energy
and power are similar, but not identical to the gasoline [3].
Fuel cells have a slow response due to chemical reactions,
so it’s not good to provide the frequent changing load. To mit-
igate this problem, it has hybridized with battery /UC. The
FC-based FEVs configuration are shown in Fig.5

3) PV BASED FEV
The architecture of a solar power-based FEVs (PV-FEV) is
similar to the Plug-in HEV except for an additional photo-
voltaic (PV) panel, which provides the current for battery
charging in a day time. And the maximum power point
tracking (MPPT) control algorithms are applied to achieve
the maximum power through PV Panels. The PV-based FEV
configuration is shown in Fig.6.

IV. ENERGY MANAGEMENT STRATEGIES FOR VEHICLE
FEV and (P)HEVs are complex electro-mechanical drive
systems. The choice of the circuit configuration and EMS
have decided the flow of power, fuel economy, and emission
reduction [17]. The main purpose of an EMS is to control
the power flow for obtaining the improved fuel economy,
emissions reduction, ensured drivability, and maintain the
state of charge (SOC) and life span of the ESS via advertent
the restrictions. A general outline of the objectives of EMS
for both FEV and HEVs is shown in Fig.7.

In the past, lots of diversity of research are available for
the usage of EMS in Hybrid-EV, Fully-EV, and Plug-in HEV
applications. Even though lots of classification can be found
in the literature, mainly divided into three parts: rule-based,
optimization-based, and learning-based algorithms, and these

FIGURE 6. PV based FEV structured.

are further divided into subparts. The taxonomy of the pri-
mary parts and subparts are shown in Fig.8 for HEV and
FEV technologies. In this article optimization algorithms
which are used in Intelligent Transportation System (ITS),
additionally included besides of EMS categorization shown
in fig.8.

A. RULE-BASED CONTROL METHOD
Rule-Based (RB) control techniques are heuristic control
techniques in which the control method well-defined as a set
of ‘‘if-then’’ procedures to regulate the control action [18].
The rules-based method is determined by using humanoid
intelligence, intuitions, or mathematical models and mostly
without pre-information of a drive cycle. They are required
low computation so that they are commonly used in many
commercial vehicles like Honda Insight and the Toyota
Prius [7]. Peng et al. [19] recalibrated the rule-based EMS
results to locate the optimum power train by applying
dynamic programming (DP) and reduced the fuel consump-
tion by about 10.45 % as well as the electricity consumption
up to 4.75%. Ceraolo et al. [20] discussed the optimal
energy consumption technique to resolve the energy prob-
lem occurring in the designing process. Ali et al. [21]
presented an optimized situation-based power management
strategy for multi-source EVs. Here proposed methodol-
ogy obtained the optimal results and improve the energy
efficiency 11.9-18.98% while prediction accuracy about
63.9-65.2% respectively dynamic programming and rule-
based algorithm. Even though a rule-based EMS may not
provide the best result; it has attracted interest due to its ease
of deployment in real-time. This strategy is more classified
into fuzzy and deterministic rule-based EMSs.

1) DETERMINISTIC RULE-BASED METHODS
The Deterministic Rules-Based (RB) methods are developed
with the support of fuel economy or emission data, power
split, operating point of ICE, and power flow in the drive
train. Rules execution is performed on the basis of a lookup
table to share the power in between IC Engine and motor.
Hofman et al. [18] discussed an RB-ECMS, in which the con-
trol strategies are defined based on ‘‘if-then’’ rules for control
action, compared these results with dynamic programming,
and increase the accuracy of 1%.
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FIGURE 7. General Objective of EMS.

FIGURE 8. Classification of energy management system.

a: THERMOSTAT CONTROL STRATEGY
This control method uses the ICE and generator to produce
electrical energy via vehicle. ICE works at its maximum

efficiency point when it starts, although the SOC of the
battery is always maintained in between its pre-defined
upper and lower levels by simply turning on or off ICE.
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Ali et al. [22] implemented an RB energy management opti-
mization technique to activate the ICE at optimal fuel saving
mode during different standard drive cycles, to improve the
vehicle efficiency then it reduces the total trip estimated cost
by around 46%. Jalil et al. [23] applied an RB scheme to
control the split power among the battery and ICE for a
series HEV, in which the ‘Thermostat’ strategy improved
the fuel economy up to 11% in the urban driving cycle and
6% in the highway driving cycle. The parameter designing
optimization is proposed [24] to improve the vehicle econ-
omy and transmission ratio of the vehicle. Badjate et al. [25]
developed a split power-based efficient control strategy in
which fuzzy logic (FL) was applied to the interpretation
of driver command and driving situations. Gao et al. [26]
proposed an equivalent fuel consumption optimal control
of a series (EFCOCS) type of power split management
strategy [27], the combination of traction control system
(TCS) and power factor correction (PFC), in which TCS
offer the highest efficiency in the engine generator set while
PFC improves the battery durability by controlling SOC.
Kim et al. [28] proposed based on equivalent specific fuel
consumption (ESFC)with the continuously varying transmis-
sion. They determine the maximum system efficiency with
optimal values of parameters. These methods are generally
used in Series HEV.

b: POWER FOLLOWER (Baseline) CONTROL STRATEGY
This control strategy is reformulated on/off control algorithm
to deliver the added power and sustain battery SOC. In this
strategy, ICE is taken as the main Source. This strategy
is appropriate for both parallel and series-parallel HEVs.
Luo et al. [29] uses a combination of two control strategies
power follower control and DC-link voltage control to min-
imize the fuel economy of Series HEV. This method gives
better performance than individual control strategies.

c: MODIFIED POWER FOLLOWER-ADAPTIVE RB (ARB)
In order to improve the thermostat and power follower
technique, proposed an adaptive rule-based strategy. In this
method, a decision is performed stepwise. Johnson et al. [30]
proposed the adaptive-based real-time control method to opti-
mize the efficiency and discharges of a parallel HEV. This
strategy reduced the 23% NOx and 13% particulate matter
(PM) discharges at an expense of 1.4% in fuel economy.
Wipke et al. [31] proposed a modified baseline controller to
focus on its combination of forwarding and backward-facing
methodologies, and evaluates the model in terms of its design
objectives.

d: FREQUENCY-BASED APPROACH
Frequency-based strategy approaches for split power require-
ment at low and high-level frequency components to fulfill
the load demand. Kim et al. [32] proposed a frequency-
domain power distribution (FDPD) method to improve the
fuel budget via 5.9% and shrinkage the shoot emission via
62.7% for the engine and also reduced 23 % ineffective Ah

for improving the life span of the battery. Tani et al. [33]
focused on power management according to the dynamics
performance of the hybrid sources using polynomial correc-
tors to mitigate the transients of dynamic load.

e: OPTIMAL POINTS TRACKING
This method corresponds to the baseline control methods in
which the functioning point of the IC engine can be adjusted
easily. So that engine optimal functioning point, operation
line, efficiency portion, and system optimal operation point
are projected for series-parallel HEVs. Park et al. [8] applied
the direct search method to optimize the losses in power
flow and select the optimal power flow [34] point accord-
ing to the efficiency and emission. This strategy has the
advantage to control the battery power since the maps take
charging or discharging power, which is used as one input
data. Ahn et al. [35] formulated power-split architectures
and applied two control strategies, power split configuration
and mode switching configuration [36], for improving the
efficiency of series-parallel HEV. They compare the results
and verify them by simulation [37]. Andriollo et al. [38]
present the optimum design of an electrodynamic suspension
magnetic levitation (EDS-MAGLEV) transport system by
using global objective function at an analytical aspect of
system performance. The new definition is based on possible
object oriented language (OOL) transition in HEV during
a simulation. The power-split solution gives qualitative fuel
depletion improvement in comparison to the conventional
line tracking scheme.

2) FUZZY RULE-BASED METHOD
The fuzzy Rule-based control method is presented to energy
management in HEV. This strategy is more advantageous
due to its toughness to inaccurate dimension and component
modeling inconsistency besides its adoption. This strategy is
more applicable to multi-domain, non-linear time-changing
systems for example HEVs. Fuzzy logic has decision-making
properties, it is accepted to the analysis of a real-time &
suboptimal split power [39]. Basically, this is the addition
of deterministic RB-EMS. For example, Won et al. [40],
implemented fuzzy rule bases control strategies for torque
distribution and charge sustained in traffic situations for intel-
ligent energy management. Hannoun et al. [41] designed a
fuzzy controller [42], [43] according to the energy demand
by vehicle speed and SOC of the battery optimize the
energy consumption and condensed the pollutant emission.
Mohan et al. [44] worked on a fuzzy proportional differential
controller with respectably two input velocity & acceleration
and single output for incremental control effort. This FL
strategy is further divided as follows:

3) CONVENTIONAL FUZZY METHOD
In this method, the FL controller is used to perform basic
steps of fuzzy logic. These are tuned via an optimization
algorithm to full fill the control purposes for power manage-
ment like reduced fuel consumption, emission reduction, and
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maintaining the state of charge of ESS to enhance the driv-
ing performance. For example, Lee et al. [45] Implemented
FL control through the driving cycle strategy to accelerate
the pedal stroke and reduced the hydrogen up to 22% in
FCHEV [46]. While, Farrall et al. [47] control the powertrain
through legislation in the heat engine used in the hybrid
vehicle. Montazeri-Gh et al. [48] improve the fuel economy
and reduced its consumption upto 21% by using multi-input
FL control strategies. Pan et al. [49] and [50] applied a
wavelet-based FLC for multi-input EMS in a hybrid system
for a tracked bulldozer and verified the result in real-time.
Yuan et al. [51] proposed the power management through
stochasticity and fuzziness in solar power generation as well
as ship power load demand in his research and improve the
solar performance by reducing fuel consumption and CO2
emission. Chen et al. [52] proposed an FLC in EMS for a cer-
tain driving cycle and applied the multi-objective optimiza-
tion evolutionary algorithm to optimize the parameter [53]
of fuzzy function trims and semi-trapmf to improve the FLC
efficiency. Wu et al. [54] recognize driving cycle patterns to
improve the fuel economy through FL-based EMS. This pat-
tern is recognized by the learning vector quantizationmethod.
Schouten et al. [42] and Baumann et al. [55] proposed a novel
control strategy for FLC-based power management [56],
[57] in HEV and optimize all its components related to the
efficiency of the vehicle and also show that the strategy
justify the highly nonlinear multi-domain and time-varying
plant.

4) ADAPTIVE FUZZY METHOD
The performance of the conventional fuzzy method can be
further improved if the control parameters are adaptive for the
present operating point. Regarding the HEV, Tong, et al. [58]
applied adaptive fuzzy decentralized control technique to
estimate the unmeasurable non-linear function, which is
designed by back stepping technique and, the Lyapunov
function and average dwell time method are used for stabil-
ity. Chen et al. [59] considered the problem observer-based
adaptive fuzzy control for non-linear time-delay system and
the signals in closed-loop system are uniformly bounded.
Tian et al. [60] proposed adaptive FL used to adhere to the
deviation of SOC online and speed of the vehicle to find out
the degree of the engine’s output powers. Bathaee et al. [61]
proposed an FL-based torque controller [62] and opti-
mize the energy flow, generation, and conversion in the
individual component [56] of the parallel hybrid vehicle.
Li et al. [63] proposed strategy combined the logic threshold
and fuzzy control in which fuzzy control design based on
Improve Quantum Genetic Algorithm (IQGA) optimization
technique to improve the fuel efficiency. Fuel consumption is
decreased by 5.17 % by applying IQGA which gives a better
response than GA and QGA. Wang et al. [64] implemented
a novel real-time evolutionary FL-based EMS then applied
the GA for fine-tuning and optimization same. Wu et al. [65]
described a method to Optimize control strategy and
fuel economies of HEV using multi-objective self-adaptive

differential evolution. Wang et al. [66] used a fuzzy con-
trol method and DP method for reducing the time period
of cold start and energy consumption of warm-up process
respectively. Li and Liu [67] show overall efficiency of
an FC/battery hybrid vehicle is maximum for given driv-
ing cycles and results show that optimally controlled HEV
which can provide better fuel economy and enhance system
efficiency.

5) PREDICTIVE FUZZY METHOD
Predictive Fuzzy Logic controller works on prior knowledge
of driving a trip on a planned route to perform in real-
time but mainly drawback of its incapability to accomplish
real-time control task. Hajimiri et al. [68] used predictive
and protective algorithm (PPA) with FLC to extend the bat-
tery life. Montazeri-Gh et al. [54] described a predictive
optimized intelligent fuzzy control strategy based on traffic
condition recognition for fuel consumption and emission.
Niu et al. [69] presented a machine learning framework
for real-time driving cycle and trends, which is named as
neural network standard driving cycle (NN-SDC) and neu-
ral network driving trends (NN-DT). It is developed an
intelligent FLC strategy based on micro-controller frame in
HEV for determining the power consumption and emission
to improve the efficiency. To extend the battery range of
BEV here, Mohd et al. [70] applied integrated multimode
driving using FL enabled the adapting driving, which select
the parameter automatically through speed and reduced the
energy consumption by about 32.25%, and increase the driv-
ing range up to 4.21%. Yin et al. [71], analyzed a power
split mechanism and transmission efficiency of the EV based
on control strategies. Where torque distribution is realized
by FLC which is optimized by PSO. Ippolito et al. [72]
design a fuzzy clustering criterion-based controller with GA
to reduce the computational effort and improve efficiency
in energy management. Kamal et al. [73] investigated a
robust FLC tuned with NN for energy management with
battery fault detection and power distribution management.
Tao and Taur [74] designed a flexible difficulty-reduced PID-
like fuzzy controller which reduced complexity by reducing
the number of input variables. Chen et al. [75] developed a
machine learning (ML) algorithm ‘‘LOPPS’’ to study optimal
power combination in an EVs load variation then applied FL
according to LOPPS results to reduce power losses.

B. OPTIMIZATION BASED POWER MANAGEMENT
CONTROL METHOD
The main goal of the optimization-based power management
method is to find the optimal control consequences to mini-
mize the process cost above the particular time period. The
optimization-based methods can be divided into two cate-
gories: offline modemethod and online modemethod. Earlier
bibliometric expose that Optimization Based (OB) methods
clasp additional courtesy in the research field with a 56.7%
in compared to Rule-Based (RB) methods 32.9% [7]. More
details about each category are given below.
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TABLE 3. Taxonomy of rule based energy management strategies.

1) OFFLINE MODE METHOD
An offline Optimization-based method is belonging to
the non-causal and worldwide optimization-based method
because it needs a pre-information of upcoming driving
cycles. The significance of this type of strategy is that the
optimal solution is providing a standard solution for another
causal method compared to the other modified online strate-
gies. The offline strategies based on the problem- solving
approach can be distributed into four parts: direct algorithm,
indirect algorithm, gradient, and derivative-free Algorithms.

a: DIRECT ALGORITHM
The direct algorithm is used to solve the static optimization
problems by discretization. The commonly used algorithm to
solve the problem of energy management in the offline strat-
egy is dynamic programming (DP), which is originated via
Bellman in the 1950s. It is also called deterministic dynamic
programming (DDP) because it required prior knowledge of
the driving cycle.

b: DYNAMIC PROGRAMMING
Dynamic programming is proposed to resolve optimal control
problems in a non-linear system. It decays dynamic optimiza-
tion problems in an order of sub-problems by discretizing
original optimization time. DP applied by Pei et al. [76]
to find the equivalent marginal cost factor in ECMS.
Zahraeia et al. [77] considered temperature noise factor for
optimal EMS and improve fuel efficiency [78] and emission.
Sinoquet et al. [79] presented a real-time control strategy in
HEV to minimize fuel consumption and reduction in pol-
lutant emission. Marano et al. [80] and Tulpule et al. [81]
reduced the 1% fuel consumption in PHEV through DP in

comparison to ECMS. Skugor et al. [82] use fleet charging
method and show the DP optimization more successfully by
reducing the charging cost by more than 10 %. Pan et al. [83]
applied two methods RB projection partition method for
system efficiency and DP based optimization method to
explore the energy-saving factor in HEV. In which RB strat-
egy reduced 13.4 % while DP reduced 17.6 % energy con-
sumption. Zhang et al. [84] applied dynamic programming in
distribution to utilize all power users at variable load require-
ment. The author also shows a 20 % improvement in fuel
economy by DP [85]. Chen et al. [86] applied DP for design
standards and real-time implementation strategy in power
management to evaluate fuel-energy-loss-oriented (FE-LO)
and battery-energy-loss-oriented (BE-LO) in which battery
protection and fuel economy are used as a cost function.
Lin et al. [87] proposed a novel battery model and dynamic
programming-based energy management (EM) algorithm for
reconfigurable battery packs and optimal power distribution
to increase the battery lifetime in BEV [88]. Kessels et al. [89]
reduce the mathematical complexity and prior information of
driving cycle in DP and produce the optimal solution without
using prior road information, and improve the fuel economy
up to 25 %. Wu et al. [90] proposed the driving cycle-
based DP optimization technique for energy flow in range-
extended electric buses (REEB). It reduced the computation
time by 96.85 % but power consumption is 0.47% greater
than the traditional DP. Asus et al. [91] applied to optimize
the control parameter and found an operating point of the
engine to achieve longer durability. Sundstrom et al. [92]
discussed the hybridization ratio in torque assist and fuel con-
sumption is obtained by using DP for different hybridization
ratios.
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c: DETERMINISTIC DYNAMIC PROGRAMMING
Deterministic dynamic programming algorithm is based on
the concept of subdividing a non-linear dynamic optimization
problem into a discrete temporal sub problem, where a cost go
function is created at every step time. And the sub-problems
solve via a backward recursive technique or a forward DP
method to find the best control policy. Vinot et al. [93]
developed a global optimum design method for parameters
and component sizing in EV by discrete dynamic program-
ming. Extracting DP for optimal energy management [94]
design strategy to reduce the fuel consumption [95] and
optimal speed and power split strategy [96], [97] in HEV.
Wang et al. [85] proposed an optimal control method in
PHEV and develop a mechanism based on discretization
resolution variables and boundary issues and found 20%
development in fuel economy in comparison to the traditional
control strategy. Lin et al. [98] applied to extract DP rules to
design the power management control strategy in HEV for
optimal fuel consumption, reduction in emission and battery
constraint for SOC and provide the 45% higher fuel economy
than ICE truck.

The main issues of DDP are the high computation required
due to the quantization of conditions and control variables,
the essential expletive of dimensionality, and the reliance on
the driving cycle. These disadvantages make DDP incapable
of real-time application.

d: STOCHASTIC DYNAMIC PROGRAMMING (SDP)
The DDP-derived control law can only function as a detailed
driving cycle, and it may not assurance a degree of optimality
or a constant charge in different driving cycles. Additionally,
they advised that DDP is not implemented directly and the
rule extracting is a time taking process. To reduce these prob-
lems C.C. Lin et al. [99] applied SDD to model for Markov
chain process and optimal control firstly and Zeng et al. [100]
solved the formulated problem as a finite-horizon Markov
decision. Romans et al. [101] optimize the size of the storage
system & reduced the power distribution losses up to 24%.
Wegmann et al. [102] found 2.4 - 3.4% less battery energy
losses calculated in SDP than EECMS. Moura et al. [103]
applying the SDP for optimal power management in PHEV
to sustain the battery charging and configure the charging
station equipments as queuing theory based technique [104]
to improve the engine efficiency and reduce charging time.
Lust [105] approach iterative dynamic programming for a
relatively coarse grid for optimum and vector controls to find
the optimal policies for the next iteration. Gao et al. [106]
presented the direct heuristic DP with filtered tracking error,
to provide a solution for the optimum tracking control prob-
lem in the Henon Mapping chaotic system. Tate et al. [107]
optimize the consumption of fuel and tailpipe emission for
furnished HEV with a dual-mode electric variable transmis-
sion (EVT) and a catalytic converter. The SP-SDP controller
was capable to provide significantly better performance and
trade-offs between emission and fuel consumption [108].

Liu et al. [109] presented an optimal control strategy in
Hybrid electric high mobility multipurpose wheeled vehicle
(HMMWV) by using SDP, implemented in engine-in-loop
setup, to analyze the effect of transient on engine emission.
Opila et al. [110] developed a real-time energy management
controller to optimal performance in between fuel efficiency
and drivability for HEV. The SP-SDP-based controller is 11%
additional efficient in comparison to other controllers.

e: INDIRECT ALGORITHM
Pontryagin’s Minimum Principle (PMP) is known as an indi-
rect algorithm to solve the optimum control issues, which is
derived by Russian mathematician Lev Pontrygain in 1956 to
resolve the global optimization problem. It is the expansion of
calculus and the Euler Lagrange equation. The main advan-
tage of PMP is that the starting costate is the only calibration
parameter for a given driving cycle, which has a significant
impact on battery condition. But, it is not suitable in real-
time implementation because of starting costate is linked
to the driving cycle, and different driving cycles necessitate
different optimal initial costate values by which the size of
the look-up table grows exponentially and increase the high
computational load [111]. Lee et al. [112] developed a control
strategy based on PMP and found the best output result in total
energy consumption. Later revised Pontryagin’s minimum
principle algorithm was applied by T. Wu et al. [113] for
optimal control in minimizing fuel consumption to prolong
the life of lithium-ion batteries. Pérez et al. [114] discuss the
finite-dimensional optimization problem to solve the driving
cycle equation by PMP and resolve by a programming tool
the direct transcription approaches. The size of the table is
depending on the dimensions. Therefore, Hou et al. [115]
introduced the approximate PMP algorithm based on engine
fuel consumption rate, streamlining the Hamiltonian opti-
mization problem into convex optimization problem which
applied in-vehicle controller. Onori et al. [9] applied PMP
based adaptive supervisory control strategy in less driving
information to resolve the energy management problem and
improve the fuel consumption by about 20 % in compar-
ison to Optimal PMP, A-PMP, and CD/CS in the vehicle.
Rousseau et al. [116] presented the PMP-based heuristic
method in the free state for optimal control optimization,
which provide the approximately same result as DP in less
time. Zhang et al. [117] applied model predictive control
(MPC) scheme for real-time optimization in receding horizon
optimal problem. Kim et al. [118], describe the mathematical
analysis for inequality state constraints in necessary con-
ditions and provide a unique solution for HEV. In [119],
PMP algorithms based on instantaneous minimization of the
Hamiltonian are applied for real-time optimal control. And
provide the closely optimal power solution in HEV via prior
knowledge of future driving conditions and suggest to keep
proper costate in SOC of battery at desired and predefined
level [120]. Stockar et al. [121], minimize the CO2 emission
and utilize the optimal energy in PHEV by PMP. Chasse &
Sciarretta [122], presented a chain of tools to develop the
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EMS for hybrid power trains, to optimize the energy con-
sumption in a real-time environment. Xiao et al. [123] studied
the comparison of different energy management methods
for a parallel P-HEV and control methods are inferred at
different initial SOC of the battery. In terms of computing
efficiency, PMP-MPC approach shows a sizable advantage
over DP-MPC. In contrast to dynamic programming, PMP-
MPC generates solutions with total costs that are equivalent
to those of the globally optimum solutions (6.1% and 6.6%
departures from DP and PMP, respectively). In light of this,
the suggested PMP-MPC by Xie et al. [124] emerges as a
practical and appealing substitute for online predictive energy
management of plug-in HEVs.

Xie et al. [125] proposed an integrated control strategy
for optimizing power distribution in between the auxiliary
power unit (APU) and the battery. It is also compared with
different techniques to measure its performance in terms of
time efficiency and computational accuracy.

f: GRADIENT ALGORITHM
The gradient algorithm is to decreases the calculation time
and increases the toughness of the vehicle. This algorithm
is more sophisticated with a non-linear model of EVs and
HEVs. This algorithm is used as a derivative analytical
approach for an objective function. It solves the optimization
problem under mathematical conditions, for example by sat-
isfying the Lipschitz condition.

g: LINEAR PROGRAMMING(LP)
In the Linear Programming structure, the algorithms pro-
vide the key to optimizing the problems with linear objec-
tives functions, and constraints. Ripaccioli et al. [126]
developed a linear and piece-wise affine identification
methods-based hybrid dynamical model to illustrate the use
of hybrid modeling and MPC for advanced powertrain-based
vehicles. Wu et al. [127], proposed mixed-integer linear
programming (MILP) based EMS, which synthesized the
velocity trajectory via prior knowledge of the real-time traffic
condition for optimizing the fuel consumption. In this strat-
egy fuel saved around 10-15% over the binary mode strategy.
The MILP is a powerful tool for modeling and resolving
problems with continuous and integer variables [128].

h: QUADRATIC PROGRAMMING (QP)
A Quadratic Programming (QP) based EMS is also used to
approximate the powertrainmodel, resulting in a QP structure
that is determined by a quadratic cost criterion subject to
linear restrictions. It also starts in a quadratically constrained
multiple instance learning (MIL) algorithm. The quadratic
programming is applied in energy management over DP to
reduce the processing time and global solution in a large
driving cycle [129]. It is tested on Urban Dynamometer
Driving Schedule (UDDS) and Highway Fuel Economy Test
(HWFET) driving cycle via Zhou et al. [130] and found better
vehicle performance through optimal power management.
Constraint QP is applied by Gonsrang et al. [131] to solve the

powermanagement problem and found its performance based
on nonlinear MPC in power management. Xia et al. [132]
presented a quadratic performance index-based control
approach in split power HEV to reduce the fuel consumption
and it is also restricting the fluctuation of battery SOC.

i: SEQUENTIAL QUADRATIC PROGRAMMING (SQP)
SQP is an iterative approach for nonlinear controlled opti-
mization. SQP tactics on mathematical problems on which
the objective function and constraints can be separated twice
regularly. Oh et al. [133], design an SQP based control strat-
egy for multi variable optimization to find optimal value in
control parameters. The solution of the embedded optimal
control problem offers the non-linear characteristics solved
via a Sequential quadratic programming algorithm [134].

j: CONVEX PROGRAMMING (CP)
The optimization problem, which includes a function of cost
and inequity restrictions, may be addressed in both convex
and affinity forms. The optimization of fuel economy is seen
as a nonlinear convex problem (CP) to find the fuel efficiency
and analysis the system capabilities [135]. Said et al. [136]
described the CP and PMP for the energy management
and validate the analytical solution [137] by comparing the
obtained results by DP-based original model. Lu et al. [138],
proposes the multi-objective optimization problem to solve
the device power loss, battery current ripples, and quick
charge /discharge ability of ultra-capacitor to stable the dc
connection voltage by weighted method and no-preference
approach into a convex optimization problem with Karush-
Kuhn-Tucker (KKT) conditions.

k: DERIVATIVE-FREE ALGORITHM (DFA)
DFA algorithm applied to solve the optimization problem in
which derivative information is unavailable for optimal power
management. It can cover the global solution in comparison
with the gradient algorithm. The DFA for EMS found in the
literature is described below, which is mostly a metaheuristic
algorithm.

l: SIMULATING ANNEALING (SA)
SA emerged in 1983 via Kirkpatrick, influenced by the
method of annealing the metal. This algorithm uses the
stochastic search method to provide a better solution,
in which it selects the parameters after changing the objective
function. There is very little security to find the global
solution. Furthermore, repetitive annealing is exceedingly
sluggish, especially when dealing with computationally
expensive objective functions. Therefore, this algorithm is
used with the combination of another corresponding algo-
rithm to overcome these disadvantages. Delprat et al. discuss
the drawback of SA andDP and design an algorithm to reduce
the drawback of this optimization technique based on param-
eter control for the powertrain of HEV [139]. Hui et al. [140]
presented an adaptable Simulated Annealing-Genetic
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Algorithm (SA-GA) to boost the performance of the vehicle’s
with enhancing fuel efficiency.

m: GENETIC ALGORITHM (GA)
GA is a metaheuristic technique stimulated by the dynamics
of evolution. As the first population, it firstly suggests a set of
solutions (chromosomes). The results achieved from this first
population are evaluated against an objective fitness func-
tion. The finest solutions are required more time to develop.
Deb et al. [141] proposed the mutation and crossover-based
non dominated sorting genetic algorithm applied to find the
optimal solution in a computationally complex problem. The
sorting mechanism subpopulation of parents Pi & Offspring
Qi are evaluated via rank which indicates the conjunction to
the crowding distance and optimal Pareto set, which reflects
the diversification in solution [142]. The power tracking via
GA was adopted in the ADVISOR simulator to optimize the
fuel consumption and reduced 17.6% and 9.7% under UDDS
and HWFET driving cycle [143]. It provides the solution
precisely and avoids to trapped in a local abscissa. In [144],
GA optimized the component size of PHEV and reduced the
fuel consumption up to 24.38 %. The equivalent fuel con-
sumption minimization tactic discussed to find proper value
of conversion factor [122], Optimization in the propagation
of abrupt power fluctuation [145] and component size [146],
and parameter in EV [93], while data optimize for charging
station [147] for the entire region by GA to reduce the prob-
lem of excess driving distance. Li et al. [148], proposed the
combination of GA with ACA (Ant Colony Algorithm) to
acquire the optimal control parameters exactly and efficiently
remains an unresolved problem. Ma et al. [149], proposed a
robust optimization method for distribution path in EVs to
reduce the computational time [150] by GA, which resolves
the problem associated with the uncertainty factor in battery
charging and distribution of power in EVs.

n: MULTI-OBJECTIVE GENETIC ALGORITHM(MOGA)
The GA with an optimal Pareto result like MOGA can
be used to resolve the multi-objective optimization prob-
lems. A MOGA was applied to design parameters with
respect to fuel consumption, driving cycle performance [151],
and operating cost [152], [153]. The fuzzy clustering con-
dition with GA is applied to reduce the computational
effort and improve efficiency [72] and electric-assist con-
trol strategy (EACS) to curtail fuel utilization and emission,
with maintaining the vehicle performance requirement [154].
Poursamad et al. [155] minimize the fuel uses and discharge
as well as enhance the driving performance of the vehicle
by applying genetic fuzzy control strategy and performed
on New European Driving Cycle (NEDC), Federal Test Pro-
cedure (FTP), and the car driving cycle. Shahi et al. [156],
design a method for optimal control hybridization via Pareto
set pursuing (PSP) multi-objective optimization algorithm
and powertrain system analysis toolkit (PSAT) on a Toyota
Prius PHEV. This algorithm’s key advantage is that it takes
much less time than an exhaustive search.

o: PARTICLE SWARM OPTIMISATION(PSO)
PSO was developed in 1995 by Kennedy and Eberhart and
is concerned with the behavior of community creatures that
travel in clusters, for example, ant colonies and flocks of birds
in the wild. Participants of this group will exchange knowl-
edge and communicate with all others nearby, reviewing their
final finest location and the preeminent solution for the group
to achieve an optimal solution. Rule-based control strategies
are applied to optimize the fuel consumption for the decision
of driving torque demand by aDCWPSObased algorithm and
improve the fuel economy by 15.8% European driving cycle
while 14.5% worldwide [157]. The effectiveness of Unified
PSO justifies by comparing the result with the standard PSO
algorithm [158]. Wu et al. [159] proposed a Learning Vector
Quantization (LVQ) method based on driving cycle recogni-
tion for fuzzy energy management controller optimized by
PSO. It is also used to optimize the power-sharing in between
the source and component sizing [160] and optimal design
variables on a multi-route environment to wireless charging
for EV [161]. The fuzzy membership function and fuzzy
rules are optimized by PSO in torque distribution in EV for
split power management [71]. The various parameter of HEV
optimizes to perform a case study on the smaller size of
engine & motor, which provide the 22% improvement in fuel
economy [162]. Chen et al. optimize the threshold parameter
by PSO and reduce up to 1.76% energy loss in uncertain
driving cycles [163]. A predictive EMS is applied for EVs to
optimize the problems i.e. the minimization of battery con-
sumption, maximizing the temperature comfortable for the
driver cabin, and minimizing the travel time by PSO [164].
PSO provides the optimal solution for different cycles in the
revised RB strategy [165]. It is a faster, easy, inexpensive, and
robust stochastic global optimization technique [166]. The
extension of PSO is deal with a multi-objective optimization
problem, this method uses the concept of Pareto Dominance
and gives effective results as compared to another existing
multi-objective optimization [167].

p: OTHER ALGORITHM
The Game Theory (GT) method is used for economic energy
management by Dextreit et al. [168]. This method depends
on human nature for learning, understanding then action.
Yin et al. [169] proposed control strategies based on Game
Theory because the energy management is formulated as
a non-cooperative current control game, so the Nash Equi-
librium analytical method originate for a stable solution to
reduce the challenges in energy management by multi-source
hybrid energy system (HES). Younis et al. [170] proposed a
spreading sampling point-based SEUMREmethod to explore
the optimal global solution. This method is faster to get the
solution in the highly nonlinear problem than GA.

C. ON-LINE BASED STRATEGIES
The offline optimization-based method is not applied in a
straightforward way for an online (real-time) control strategy.
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The online control strategy is also called causal and local
optimization for the reason that these are not required pre-
information of the driving cycle. EMS strategies for real-time
optimization problems are simply because of limited compu-
tation costs andmemory resources. In addition, you can avoid
manual adjustment of control parameters. The realization of
an EMS for real-time optimization can be accomplished in
numerous ways. The ECMS and MPC are the famous EMSs
for real-time analysis and these have been widely used in
various applications.

1) EQUIVALENT CONSUMPTION MINIMIZATION
STRATEGIES (ECMS)
Paganelli et al. propose the renowned real-time optimization
EMSs known as ECMS which is the realization of offline
PMP. The global optimization problem reformulated into lim-
ited optimization issues by decreasing the total fuel consump-
tion. The equivalent fuel factor was evaluated by ECMS for
the analysis of the fuel consumption to charge the batteries.
The EF in ECMS has a similar character as costate in offline
PMP. EF is the main key point of ECMS because the control
performance of HEV is dependent on it.

So the researcher has focused on the estimation of EF in
EVs, dependent randomly on three factors: (i) SOC limits
of Battery, (ii) Information of driving cycle (iii) ESS Charg-
ing and discharging. Paganelli et al. [171], presented the
ECMS for PHEV, which provides the instantaneous power
split strategy to optimize the fuel consumption in between
ICE and electric machine by charge sustaining mode [172].
This is a real-time minimization strategy for estimating the
future driving conditions and can be improved the fuel econ-
omy by up to 1% [173]. Pisu et al. [174], analyzed two
different energy sources by power split algorithm in modi-
fied instantaneous ECMS for a Series Hybrid Vehicle. The
comparative result analysis between ECMS and DP-based
control strategy discussed by Marano et al. [80], that ECMS
algorithm gives the results on Blended Mode control strat-
egy at known driving distance. Musardo et al. [175], pro-
posed a real-time energy management control strategy by
adding the fly algorithm on the ECMS framework, known as
Adaptive-ECMS. It updates the controlling parameter peri-
odically as per the situation of road traffic and situation.
Velocity forecasting is also having a vital role in A-ECMS
to optimize the equivalence factor [176], by which it can
improve the 3% fuel economy [177]. Won et al. [178], con-
verted the multi-objective nonlinear optimum torque delivery
problem into a single objective linear optimization problem
by describing an equivalent energy consumption rate for
fuel flow frequency and battery charging. Onori et al. [179],
design feedback corrected strategies in the A-ECMS con-
troller, which is capable to generate a solution robust and
quasi-optimal. It consumes 1-2% more fuel in comparison
to another method. Li et al. [180], proposed ECMS based
Markov chain model to predict the future driving condi-
tion. Sun et al. [181] forecast the velocity by neural net-
work and combined with adaptive ECMS, by this strategies

fuel consumption reduced up to 3%. The chaining neu-
ral network (CNN) based velocity forecast discussed by
Zhang et al. [182] and reduced the fuel consumption up to 5%.
Payri et al. [183] describe a unique control approach for
optimum power management in HEV, in which the eminent
ECMS method upgraded by a stochastic estimation based on
past power demand in the vehicles for future driving patterns
and applied the S-ECMS method to obtain S parameters for
battery energy via log-likelihood ratio. Sciarretta [36] define
the equivalent factor for battery charging and discharging
on current energy depletion without knowing future driving
condition.

2) MODEL PREDICTIVE CONTROL (MPC)
BASED STRATEGIES
MPC is a famous technique used in industry to address
multi-dimensional constrained control problems. The main
purpose of its introduction is to address the DP algorithm
issues. When all future information is known ahead of time,
the DP’s global optimal control can be obtained. For real-
time applications, obtaining such conditions in advance is
not practical. Therefore, MPC ordinarily consists of three
core stages: (i) Measure the optimal control sequence in a
predictive horizon which minimizes the cost function subject
to constraints; (ii) Apply the first part of the derived optimal
control sequence for the physical plant; and (iii) Moving
the entire predictive horizon one step forward and repeat
step 1. Cairano et al. [184], applied an automatic control
via learning of driver behavior through stochastic model
predictive control with learning (SMPCL) method in power
management. Gomozov et al. [185], applied a computational
rate in MPC to provide control of dynamical parameters and
horizon prediction. Chaudhuri et al. [186], discussed a hier-
archical control strategy in which a higher-level controller is
considered to apply traffic signal information and the lower-
level controller provides the optimum velocity in an MPC
framework. Huang et al. [187], proposed a unique anti-idling
system for a service vehicle, where coordination in between
the different sources is compulsory for efficient operation.
In this strategy prior information is unavailable of driving
cycle [188], so it will work on the ordinary concept. Here,
MPC applies to increase the efficiency of the regenerative
auxiliary power system (RAPS). MPC algorithm applied by
Johannesson et al. [189], which use the feedback of vehicle
position and single nominal drive cycle. It improves the per-
formance by 0.3% over minimum attainable fuel consump-
tion at the studied route. Siampis et al. [190], design the
three MPC strategies (Linear MPC, nonlinear MPC- Real
Time Iteration (RTI), nonlinear MPC- Primal-Dual Interior-
Point (PDIP) for handling the different levels of complexity
and compare these strategies on different aspects then found
it NMPC-PDIP is the best control strategies in comparison
to other. Guo et al. [191], discussed a new formulation of
MPC for a continuous-time non-linear system. In the real-
time optimization, the GPM combined with MPC, and finite
horizon non-linear optimum control problem converted into
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a linear problem, which is solved by SQP algorithm. The
accuracy of the proposed method is higher than the Euler
method. Borhan et al. [192], proposed MPC-based full min-
imization strategy, where the power management problem
is divided into two parts. The first part is based on linear
time-varying MPC with a quadratic cost function to calcu-
late future control sequence, for minimizing a performance
index then applied for the implementation in the computed
control sequence. Trovao et al. [193], proposed an EMR
approach model for an effective EMS in EV. The joint opti-
mization technique for speed of vehicle and power manage-
ment is a large-scale non-linear problem [131] discussed by
Chen et al. [194] and improves the fuel economy by 6%-14%.
Stroe et al. [195] proposed a generic parameterization under
the certain assumption to control the energy flow for power
management, it is controlled by MPC strategy. Optimal EMS
is analyzed for plug-in HEV and reduces the average con-
sumption of fuel [196].

3) OTHER ALGORITHMS
a: EXTREMUM SEEKING (ES)
ES is a real-time adaptive optimization algorithm. ES method
may be used in a stationary non-linear system to find the
real-time extreme value efficiently. It is also called a
derivative-free algorithm, which is used to find the optimal
functional level in the output function. The objective function
is mandatory, to express a sliding surface for following a
time-accumulative function and the optimization parameter is
chosen by a discontinuous switching function. Bizon [197],
proposed the Global Extremum Seeking (GES) algorithm for
real-time optimization. GES operation improves the energy
efficiency up to 1-2.1% in comparison to Static Feed-Forward
(SFF) approach. The application of ESS is studied by using
a first-order high-pass & band-pass filter to control the
charging/discharging policy of the battery. The band pass
filter has the better ability to reduce the load dynamics and
improve the durability of ESS [198]. D. Zhou et al. [199],
proposed the fractional-order extremum seeking a method to
increase the fuel efficiency and durability. It is a more rapid
convergence speed and advanced robustness [198].

b: ROBUST CONTROL (RC)
Robust control (RC) aims at determining an output feedback
controller which minimizes fuel consumption. In estimation,
RC can handle parametric uncertainties, sensor noises, and
defects, assuring stability and toughness. However, RC can
only produce a sub-optimum result due to the translation of
a nonlinear time-variant system into a linear time-invariant.
P. Pisu et al. [200], discussed the comparative analysis of four
different techniques (Finite State Machine, H-Infinity Con-
trol, Adaptive Equivalent Consumption Minimization, and
Dynamic Programming) for Energy Management in a sports
vehicle. Zaher et al. [201], design optimal robust control
for real-time EMS. In this strategy, mechanical wastage is
used to regenerate the energy for the energy storage device

for later usage. This hybrid configuration reduces the fuel
consumption on the machine by 20-30% at different drive
cycles.

c: DECOUPLED CONTROL METHOD
Decoupled Control (DC) is a model-based control approach,
which applied to resolve competing performance targets, for
example, fuel efficiency, regulation, and drivability SOC.
By developing the dynamic model powertrain arrangement,
the battery regulator and drivability control decoupled by
using the constraint on power demand and vice-versa.
Chen et al. [202], investigated problems regarding fuel econ-
omy and vehicle speed in HEV. Besides this, it also analyses
the energy management strategy for the electric power train.
Here author separately analyses the optimization problem
for power train losses and the speed characteristics. Two
sliding mode controllers detached the DC strategy’s control
operations. In which, the first-order sliding mode precisely
regulates the dc-bus voltage with the modest voltage drip
caused by rapid load fluctuations, while the second-order
sliding mode produces less chatter and recovers earlier from
voltage losses.

d: PSEUDO SPECTRAL OPTIMAL METHOD
A pseudospectral control method is an additional modern
optimization-based mathematical method stretched to an
energy management system. A direct method resolves the
optimum control issues. In which PSOC set down an opti-
mum control problem into a nonlinear problem (NLP) by
parameterizing the state and control variables in a series
of collocation nodes using global polynomials. Li [203],
studied a low-temperature characteristic of HESS and its
structure for better utilization of power density of UC
by applying a logic threshold control strategy to decrease
the power loss. The pseudo spectral method has a bet-
ter control effect than the LTCS and has good real-time,
high reliability, and high-efficiency characteristics. Dosthos-
seini et al. [204], proposed direct method (Legendre, Cheby-
shev, and Haar Wavelets polynomials) to reduce the optimal
control problem with inequality constraints by orthogonal
function. This method does not require discretization of the
control problem. The PSOC was engaged in seeking the best
global results integrated into a logic threshold management
approach.

D. LEARNING BASED ENERGY MANAGEMENT STRATEGY
Learning-based EMS works on sophisticated schemes of
data mining for broad real-time and historical knowledge to
extract the maximum control legislation. The exact model
information is not required in the LB-EMS to decide on the
control. It is conversely challenging and time taking to estab-
lish an exact database whose configuration and size directly
influence the controller performance. Machine learning and
data-driven approaches are versatile and capable handle mas-
sive data sets under varying driving environments and drivers
outside.
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1) MACHINE LEARNING BASED EMSS
ML-based EMS is used widespread in Intelligent Trans-
port Systems. Boyah et al. [205], designed a neuro-dynamic
programming-based real-time controller to get the opti-
mum result in power distribution while computational com-
plexity and the resulting burden are very critical. The
Quality(Q)-learning-based vehicle learning system com-
bined with neuro-dynamic programming (NDP) discussed
by Liu et al. [206] to estimate expected energy costs in
near future. Yanqing et al. [207], developed an instance-
based machine learning algorithm to learn the rolling driving
condition that can be predicted by the k-Nearest Neighbor
(k-NN) algorithm. Venditti [208], addressed the performance
of cluster optimization & rule extraction (CORE) and cluster
extraction& rule optimization (CERO) and compare with DP,
and provide the almost same result with the small discrepancy
about 1.84% and 4.85 %. Langari et al. [209] implemented an
intelligent energy management agent (IEMA) whose role is
to assess the driving environment, by which learning vector
quantization (LVQ) network can efficiently determine the
driving condition within a limited time period of driving data.

2) REINFORCEMENT LEARNING (RL) METHOD
ARL framework contains two modules: a learning agent, and
an environment in which the learning agent communicates
with the environment continuously. At every point in time,
the learning agent obtains an assessment of the status of
the world. After that, the learning agent takes an action to
perform, which is later implemented in the environment. The
environment then shifts to a new state as a result of the action,
and the reward connected with the shift is calculated and
communicated back to the learner. The agent receives an
immediate reward along with each state change, to establish a
strategy of control that records the existing state to the appro-
priate control decision on a particular place. Deep Reinforce-
ment Learning (DRL) based EMS associate as a deep NN
with a conservative RL, called a deep Q-network. Recently,
some RL-based EMSs have been recorded. Lin et al. [210],
proposed RL technique for optimal power management in
HEV, without prior knowledge of driving cycle. It improves
the fuel economy up to 42%, while Lee et al. [211]obtain
that the RL-based approach is more suitable for a time-variant
controller with boundary value limitations. He and Cao [212],
proposed a restructured algorithm framework based on Deep
Q-learning (DQN) to obtain a better pedal’s control strategy.
The deficiencies in traditional approaches are discussed by
Liessner et al. [213] and offered a deep reinforcement learn-
ing framework to overcome these deficiencies. Deep RL is
capable to achieve optimal fuel consumption [214]. The prior
route information is not required as DP, so it can apply to line
vehicles [215]. Wu et al. [216], applied DP for split power
optimization, FLC for dynamically adjusting coefficient α,
and reinforcement learning applied as an online correction
algorithm to resolve the optimal control problem and obtain
4% improvement in fuel economy. Liu et al. [217], proposed

an energy management strategy based on a Dyna agent of
RL approach for optimizing fuel efficiency and improving
fuel economies. Here, the author made a relative analysis
of the one-step Q-learning, Dyna, and Dyna-H algorithms.
Xia et al. [218], proposed a real-world driving data-based
energy management to recover the energy consumption in
PHEV and reduce the computational complexity of the opti-
mization method, while the K-means Clustering method is
used to calculate the sensitivity of new factor to the energy
consumption.

a: NEURAL NETWORK BASED LEARNING METHOD
The learning approach based on neural networks is modeled
after human brain neurons. As with a real neuron, which
contains a plethora of connections, A neural network’s nodes
are objects with numerous inputs and outputs. Various kinds
of behaviors would bemodeled by involvingmultiple neurons
in layers that make a network. The three-layer neural network
optimization controller was designed for energy management
issues by Xie [219]. Raj et al. [220], proposed the loss model
control (LMC) and search control (SC) method for optimal
control and also discussed the different optimization tech-
niques such as ANN, FL, GA, Nature Inspired Algorithm
(NIA), an evolutionary algorithm.

The evolutionary algorithm discussed by Potvin [221]
addresses difficult vehicle routing problems in many dif-
ferent ways in which branch cut and price algorithms are
used to resolve the capacitated vehicle routing problem [222]
Baldacci et al. [223], discussed an innovative approach to
solve the vehicle routing problem and retract performance
and comparison analysis of a different exact algorithm for
the time window [224] with VRP and Capacitated VRP.
Huang et al. [225], designed an intelligent vehicle con-
trol system, which is based on both membership func-
tions and control rule base neural fuzzy network tuned by
mixed genetic/gradient parameter algorithm to obtain an opti-
mum control performance in the vehicle. This technique is
also used in the load-leveling strategy, which consists of
fuel economy and reduced emission for a different driv-
ing pattern [226]. Rubaai et al. [227], presented a train-
ing set for Fuzzy NN, which included different methods
such as back- propagation (BP), extended Kalman filter
(EKF), Genetic (GEN), PSO, and found the EKF is the
best learning method in pattern matching. Lee et al. [228],
define the ANN-based fuel economy as much better than
others and Power Split Ratio (PSR) technique is very sim-
ple and robust. Wang et al. [229] applied an Elman neu-
ral network (NN) in an optimal EMS, and reduced the
fuel consumption by 9.1% & 24.6% in comparison to logic
threshold & conventional ICE bus. Park et al. [230] devel-
oped an ML algorithm to learn the efficiency of different
road types and traffic jamming levels, as well as a neural
learning algorithm for learning the NN to forecast the road
type traffic jamming levels. These are all things processed
by the University of Michigan-Dearborn intelligent power
controller (UMD_IPC). Murphey et al. [231] developed an
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TABLE 4. Taxonomy of optimization based energy management strategies.
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energy optimization technique with ML framework tuned
all three online intellectual controllers, IEC_HEV_SISE,
IEC_HEV_MIME & IEC_HEV_MISE integrate into ford
escape hybrid vehicle for real-time performance calculation
and found IEC_HEV_MISE give the best performance by
saving the fuel consumption from 5% to 19% as compared to
ford escape controller. Long [232], studied the EKF for esti-
mation of the SOC [233] of the battery based on Stochastic
FNN. This model is used for the non-linear dynamic model
of battery and filter the effect of noise at the input. The online
SOC estimation of the Li-ion battery [234] is operated by
the adaptive Luenberger observer method and the function
parameter are optimized by the least square algorithm [235]
which are giving the better result in comparison others.

b: PATTERN RECOGNITION BASED EMSS
This method is based on driving cycle behavior which is part
of the Intelligent Transportation System (ITS). GPS has a big
role to identify the traffic condition and road map. Driving
behavior-based EMS have been reported. Marano et al. [236],
discuss the intelligent transport system, in which informa-
tion is given by different vehicles to everything, enables the
power management system for small & long distance power
splitting for improved fuel efficiency. The prediction mech-
anism for a piece of prior knowledge about future driving
cycles is discussed on the ML framework with the combi-
nation of DP [237]. Fan et al. [238], proposed a map-based
approach for optimal energy management to decrease con-
sumption and enhance the economies of parallel plug-inHEV.
Wu et al. [239],parallel chaos optimization algorithms are
used to optimize control strategy, instability of torsional [240]
as well as to minimize the cost, while an intellectual multi-
dimensional statistical method is used to discriminate auto-
matically the driving condition of HEV [241].

3) NATURE INSPIRED ALGORITHM BASED EMSS
Some nature-inspired new algorithms applied to EMS in
which the author discusses the results and application in
HEV/FEV. Hmidi et al. [242] presented the meta-heuristic-
based grey wolf optimization (GWO) algorithm for optimal
energy management on fuel consumption, CO2 emissionand
optimal gain absorb in the urban cycle is 13.9 % in compar-
ison to simple rule-based strategy. Improved binary GWO
and give the better experimental result in comparison to
the GA and PSO [243]. Multi-objective GWO is used to
minimize the power loss and voltage abnormality in the
supply system [244]. Ullah et al. [245] proposed the bio-
inspired Grasshopper-Optimization Algorithm and Cuckoo
Search Algorithm to reduce the energy consumption bud-
get, peak-to-normal power ratio, and quick time responses
because of different loads. Preetha et al. [246] proposed ALO
(Ant Lion Optimizer) to solve the energy management prob-
lem and also compare with GA, PSO, BAT algorithm, while
the Salp Swarm Algorithm is used to optimize the energy
consumption and cost [247]. Kayalvizhi et al. [248] applied
the firefly algorithm to optimize the power consumption from

the battery and devices automatically switching by dynamic
EDF based on allocated priority. Liu et al. [249] optimize
the real-time constraint to charge completion strategy by the
grey wolf optimizer method. Mohseni et al. [250] proposed
the Whale Optimization Algorithm (WOA) to reduce the
computational burden on microgrids for energy management
which is required lower iterations in comparison to PSO
and GA. This is also coordinate to energy management in
PV-BES units and electric vehicles [251]. Trovao et al. [252],
presented a technological approach for simultaneous opti-
mization by simulating an annealing metaheuristic for power
and energy management, for a supercapacitor and battery,
in the electric vehicle. Bagherzadeh et al. [253] proposed
Salp Swarm Algorithm (SSA) to decrease the objective func-
tion of the problem to determine the optimal location and
capacity of RES.SSA optimizer showed its preeminence with
great attitude and correctness in problem-solving of renew-
able distributed generators (RDGs) and shunt capacitor banks
(SCBs) [254]. Deb et al. [255] proposed the Chicken Swarm
Optimization (CSO) with Ant Lion Optimization (ALO) for
efectively resolve the and efciently coping with the charger
placement problem.

4) OTHER ALGORITHM FOR EMSs
a: NEURO-FUZZY METHOD
Neuro-fuzzy is a term used in artificial intelligence to
describe a method that combines fuzzy logic and artificial
neural networks. Mascioli et al. [256], proposed a control
technique to optimize the energetic flows via a neuro-fuzzy
approach with the vehicle state especially of their energy
consumption in HEV.

b: ACTION-DEPENDENT HEURISTIC DYNAMIC
PROGRAMMING (ADHDP)
An algorithm for approximative dynamic programming is
action-dependent heuristic dynamic programming. It is not
necessary to have a system model that is explicit. use the
Action and Critic, two neural networks. Over a predetermined
period of time, this plan can minimise a specific Utility
Function. Hui et al. [257] examined issues regarding lowering
average cost over a period of time for electric vehicles by
proposing a strategy to optimally control vehicles in a het-
erogeneous vehicular network. An ecological adaptive cruise
control for HEV in the car, following scenario to optimize
the fuel consumption. As well as ADH-DP in adaptive cruise
control (ACC) is used to optimize and maintain the velocity
and inter-vehicle distance in normal driving conditions [258].

c: SHUFFLED COMPLEX EVOLUTION (SCE) ALGORITHM
This algorithm developed by Duan et al. is useful for
calibrating hydrological models. This approach, a type of
differential evolution (DE), is effective because it uses geo-
metric operations to look for potential optimal solutions to
space parameter problems. Chen et al. [259], studied an
adaptive tracking control, for nonlinear stochastic systems.
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TABLE 5. Taxonomy learning based energy management strategies.

The shuffled Complex Evolution (SCE) algorithm resolves
the waiting time problem in the optimization model of the
charging station [260].

d: MEMETIC ALGORITHMS (MA)
Memetic Algorithms are known as evolutionary algorithms
that use local search technique rather than global search
technique to refine individuals. Memetic Algorithm (MA) is
used to reduce fuel consumption and emissions [261].

e: DIJKSTRA’s AALGORITHM (DA)
Dijkstra’s technique use to determine the shortest path
between any two graph vertices. In [262] Tribioli, presented

Dijkstra algorithm (DA), which is much more computation-
ally efficient than any other optimization technique.

f: COYOTE OPTIMIZATION ALGORITHM
Pierezan and Coelho debuted a brand-new meta-heuristic
Coyote Optimization Algorithm (COA) in 2018. The algo-
rithm is based on how the coyote adapts to its sur-
roundings and exchanges experiences with other coyotes.
Fathy et al. [263], discussed the Coyote Optimization Algo-
rithm which moderates hydrogen consumption by 38.8% in
comparison to the EEMS technique and got the first ranked
in between GWO, SSA, GOA, MVO, GA, PSO, and EEMS
based on the lowest hydrogen feeding.
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TABLE 6. Pros and cons of various types of energy management strategies and its application.

V. DISCUSSION & OUTLOOK
In light of the previous section’s analysis, it is clearly seen
that researchers have made significant efforts in the field of
EMSs for HEV and FEV, with promising outcomes.

However, the recent rapid developments in the application
of smart transportation systems, developing innovations in
powertrain components, and computational methodologies
have created tremendous opportunities to improve EMS per-
formance. With the current evaluation of renewable energy
charging systems and new communicative techniques like a
vehicle- to- vehicle (V2V), vehicle-to-infrastructure (V2I),
and Automated connected vehicle (ACV). Auspicious poten-
tial required to unleash for additional development in driving
performance and fuel budget. Hence, this segment looks at
perspectives that haven’t been discussed before and have
received little attention but could be expected as future
research directions in this field.

To that purpose, an overview of vehicle configuration and
their application of HEV has been shown in Table 1 and
found that traditional ICE vehicles generate high greenhouse
gas emissions and low-efficiency drivetrain. IC Engine also
suffered with the inherent and pronounced delay in torque
production [264]. Hence IC engine revved-up by torque fill-
ing and boosting to achieve maximum power and torque.
Electric automobiles are much quicker than their combustion

counterparts [265]. This is due to the fact that electric automo-
biles can create high torque right away, whereas combustion
engines must acquire speed to achieve that torque. So that
vehicle transmuting in electric vehicles, have an alternate
solution [63]. Ever since Lohner Porshe, developed the first
HEV in 1901. HEV technology has gotten a lot of attention
in terms of research and development, but when people talk
about the benefits of HEVs, they typically forget the draw-
backs, like; limited range, low power, expensive costs, main-
tenance costs, batteries. The current state of the HEV power
management approach is summarized from the standpoints of
real-time implementation and optimum forecast capabilities.

RB-EMS seems to be the only method that has demon-
strated successful capabilities in commercially implemented
real-time systems, however, it falls short of providing the opti-
mum solution. OB-EMS overcomes the inherent drawback
of RB-EMS through an optimization control approach. In the
same way that offline OB-EMS are being challenged in terms
of their application in online use due to computational burden.
Table 6 lists the benefits and drawbacks of the primary EMS
under investigation.

It has been observed that none of them can address all
of the control objectives’ criteria at the same time. There-
fore, numerous researchers have used different optimization
algorithms to enhance EMS performance by combining their

VOLUME 10, 2022 121703



A. K. Gautam et al.: Hybrid Sources Powered EV Configuration and Integrated Optimal Power Management Strategy

complementing qualities. In terms of optimization, it appears
that the majority of the research has emphasized the usage
of older algorithms (Eg. PSO, GA, and SA) for OB-EMS
control. However, the literature has more than 40 different
nature-inspired algorithms [266]. There are a plethora, black
widow [267] of novel algorithms that have not been used in
the EMS optimization sector among EVs.

In terms of optimization, incorporating more recently
developed algorithms into EMS applications, particularly
MPPT in solar PV-based FEV, would be a promising field
of research. The introduction of a new algorithm will help in
the field of computational cost, efficiently handling complex
multiple objective cases in the direction of extremely neces-
sary raw data that are received at the input of any intelligent
EMS.

The offline EMS aims to reduce worldwide fuel usage.
Even though they cannot be directly deployed in real vehicles,
they serve as a benchmark for other EMS and receiving
modified online EMS. As ITS technology has advanced,
driving cycle prediction has become increasingly crucial in
predictive EMS. They are more adaptable and perform better
than other EMS. In addition, infrastructure that can recognize,
save, and combine datasets of traffic paths, vehicles, weather,
road signs, preceding cars, speed, and other factors at the
same time and use them for forecast purposes should be
explored. Finally, EMS can be expanded to include multi-
time scalar multi-vehicle interactions as well as several infor-
mation layers.

The use of the OB-Algorithm in conjunction with machine
learning techniques can help speed up the evaluation of larger
space out EMS. In this aspect, thanks to the new smart
devices, EMS now considers a fleet of vehicles rather than
a single vehicle when interacting with the smart grid and
optimizing charging rates. The primary goal of these initia-
tives is to boost road capacity and overall performance in
all aspects. These methods are mostly used in heavy-duty
applications. like: city buses. It is expected that groups of
passenger vehicles would be thriving research topics in the
future.Whichwill be the designing EMS framework for smart
and sustainable city concepts.

The discussed item can be summarized in an inte-
grated EMS (i-EMS) concept which included the level of
information (like: Data from the server, ITS, V2V, V2G,
GPS& Traffic Lights), Time Horizons, and the number of the
vehicle (Transportation Level). Integrated EMS can be con-
sidered various integration possibilities for future research
trends: Waste Heat Recovery (WHR) System. Some dynamic
behaviors, including battery temperature, catalyst tempera-
ture, engine out temperature, and engine cold start circum-
stances, can have an impact on the WHR system.

The proposed methods for incorporating the investi-
gated components into an optimal power control problem,
previously utilized effective methodologies require the devel-
opment of high-fidelity models that include the engine
and battery’s dynamic transient behavior. Self-learning and
model-based control systems that can autonomously decide

the best control settings on the road would be a solution to
the shortcomings of a typical EMS based on quasi-static and
map-based models, in the coming years.

The integration of several control layers into a concrete
holistic EMS framework will be one of the future research
trends. The inclusion of eco-driving into an EMS for the
double vehicle level thru an Adaptive/Predictive cruise con-
trol approach as at multiple vehicles platooning warrants
consideration as a potential field in the coming years with
the support of cyber-physical systems.

VI. CONCLUSION
According to the review, many researchers are becoming
more interested in the design features of powertrains and
EMSs for hybrid and electric vehicles. To address con-
trol goals such as decreasing fuel consumption and emis-
sions, preserving ESS charges, and increasing drivability and
vehicle performance, many topologies for powertrains and
associated EMSs have been suggested. In creating energy
management techniques, there is a trade-off between opti-
mality and execution. The advantages and disadvantages of
different optimization techniques & algorithms are shown
in Table 3, 4 & 5. All energy management techniques are
influenced by the driving cycle, and the application of all
the optimization methods is shown in Table 6. The first
time, focus on intelligent transport systems for improving the
vehicle performance and uses the recently originated meta-
heuristic algorithm inspired by nature. In light of current
advancements in smart and information-basedmethods, it has
been suggested that new frameworks/algorithms, communi-
cation ideas, technologies, and infrastructure be incorporated
into the design of an EMS to overcome existing uncertainties
and attain real-time robustness.
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