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ABSTRACT Estimated vital signs might include a variety of measurements that can be used in detecting any
abnormal conditions by analyzing facial images from continuous monitoring with a thermal video camera.
To overcome the limitless human visual perceptions, thermal infrared has proven to be the most effective
technique for visualizing facial colour changes that could have been reflected by changes in oxygenation
levels and blood volume in facial arteries. This study investigated the possibility of vital signs estimation
using physiological function images converted from thermal infrared images in the same ways that visible
images are used, with a need for an efficient extractor method as correction procedures that have used datasets
that include images with and without wearing glasses or protective face masks. This paper, summarize
thermal images using advanced machine learning and deep learning methods with satisfactory performance.
Also, we presented the evaluation matrices that were included in the assessment based on statistical analysis,
accuracy measures and error measures. Finally, to discuss future gaps and directions for further evaluations.

INDEX TERMS Thermal images, features extractions, vital signs estimation, evaluation matrices.

I. INTRODUCTION

Many clinical applications have included vital signs estima-
tion for monitoring an individual based on physical or mental
health. These vital signs estimation, such as measurements
based on pulse rate, heart rate (HR), blood pressure (BP),
blood glucose, respiration (breathing) rate (RR), oxygen sat-
uration (SpO2) and temperature variations are among the
most important indicators to predict abnormal conditions,
including the detection of chronic illness progression for
identifying patients at risks [1], [2]. For this reason, delay-
ing seeking appropriate treatment may have serious conse-
quences not only for themselves but also for their families
and communities. Previous studies have shown an increase
in research trends particularly for vital signs estimation as
an effective marker, specifically using facial imagery such as
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facial thermography [3], [4], [S]. The facial region is highly
suggested because direct confrontation in social interaction
and communication that makes it possible for measuring vital
signs using the facial region has been identified to be the best
way of conveying valuable information such as the state of
our organs without stressing on the facial skin area [6].

For this purpose, varied vital signs estimation is essentially
needed because the assessment of vital signs differs according
to gender, age, body compositions and pathological develop-
ments in organ systems depending on the manner of their use
[7], [8]. For instance, prior research has suggested developing
monitoring systems that require the use of temperature vari-
ations in addition to the selection of vital signs measurement
to achieve the highest accuracy readings in addressing human
states [2]. In this case, instead of relying on the attachment of
sensors to skin patients in any part of the body where blood
vessels are close to the skin’s surface which may result in
pain, discomfort, stress, infection risk and invasiveness, most
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TABLE 1. Infrared spectrum classifications.

Classification Infrared Spectrum Wavelength Range (um)
RIRMV Near-infrared 0.7-1.0

Far-infrared 15-1000

Short-wave infrared 1-3
TIRMV Mid-wave infrared 3-5

Long-wave infrared 8-15

Thermal infrared 8-14

continuously vital signs monitoring nowadays are contactless
and noninvasive sensors that are painless and more securely
even for the infant’s skin. Due to the fact that these contact-
less and noninvasive vital signs estimations are beneficially
helpful for clinicians, medical practitioners or researchers
from misdiagnosis of their patients, several factors includ-
ing the cost and specifications of the equipment, effective
approaches for enhancing the facial analysis, contribute in
rarely being able to produce satisfactory results with more
than 80% correctness and a lack of knowledge about temper-
ature and humidity evaluation as well as expectations about
uniform indoor environment conditions without realizing that
there may be any spatial variances, have been the reason
for limiting the use of infrared images compared to natural
colour images [4], [9]. As a result, further research using
infrared images which applied advanced approaches from the
emergence of computer vision, Machine Learning (ML) and
Deep Learning (DL) has given inspiration over time.

Facial thermography is known as facial thermal infrared
imaging that was formed from the procedure of mapping
the skin temperature of the body regions based on Planck’s
law of radiation, Wien’s displacement law, Kirchhoff’s radi-
ation law and Stefan-Boltzmann’s law [10], [11], [12]. Many
existing infrared spectrums can be accessed from a distance
and used for capturing facial thermography, including Near-
Infrared (NIR), Far-Infrared (FIR), Short-Wave Infrared
(SWIR), Mid-Wave Infrared (MWIR), Long-Wave Infrared
(LWIR) and Thermal Infrared (TIR) [13], [14]. As shown
in Table 1, these infrared spectrums can be classified as
Reflected Infrared Machine Vision (RIRMV) and Thermal
Infrared Machine Vision (TIRMYV). However, most of the
image representations using RIRMYV are reflected on natural
objects, making TIRMYV easily observable using a specialized
Forward-Looking Infrared (FLIR) video camera, which has
significantly suggested better results. In general, a passive
TIRMV does not transmit harmful ionize radiations, making
it very sensitive and reconfigurable in complete darkness
without the need for active illumination in both controlled,
semi-controlled, or uncontrolled environments [15].

Fig. 1 shows an overview study of facial thermography
using passive TIRMV. It can be seen that the uniqueness of
thermal pattern has the highest correlations with temperature
variations present on the face that is produced by an internal
body temperature that is controlled by the automatic nervous
system, whereas the heat increases the extensibility of soft tis-
sue and causes hemoglobin to release oxygen into tissue [16].
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FIGURE 1. An overview study of facial thermography.

Besides, it can also be influenced by physical states, the
external and internal environment (hot or cool), physiological
factors, emotional distress, skin or fat thickness, blood flow
and climate changes [11]. Thus, it is important to follow
standard lab settings hence minimize the probability error as
well as to maintain excessive movement to ensure consis-
tency, which has a remarkable effect on vital signs estima-
tions [7]. It’s interesting to observe how various applications
have demonstrated vital signs estimations that subjects must
complete based on three scenarios: (1) the measurement is
only performed once during the experiments; (2) the measure-
ments are carried out before and after the experiments; and (3)
the effects of performing in the before, during and after the
experiments are studied. Most importantly, all assessments
are monitored from continuous consecutive video frames to
achieve the best estimation.

For a better understanding of how to make uses ther-
mal infrared in the physiological function images to analyze
pathophysiological abnormalities, various papers from dif-
ferent publications have been considered, including Google
Scholars, IEEE Xplore, MDPI, Science Direct, Springer and
others. As a result, after defined inclusion and exclusion
criteria, the collection of papers for the study is based on
“facial thermography”’, ““facial thermal datasets”, ““contact-
less physiological signs monitoring™, “feature representa-
tions” and ““deep learning applications in medical fields”.

The main purpose of this paper is to review existing facial
thermography applications, as well as to extract facial feature
extractor information and the accuracy of vital signs estima-
tion. The remainder of this paper is structured as follows:
section 2 discussed the feature extraction of thermal imaging
to allocate shape and its facial Region of Interests (ROIs).
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Section 3 explored vital signs estimations and their existing
application. Section 4 suggests evaluation matrices to validate
the studies. Section 5 analyzed the current research gaps.
Section 6 discussed the future direction of works. Finally,
section 7 draws a conclusion about the study.

Il. FEATURE EXTRACTION OF THERMAL IMAGING

In this paper, it can conclude feature extraction procedures
can be divided into three main categories: data preprocessing,
feature extraction methods and computational models. Also,
we highlight the importance of feature extraction methods in
an attempt to solve face recognition problems specifically in
thermal domain.

A. DATA PREPROCESSING

It is inspiring to observe feature extraction from existing
and own datasets containing images of individual subjects
with or without wearing glasses or protective face masks.
Most existing experiments prefer to request their subjects
to remove their makeup, glasses and protective face masks
to facilitate the process of locating facial ROIs positions
and prevent important information loss around specific facial
areas [17]. Recent studies have shown insufficient evidence
to support the implementation of extractor methods to solve
the problems with subjects wearing glasses or protective
face masks during the experiments. This could explain why
several researchers have purposefully included their subjects
wearing glasses or protective face masks to evaluate the
preciseness of their purposed methods [18], [19].

Because the human face varies in shape and size, as well
as head poses and orientations that make it difficult for
extracting facial features from infrared images, data prepro-
cessing is necessary for thermal imaging as the first step in
the experiments. It makes sense when most of the texture,
contexture, colour and edge information is completely lost,
especially in low quality infrared images which could be
the reason why specialized extractor methods are required
in the thermal domain [20], [21]. A lot of effort is pulled
in to coordinate the features in visible images by mapping
them onto infrared images. The data fusion technique has
been introduced in an attempt to combine both visible and
thermal images to produce a more informative feature than
the original thermal images [22], [23]. This technique has
proven helpful although the percentage of visible images is
lower than that of thermal images. But, it may become com-
plicated if different wavelengths from different sensors are
implemented. Another study presented in [24] used Gradient
Weighted Class Activation Mapping (Grad-CAM) technique
to maximize the visualization of thermal images for use in
the facial feature extraction process. Different backgrounds
were also employed in the experiments, although there was
no significant difference in the results whether a neutral or
non-neutral background was used, except for vital sign esti-
mations to examine how the facial pattern changed [9], [25].

There are a total of twelve standard effective colour fea-
tures that can be utilized to portray temperature distribution
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FIGURE 2. Facial region of interest.

from thermal imaging [26]. Indeed, in an attempt to highlight
which colours are most suited to exploit, it has been discov-
ered that seven colour palettes are commonly selected for
the representation of facial thermography, including contrast,
iron, gray, lava, arctic, wheel and rainbow [27]. Because
of these varying coloured infrared images, a normaliza-
tion or binarization process was used to transform thermal
images into grayscale images to reduce the effect of blur-
ring, illumination, noise and to minimize computational time.
As previously stated, Contrast Limited Adaptive Histogram
Equalization (CLAHE) is a popular technique for the normal-
ization process [28], [29]. The normalization or binarization
process is performed because most texture extractor methods
are preferred to use grayscale images to solve the issues of
imbalanced displacement, rotation and scale in the image.

B. FEATURE EXTRACTION METHODS

It has been observed that after correction procedures in data
preprocessing phases have been applied, four different types
of state-of-the-art extractor methods such as facial tracking
method, feature based method, appearance based method
and colour based method may be suggested to improve the
extraction of facial features in the same ways as natural
colour images have been used as presented in Table 2. Based
on the analysis, it may be useful if facial imaging includes
measurements of either globally features from the entire face
or locally features focused on the segmented ROIs such
as eyes, nose (maxillary), cheeks, mouth (open and close)
and forehead (supraorbital) for human health conformation
[28], [30]. These features can be extracted automatically
with the use of a computational algorithm or manually using
bounding box coordinates or sliding window methods [8],
[29]. A review suggested that there are around a total of
fifteen local facial features that can be identified from the
four primary facial parts, as shown in Table 3. In general,
it can be noted that these four main regions are frequently
discussed by researchers as their primary facial parameters
before further analysis is carried out. Fig. 2 illustrated local
features in infrared images that were mapped or fused from
visible images to compensate for the loss of important facial
information.
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TABLE 2. Local facial features.

li/)[(g;ztc(l)sr Author Database Descriptors Classifiers Significances
Facial [2] 10 subjects (7 male, 3 female) RetinaFace - RetinaFace achieved 99.95%
tracking correctness in tracked face images.
method [18] 7920 facial images (7285 subjects  UltraLight, Retina Face, - Yolov3 outperformed with a mAP value

[33]
(3]
[32]

[34]

[35]

Feature based
method

[31]

[38]

[9]
(4]

[39]

(28]

[42]

[43]

[36]

Appearance
based method

[44]
[29]

[45]

[14]

(48]

[19]

Colour based
method

[27]

with masks, 635 subjects without
masks)
50 subjects

28 subjects (4 male, 24 female)

12000 facial images (7 male, 12
female)
30 subjects (18 male, 12 female)

15 subjects (14 male, 1 female)

IRDatabase' (2935 facial images)
[37]

17 children (9 boys, 8 girls)

IRDatabase' (2935 facial images)
[37]
12 subjects (7 male, 5 female)

RGB-D-T based face recognition
(51 subjects, 15300 images) [40]

KTFE database (26 subjects) [41]

EmotionTable datasets
(10000x4 features)

50 subjects

(500 facial images)

Equinox HID face database
(3244 facial images) [36]

160 subjects

(79 male, 81 female)
EmotionTable datasets
(460800x4 features)

IRIS thermal/ visible face
database® (20 subjects without
glasses) [46]

17 subjects (578 thermal images),
Terravic facial IR database* (20
subjects (hat, glasses)) [47]

IRIS thermal/ visible face
database® (1320 images without
glasses) [46], Own database (1320
images without glasses, 880
images with glasses)

Lab database (39 subjects with
glasses), UND database (82
subjects without glasses)

10 subjects (1000 facial images)

Yolov3, LFFD
Ensemble of regression tree

Particle filter-based object
tracker

Harris corner detector,
SIFT, SURF, ORB
Minimum Eigenvalue
detection (Shi-Tomasi),
KLT

TLD predator algorithm

AAM, DAN, ShapeNet

Viola Jones algorithms

LBP, HOG, DSIFT

Haar cascade algorithm

Hu’s moment invariants,
histogram statistics
HOG

Adaptive Quantization of
Local Directional
Responses Pattern
(AQLDRP)

MACE, OTSDF, PCA,
normalized correlation,
LFA (Facelt)

GLCM

GLCM

Gabor filters, FastICA
Haar wavelet transform,
LBP

Edge orientation

histograms, co-occurrence
matrices

Gabor wavelet transform
(GWT), face pattern words
(FPWs)

Statistical

SVM, KNN, LDA,
NB, RF, BDT

CNN

SVM

SVM, KNN, Tree

SVM, LDA, KNN
SVM, KNN, Tree
SVM

ANN, minimum
distance

BGMM

0f 99.3% and precision of 66.10%

The nostril tracking is employed to
minimize mislabeled nose regions
Speed up tracking region of
measurement between frames

The SIFT detector achieved the lowest
displacement of the nostril area.

The proposed methods achieved better
results for nose localizations to monitor
breathing patterns.

The enhanced TLD tracker can trace the
mouth and nose in the facial area.

The DAN methods are the most accurate
for detecting face landmarks with a
precision of 65.7%.

The Viola-Jones with probability error
is more accurate in locating the facial
ROIs.

The proposed methods only yielded
better results for four different emotions.
The Haar cascade algorithm can detect
human faces and extract ROIs for
further analysis.

CNN classifiers outperform in all face
recognition rates, including head pose
(98%), expression (99.40%) and
illumination (100%).

The SVM polynomial kernel has the
highest accuracy of 87.50%

The HOG and Fine Gaussian SVM
outperform with 63.50% correctly

The AQLDRP works better in
preserving facial feature information at
partitioning mode of 4x2

The proposed methods outperform for
no eyeglass thermal face images

SVM achieved the highest accuracy
value of 89.37%

The Weight KNN performed better with
best scores of 99.10%

Results reported that SVM (linear
kernel) classifiers obtained an average
recognition rate of more than 96%.
Results reported that only own datasets
have the highest accuracy of 95.09%

BGMM outperforms for benchmark
dataset with 96.02% and its own
collected datasets with 95.33%.

The GWT was utilized to generate the
FPWs (FPW; FPW,,). The hamming
distance is then calculated to identify the
two FPWs.

The colour feature is adjusted to
enhance image representation.

'https://github.com/marcinkopaczka/thermalfaceproject

*https://vap.aau.dk/rgb-d-t-based-face-recognition
Shttp://vcipl-okstate.org/pbvs/bench/Data/02/download.html
*http://vcipl-okstate.org/pbvs/bench/Data/04/download.html
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1) FACIAL TRACKING METHOD

Similarity positions can be utilized in experiments to monitor
a range of heads posed using frontal infrared images rather
than non-frontal images such as left and right images, partic-
ularly for facial tracking to reduce positional biases [20], [31],
[32]. The facial tracking method has been proposed to reduce
the head motion caused by the subject’s face movement. It is
because certain experiments allow their subjects to freely
move their head and body in any direction as long as the
subject’s head positions can still be captured by a thermal
camera. The global facial tracking method is noticeable in
the studies proposed in [2] and [18], with the use the DL-
based object tracking method to track the entire face image
with or without wearing a protective face mask with nearly
99% correctly as compared to local facial tracking that may
use nose area in studies described in [3], [32], [33], and [34].
It differs from previous studies in [35], which deliberately
included the nose and mouth regions because the airflow
mainly gets in and out of those regions. In any case, the nose
area is the most desirable in several applications, such as RR
monitoring is likely to observe temperature variations in the
nostril area.

A closer look reveals that the use of the local facial tracking
itself is unsatisfactory. For example, as Hochhausen et al.
[3] describe, the proposed tracker was coupled with a state
transition model and an observation model to optimize the
manual process of selecting the ROIs with a labeled region
of measurement. Reference [32] uses an active contour algo-
rithm to the expected location produced by four categories of
detectors, namely Harris corner detector, Scale Invariant Fea-
ture Transform (SIFT), Speeded Up Robust Features (SURF),
Oriented Fast and Rotated Brief (ORB). The use of four
distinct detectors helps in the localization of ROIs in low
quality thermal images with satisfactory results. According
to Basu et al. [34], adopting Minimum Eigenvalue detection
with Shi-Tomasi is insufficient unless combined with the
Kanade Lucas-Tomasi (KLT) to track changes by minimizing
the dissimilarity between consecutive face frames. Similarly,
Chauvin et al. [35] discovered that the ROIs loss problem
can only be overcome by combining the proposed detector
module into the Tracking, Learning and Detection (TLD)
predator algorithm, although it is time-consuming. Thus, this
situation explains why tracking local features is considerably
more difficult than tracking global features, although a lot of
work on thermal imaging has been done.

2) FEATURE BASED METHOD

Because of the complex structural facial features in thermal
images, advanced approaches are necessary, notably when the
sample image size varies. It could explain why frontal images
require advanced approaches to allow for the localization and
classification of facial thermography specifically by using
a feature based method. Instead of using shape template
matching, which has been found in many works in thermal
images, an effective solution based on facial thermal feature
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TABLE 3. Feature extraction for facial thermography.

Main Eacml Location of Facial Features
Regions
Head Right forehead, left forehead, right chin, left chin
Eyes Right periorbital, left periorbital, right cheek, left cheek
Nose Tip of the nose, right perinasal , left perinasal
Mouth Upper lips, lower lips, right jowl, left jowl

points, which is a set of points used to extract face image
segments using the Dlib landmark detector can be recom-
mended [38]. This procedure is more accurate than the Haar
cascade algorithm, sensitive to head movements and perhaps
limited to no head motions by locating all the connections up
to 68-81 position points in the face from the forehead to the
jaw, including detecting the eye, nose and mouth regions [20],
[39]. In addition, it is interesting to see the experiments that
have been conducted in either a restricted or unrestricted
environment, but the reasons why most of these extractors
will eliminate pixels that do not correspond to facial features,
such as the background area or the hairy part of the face due
to the acquisition of meaningful relationships.

The implementation of extractor methods is not restricted
to only one because several studies have successfully tested
their datasets for global features with the use of two or
more extractor methods. To discover which extractor method
is most suited for appropriately shaping facial images,
Kopaczka et al. [31] have chosen an Active Appearance
Model (AAM), Deep Alignment Network (DAN) and Shape-
Constrained Networks (ShapeNet) as their face detection
algorithms. DAN method is outperformed with less runtime
per frame because it is trained with the updated detecting face
bounding box (bound-DAN) and the landmark feature points
for the shape update (shape-DAN). For automatically classi-
fied emotions, features like Local Binary Pattern (LBP), His-
togram Oriented Gradient (HOG) and Dense SIFT (DSIFT)
have been applied [9]. As a result, DSIFT and linear SVM
outperformed four basic emotions than HOG-SVM, which
performed better for eight distinct emotions than the human
classification rate. Reference [28] has fused the first five
Hu’s moment invariants and histogram statistics to classify
the four different emotions. The findings demonstrate that
the experiment can only perform better when combined with
a multi-class SVM classifier. Other research in [36] consid-
ered Minimum Average Correlation Energy (MACE), Opti-
mal Trade-Off Synthetic Discriminant Function (OTSDF),
PCA, normalized correlation, Local Feature Analysis (LFA
(Facelt)) to address the problem with and without wearing
eyeglass in low and high resolution thermal images. However,
OTSDF outperformed both before and after eyeglass removal.
For no eyeglass detection, OTSDF is more effective for low
resolution face sizes than LFA (Facelt) is best for higher
resolution face sizes.

The suggested solution to the problem may lead to different
results while aiming for the same goals of preserving facial
feature information. Still, some extractors only obtained
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approximately 60% accuracy in [31] and [42] and less than
50% in [9] when trained with a variety of parameters. These
proposed methods are barely achieving satisfactory results
because consideration of varying expression and the effect
of head movement mainly in [9] and [31]. The reason is that
the facial expressions are spontaneous and humans often mis-
classified the actual expressions into negative feelings [49].
Hence, a new modification approach is needed to accurately
distinguish real emotions that reflect actual thoughts at that
moment.

3) APPEARANCE BASED METHOD

Human faces have a broad range of appearance and
expressiveness, which could explain why there is textu-
ral variability amongst them. Feature extractions under the
appearance based methods are diverse and mostly contain
multiple extractors with an effort to reduce the number of
dimensions of feature space. The appearance based meth-
ods have been proposed to extract any relevant informa-
tion from an image in addition to more correctly analyzing
skin textures. These methods can be classified as statis-
tical, structural, signal processing based and model based
[50]. It also has advantages and drawbacks depending on
the application domain. As a result, several criteria must be
considered in selecting the optimum extractor methods, this
should include a quality metric, which is an image qual-
ity features such as sharpness, tone and colour that may
be used to quantify the quality score [51]. Most prominent
appearance extractors such as Gray Level Co-Occurrence
Matrix (GLCM), LBP, Gabor filters, Fast Independent Com-
ponent Analysis (FastICA), Binarized Statistical Image Fea-
tures (BSIF) and many others, prefer grayscale images rather
than coloured infrared images for minimizing computational
time. Recent studies have inspired the implementation of
appearance based methods directly on colour visible imaging,
which has resulted in better results with some modifications
to obtain all possible colour channel relations [52]. Therefore,
it would be a good practice to consider this method for colour
thermal imaging in dealing with texture problems.

4) COLOUR BASED METHOD

Colour based method have been used in thermal imaging to
monitor the smallest changes in heat energy to distinguish
the presence of hotspots for several parts of facial ROIs.
Notably, researchers are working with raw infrared images
from thermal cameras and some examples have transformed
the images using selective colormaps or heatmaps to extract
colour information from the image. Meanwhile, [24] per-
formed colour correction procedures by using statistical anal-
ysis to adjust the RGB colour channels to find the mean and
standard deviation values to ensure that no overlapping colour
exists to lessen the effects of environmental and illumination
variations.

C. COMPUTATIONAL MODELS
The differentiating extractor methods are ineffective until
combined with additional classifiers such as the advanced
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ML and DL methods in evaluation. Based on research trends,
one possible explanation is that most existing computational
models, such as ML algorithms have been widely used
in feature extraction. According to studies, Support Vector
Machine (SVM) classifiers either in linear, radial basis func-
tion, quadratic or polynomial kernel have been frequently
implemented in object detection due to their ability to manage
data with high correlation, faster classification and produce
highly accurate results in the range of 80-100% accuracy
[28], [44], [45]. As confirmations of the studies, classifiers
such as Random Forest (RF), Linear Discriminant Analysis
(LDA), K-Nearest Neighbors (KNN), Bayesian Generalized
Gaussian Models (BGMM) and others have been employed
to verify the effectiveness of extractor methods. Nonetheless,
KNN and BGMM classifiers can also provide the highest
accuracy rate of more than 90% correctly in [29] and [48].
It differs from the studies presented in [31], where their exper-
imental analysis achieved less than 70% due to the reasons for
the implementation of RF classifiers and additional extractor
methods that they have proposed, even with using the same
size datasets as proposed in [20].

Researchers have searched into other prominent compu-
tational models, such as DL methods which are powerful
image processing methods that employ multilayer neural
networks. It has achieved outstanding performance in the
cases where the evaluation was performed during training
and testing with varying datasets size. These DL methods
have gained popularity because they can accelerate the pro-
cess of automatically analyzing faces with high accuracy and
low error rates while requiring less average training time.
There are limits to distinguishing facial appearance with
dissimilar poses, expressions and subjects wearing glasses
or protective masks, which has encouraged researchers to
select DL methods as the best possible solutions. Previous
work has shown that the implementation of Artificial Neural
Networks (ANN) and Convolutional Neural Networks (CNN)
has proven the most effective in recent years [14], [39]. So,
it can be concluded that even though similar datasets were
used in the experiments, the proposed methods and the num-
ber of parameters used in the experiments could demonstrate
varying performance depending on the type of classifiers
employed to continue improving the accuracy of the analysis.

D. THE IMPORTANCE OF FACIAL FEATURE EXTRACTION
FOR THERMAL IMAGES

As discussed above, facial feature extraction is necessary
for the designed experiment. Automatically detecting global
features from the whole face or local features will be very
difficult with an inability to find faces from a wide variety of
input thermal images that are typically in low quality images
that are prone to be blurry. At the same time, it is challenging
when the complexity remains within the face images due to
the unique features of each human that vary from person to
person with different size and shape even if it has the standard
anatomical positions ROIs. There are many available features
method that still suffers more on non-frontal images the
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unrestricted experiments since they can only achieve highly
robust performance when they are used only on frontal view
image. There is also an interest in the pixel size of the actual
standard input image that needs to be taken into considera-
tion. Because many studies have reshaped the input images
into a smaller uniform size due to the consequences of the
processing time required for the training process [24]. Here,
it is worth mentioning that the characteristics of an image and
the advantages of extractor methods that employ ML and DL
are among the most important element in the process whereby
many strategies for image enhancement can be adopted.

Many feature extraction methods have been devised to
accurately extract facial thermography. In all experiments, the
algorithm has been improved to resolve the face recognition
issue. As we can see, each of the categorized extraction meth-
ods such as the facial tracking method, feature based method,
appearance based method and colour based method has its
effective ways of addressing the issues dealing with faces
by proposing different approaches for different tasks. It may
be understandable that based on the comparison of these
methods, many papers suggest the reasons why adopting a
different method could be a good practice to allow more
contribution given for a better more accurate analysis.

As opposed to single feature based methods, a great deal
of progress has been made by implementing multi-feature
based methods to find out if it may be the best solution in
obtaining textural information and vital signs information.
Unfortunately, the issues concerning the current success of
these multi-feature based methods on how they can offer a
promising alternative to the nature of the thermal imaging
problem that required more work to be done to improve image
representation. This excellent performance may not be accu-
rate as visible imaging with 100% accuracy, however, it can
be used as a possible solution in addressing facial features
problems. The combination of single feature methods like
appearance, colour and shape deformations through the use
of facial tracking and feature based methods as multi-feature
based can provide more precise findings and there are remain
under research. Previously, the fusion of appearances and
shape deformations was formerly the popular multi-feature
based method, as opposed to the fusion of appearances and
colour features. Even though some works claimed there was
no significant difference for the inclusion of colour features
in appearance, other works demonstrate the association of
both colour features and appearance can help in achieving
satisfactory result. It may be concluded that the multi-feature
based is the best effort in figuring out the optimal feature com-
binations that can be utilized to increase the face recognition
score.

Ill. VITAL SIGNS ESTIMATION

Literature searches for vital signs estimation using ther-
mal infrared imaging with selected vital signs parameters
and additional biosensors signal processing methods seem
to be highly limited from previous works. However, with
advanced technology and computational algorithms such as

VOLUME 10, 2022

Video frame

Facial ROI Evaluation
matrices

l I

Classification

Feature
Representation

Signal
Preprocessing

Filtered Signals Results

l T

Deep learning
methods

Signs estimation

FIGURE 3. Process flow of vital signs estimations.

DL methods as well as continuous research, it is technically
possible to address these challenges with the purpose to
extract meaningful patterns of estimated vital signs in classi-
fying an individual’s physical or mental health, as presented
in Fig. 3. This section will summarize existing research work
that can provide suggestions for the future direction of the
research.

A. PHYSIOLOGICAL SIGNS MEASUREMENTS

The advantages of thermal infrared imaging in estimating
contactless and noninvasive vital signs are not limited to
measuring temperature variation, it can also be used in com-
bination with other measurements such as pulse rate, HR,
BP, blood glucose, RR and SpO2 depending on the purpose
of the studies. However, temperature variation, HR and RR
are the most commonly used as an indicator of severe illness
in thermal infrared applications [53]. Other measurements of
vital signs are also significant in detecting abnormal changes,
but the reasons why it has continuously been the least fre-
quently measured are still unclear. All of these estimations
may incorporate physiological feature changes in human
emotions, stress, environmental effects, before and after per-
formed workload activities as well as security measures that
can be utilized to detect fake faces for liveness detection [4],
[22], [54]. Humans are homeotherms with the capability to
maintain a constant temperature [8]. A constant body temper-
ature can be achieved by balancing heat generation and heat
loss. The normal body temperature is lower in the morning
(35.5°C) than in the evening (37.7°C) and it rises when there
is a fever. Human skin temperature contrasts with core body
temperature because the highest temperatures are recorded on
the head, neck and torso, followed by the lowest temperature
from the limbs to the acral regions.

Visualizing the temperature colour distribution in corre-
lation to vital signs such as HR, which is responsible for
pumping blood throughout the body. The process of oxy-
hemoglobin (HbO2) and de-oxyhemoglobin (Hb) generated
by heartbeats during the measurements might cause Heart
Rate Variability (HRV) to be higher or lower. BP can be
observed when there are substantial differences in blood
volume. Normal BP was reported to be 90/60 mm Hg to
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120/80 mm Hg. It may reflect blood flow when the heart
is contracting (Systolic Blood Pressure (SBP)) and relaxing
(Diastolic Blood Pressure (DBP)) which were extensively
required in clinical assessment [1].

Pulse rate refers to the number of heartbeats per minute,
which is considered to be between 60 to 100. It is related to
BP in conditions when there are subtle changes in skin colour
resulting from facial arteries that carry pulse signals from the
heart. Surprisingly, pulse signals can travel slowly inside the
face regions [54]. It may be explained that when some facial
images will have a higher temperature in the forehead and
another set of facial images will have a higher temperature in
the chin areas.

The RR is another form of vital sign estimation. The
number of breaths per minute is used to analyze the breath-
ing pattern [55]. Normal breathing rates for healthy adults
averaged around 12 to 18 breaths per minute. However, it is
often employed in respiratory analysis, for instance to verify
whether they are normal, apnea, bradypnea or tachypnea
[33], [53]. This RR should be measured consistently and
accurately when other vital signs are investigated. SpO2 has a
significant important role in common individual survival and
is extensively utilized in evaluating respiratory dysfunction.
Normal blood oxygenation levels range from 95%-100%, but
when oxygen saturation drops below 90%, it is considered
low and may result in shortness of breath or hypoxemia
[1]. Blood glucose is a biochemical analysis that measures
the sugar concentration in a blood sample [44]. It may be
affected by the pancreas, which can either produce insulin or
not in the body which can be leading to hypoglycemia and
hyperglycemia of blood glucose levels [56].

B. BIOSENSORS SIGNAL PROCESSING METHODS

Biosensors signal processing methods, both invasive and non-
invasive, have been applied for vital signs extraction to ensure
the accuracy of measurements, as illustrated in Table 4.
In these cases, invasive biosensors are placed directly on
specific body parts, whereas noninvasive biosensors are used
without any contact and are typically placed in locations that
allow for continuous vital signs signal extractions. HR signals
can be extracted using noninvasive biosensors methods with
the use of the thermal camera, laser Doppler blood-flow meter
[57], Photoplethysmography (PPG) sensor [2], [5] as well as
invasive methods like the finger-tip photo reflector [58], and
Electrocardiography (ECG) sensor [59]. In contrast, RR esti-
mated from multiple biosensors has been used to prove the
validity of vital signs predictions. As invasive methods for
RR, the Encephalan respiratory belt sensor [59], force-based
chest respiration belt [2], thoracoabdominal respiration sen-
sor [60], respiratory monitor belt (Vernier RMB) [53], [61]
and Philips IntelliVue MP30 monitor [3] can be adopted.
Then, there are noninvasive RR biosensors such as the ther-
mal camera, Helios spirometer [34], 10-GHz respiration radar
[57], 10-GHz microwave radar [58] and MS Kinect depth sen-
sors [62]. In the experiments involving SpO2 measurements,
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TABLE 4. Biosensors methods.

Vital Signs Biosensors signal processing methods

HR Thermal camera, finger-tip photo-reflector, laser
Doppler blood flow meter, ECG sensor, PPG sensor
RR Thermal camera, Encephalan respiratory belt sensor,

force-based chest respiration belt, thoracoabdominal
respiration sensor, respiratory monitor belt (Vernier
RMB), Helios spirometer, 10-GHz respiration radar,
10-GHz microwave radar, MS Kinect depth sensors,
Philips IntelliVue MP30 monitor

Sp0O2 Pulse oximeter sensor, Philips IntelliVue MP30
monitor

Pulse rate PPG sensor

BP Sphygmomanometer, PPG sensor

Blood Glucometer (blood sample), Olympus auto analyzer,

glucose hyperinsulinaemia glucose clamping procedure,

continuous subcutaneous glucose monitor
Thermal camera, COZIR temperature/ humidity
sensors, microbolometer sensor, Atmo-Tube sensors

Temperature

invasive methods such as pulse oximeter sensor [58] or
Philips IntelliVue MP30 monitor [3] were utilized.

For pulse rate estimation, it may use an invasive PPG
sensor placed on the index finger [59]. The same apparent
for estimated BP, which may favor the need for an invasive
PPG sensor [63] and a sphygmomanometer [64] to analyze
the level of BP. In general, standard biochemical invasive
methods such as glucometer can be used to collect blood glu-
cose [44]. It differs from the research proposed in [64], which
might include an Olympus auto analyzer and the research
proposed in [56], which uses a hyperinsulinemia glucose
clamping procedure and a Continuous Subcutaneous Glucose
Monitor (CGM) in their biochemical analysis. Measuring
temperature variations using noninvasive biosensors was not
limited to the use of the thermal camera. It can be found in
studies that have included additional sensors such as COZIR
temperature/ humidity sensors that were used to monitor
the ambient conditions that were close to the subjects [4],
microbolometer sensors to record thermal patterns [24] and
Atmo-Tube sensors to measure environmental humidity [65].

C. VITAL SIGNS EXTRACTION

As shown in Table 5, various studies have presented the use of
only one or multi-parameter vital signs measurements to mea-
sure physiological changes in adults or children using ther-
mal infrared technology. Importantly, their research findings
highlight how they attempt to solve problems and how their
proposed solutions may improve results with a lower error
rate. Existing clinical applications based only on statistical
analysis or DL approaches will be discussed in this section.

1) HEART RATE EXTRACTION

a: STATISTICAL ANALYSIS

Contactless heart rate measurements using facial thermal
imaging can be found in [66] whereas the Laplacian pyramid
has been used as a spatial filtering method to boot the signal-
to-noise ratio for each video frame. Next, the Fast Fourier
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TABLE 5. Vital signs estimation and its applications.

PhySl.O logical Applications  Author Database DL Matrices Significances Limitations
signs approaches
HR Effective state [66] 22 male subjects - Accuracy measures  Only whole faces have a 92.46% The estimated HR appears to be less
detection (aged 22-55 years) accuracy rate for HR readings accurate than the referenced HR for
several subjects.
[67] 512 images - Accuracy measures  HR signal is best filtered using the Excessive movements could result in
(19 male, 13 female) enhancement filtered methods the unidentified vessel segments
RR Remote medical  [61] SC3000 dataset (40 subjects, CNN-based Statistical analysis, =~ CNN-based SR was proposed to A larger sample size with automatic
diagnostics 3600 images), Lepton dataset SR error measures improve the accuracy of RR ROIs selection is necessary to validate
(31 subjects, 720 images) estimations. the study.
PACU [3] 28 subjects - Statistical analysis Three different breathing rate were Difficulties in distinguishing
monitoring (4 male, 24 female) used to measure oxygen insufflation breathing patterns in particular
and no insufflation. situations.
Stress recognition [68] 8 subjects CNN Statistical analysis Deep CNN with 5-layer networks The inclusion of several stress
(3 female) achieved an accuracy of 56.52% for parameters could contribute to a
multi-class and binary accuracy of reduced accuracy rate
84.59% for stress assessment.
Hyperventilation [34] 30 subjects - Statistical analysis The spirometer results were used to The hyperventilating assessment’s
detection (18 male, 12 female) distinguish between normal and side effects.
hyperventilating breathing patterns
In-home [35] 15 subjects - Statistical analysis Breathing rates were monitored in The difficulty in obtaining consistent
telerchabilation (14 male, 1 female) four different conditions, each with readings due to the untracked face
different tasks. features
Apnea detection  [53] 16 subjects (16 for the first - Statistical analysis, The selected RR estimators were The thermal gradient between the
experiment, 12 for the second error measures used to evaluate RR signals based on ~ human body and the environment was
experiment) two different biosensor methods. the essential thermal-based method.
Temperature Anomaly [69] Male subjects (4976 normal, VAE Statistical analysis The proposed VAE was successful in -~ Only the male gender ages are being
detection 195 anomaly) detecting abnormal skin temperature.  examined.
[70] Male subjects (1920 normal) VAE Statistical analysis,  The proposed methods were effective A large number of data is required for
accuracy measures in detecting abnormalities for daily validation.
assessment at each hour
Autism spectrum  [71] 100 subjects (400 images Customized  Accuracy measures  The customized CNN is the best for Because the deeper the networks, a
detection (50 autistic, 50 non-autistic)) CNN, ASD classifications with an accuracy ~ larger number of sample datasets is
ResNet 50 of 96% and sensitivity of 100%. desired for evaluation
Healthcare [27] 10 subjects (1000 facial GoogLeNet Statistical analysis, ~ The facial thermal feature has the Few subjects did not accurately
monitoring images) accuracy measures highest accuracy for both high and predicted due to the misclassification
too low body temperatures problem
Anti-spoofing [72] 100 subjects (60 male, 40 - Accuracy measures  Spoofing attacks have been The temperature readings in the
detection female) successfully detected in liveness mouth area is less accurate because of
detection using facial images the beard
Effective state [24] IRDatabase' (1782 facial IRFacExNet  Accuracy measures  The IRFacExNet model with the Additional techniques must be
detection images) [37], Tufts Face Snapshot ensemble achieved 88.43%  considered for improving the accuracy
Database (565 images, 113 for IRDatabase and 97.06% rates and image misclassifications
subjects) [73] accurately for Tufts Face Database

[74] USTC-NVIE dataset ET- Accuracy measures ~ The ET-CycleGAN can recognize The findings are limited by the small

(105 subjects) [75] CycleGAN emotions by preserving the expression  sample sizes in the datasets
of the mouth.

[76] USTC-NVIE database (1891 DBM Accuracy measures  The proposed DBM outperforms the Huge sample size datasets are needed
samples) [75], Equinox HID face mixDataset with 68.2% accuracy, to enhance the accuracy of the
database (1264 samples) [36], while the only NVIE database has emotional classifications.

MAHNOB laughter database 62.9%. accuracy.
(10364 samples) [77]
[78] 12 subjects ANN Statistical analysis, =~ The ANN classifiers successfully The deeper networks are necessary if
(6 male, 6 female) accuracy measures identified the workload tasks with additional samples are added to
98.9% accuracy for individual produce the best classification results.
subjects and 81% for all subjects.
HR, RR, Emotion [59] 50 subjects (aged 18-35 years, FFNNs, RF Statistical analysis, ~ The FFNNs produced the best average ~ The experiments included a smaller
pulse rate recognition women=65.0%) accuracy measures,  accuracy of (70% + 0.8%) when sample size of the participants
error measures compared to RF classifiers
HR, BP Healthcare [63] MIMIC-II datasets (900 data FCN Statistical analysis, ~ The PPG signals successfully Various signal preprocessing methods
monitoring instances) [79], IRDatabase' error measures estimated HR and BP with the are needed to enhance the raw PPG
(2935 facial images) [37] addition of FCDNN signals.
RR, ICUs [80] Datasets 1 (26 subjects, 3900 YOLOV4, Statistical analysis, ~ The YOLOv4-Tiny performed better The challenge in extracting RR
temperature ~ monitoring images), Dataset 2 (6 subjects, YOLOv4- accuracy measures,  when analyzing the impact of different  signals as a result of movement
1920 images) Tiny error measures levels of disturbance. disturbances.
Physical [62] 25 experiments The two- Statistical analysis The mean regression coefficients fora  Temperature changes may be longer
activity (per individual) layer neural lower temperature is -0.162°C/min due to an increase in air flow volume
network and for frequency load is -0.72 bpm.
HR, RR, Physiological [81] L-CAS thermal physiological - Statistical analysis, ~ The proposed systems were effective The RR and HR showed less
temperature ~ motoring monitoring dataset® (5 subjects, error measures in detecting any physiological changes  satisfactory results because of the
3000 images) [82] in unrestricted conditions. head movements during the
experiments.
HR, RR, Infection [58] 83 subjects (35 influenza NN, Statistical analysis,  Various vital sign estimations were Only the male gender is being
Sp0O2, disease and patients, 48 normal control) k-means accuracy measures included to assess the level of examined.
temperature  fever screening clustering influenza infection
radar systems method
Blood Diabetes [56] 24 subjects - Statistical analysis Only aware group has a higher The aware group has a higher glucose
glucose, BP,  Mellitus (10 aware, 14 unaware) hypoglycemia symptom score and level compared to the unaware group.
pulse rate, higher adrenaline (epinephrine) levels
temperature
Blood [64] 62 subjects - Statistical analysis, ~ The SBP of the DM group positively Only seven body regions have
glucose, BP, (27 male, 35 female) accuracy measures,  correlates with age and negatively positive values for the 95%
temperature error measures with skin temperature of the forehead,  confidence interval (CI) measure

eye and ear.

under the lower bound group

*https://lcas.lincoln.ac.uk/wp/research/data-sets-software/lcas-thermal-physiological-monitoring-dataset/.
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Transform (FFT) and zero crossing were used in the spatio-
temporal filtering to filter HR signals. The findings were
compared with the ground truth obtained from PPG signals
and the Complement of Absolute Normalized Difference
(CAND) index based on the measurements from the detected
ROIs in the whole face, the upper half of the facial and the
supraorbital area.

Reference [67] tracked the vessel segments in the fore-
head region using iterative closest point tracking methods
for the HR estimations. Three filtering methods such as
FFT, wavelet-based, and a combination of wavelet-based
and blood perfusion enhancements were utilized to filter HR
signals based on the physiological responses to normal, mild
pain and mild exercise. The reference ECG signals with the
estimated HR from facial thermal-based were analyzed to
find the optimum filtering methods for the estimated HR.

2) RESPIRATION RATE EXTRACTION

a: DEEP LEARNING METHODS

Kwasniewska et al. [61] retrieved raw RR signals from low-
resolution thermal images using the average and skewness
aggregation operators before filtering them with the fourth-
order Butterworth Filter (BF). To enhance the accuracy of the
estimated RR for both datasets, the CNN-based Super Res-
olution (SR) models were proposed and evaluated with the
Eulerian Video Magnification (EVM) algorithm and bicubic
interpolation.

Cho et al. [68] exploited RR signals to automatically assess
stress levels based on breathing patterns from collected ther-
mal video using a thermal gradient flow tracking algorithm.
A Power Spectral Density (PSD) function was included to
recover RR signals from a short period video before it was
then augmented using a unidirectional sliding copper with a
square window and evaluated using CNN based models. The
5 layers of CNN and Shallow Learning (single layer network
with varying level RR) were used to evaluate the performance
of the DL approaches.

b: STATISTICAL ANALYSIS

Hochhausen et al. [3] have monitored patients in Post-
Anesthesia Care Units (PACUs) to assess RR signals derived
from video thermal and body surface ECGs. The second-
order BF was applied to filter raw RR signals and was
computed using the three estimators function. However, only
the estimated RR from video thermal is better with lower
correlation coefficient values.

Basu et al. [34], demonstrated estimated RR by manually
selecting facial ROIs using a bounding box and facial tracking
detector. The raw RR signals are then filtered using a Low
Pass Finite Impulse Response (LPFIR) filter to minimize
noise caused by the head, body movements or atmospheric
disturbances in the thermal images. The estimated RR is
computed based on the number of peaks (exhalations) and
crests (inhalations) in one complete breath cycle. The normal
RR was obtained from the Slow Vital Capacity (SVC) test and
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hyperventilation was recorded from the Maximum Ventilator
Volume (MVYV) test.

A similar is apparent for Chauvin et al. [35] used bounding
box and facial tracking detectors to manually locate facial
ROIs for RR monitoring. A low resolution of FFT with a
quadratic interpolation is applied to compute RR from ther-
mal video using the Hann window approach. The acquired
results were then compared with the respiration belt data
using analog voltage readings to analyze the breathing rates.

Ruminski [53] proposed detecting apnea by extracting
raw RR signals with fourth-order BF filters. To analyze
the RR pattern signals, four types of RR estimators were
utilized to determine the frequency value and evaluate the
respiration frequency spectrum based on thermal-based as
estimated measurements and pressure belt-based as reference
measurements.

3) TEMPERATURE VARIATION EXTRACTION

a: DEEP LEARNING METHODS

The findings, which primarily use basic parameters such as
temperature variations have been observed in anomaly detec-
tion applications using the deep generative models, namely
Variational Autoencoder (VAE) [69], [70]. This model is
comprised of an encoder and a decoder, which help minimize
overfitting and achieve a high recall. The gradient decent
method was used for VAE parameter learning, while Adam
was employed as an optimization algorithm. Normal sam-
ples were chosen as the primary indicators for analyzing
the abnormality temperature patterns. In contrast in refer-
ence [70], the Hotelling theory is also utilized to assess the
performance of anomaly detection.

In individuals diagnosed with or without Autism Spectrum
Detection (ASD), both emotional expression information and
temperature changes were studied [71]. The temperature
obtained in response to emotional arousal was computed
to determine the minimum, maximum and average values.
To evaluate which model is most suited for automatic classifi-
cation, the performances of the customized CNN with ReLU
function were compared to the ResNet 50, that includes ReLU
and soft-max function.

Wang et al. [27] implemented GoogLeNet with an incep-
tion network structure in an attempt to increase accuracy
and reduce computational time in a non-contact healthcare
system. Four categories of facial images were evaluated and
classified under five distinct temperature variations to deter-
mine which facial images are the most suitable in predicting
health status.

Other researchers have presented an effective state detec-
tion to address the possible effect of emotional state and
discomfort in controlled or uncontrolled experiments. For
example, Bhattacharyya et al. [24] used the InfraRed Facial
Expression Network (IRFacExNet) with the help of residual
and transformation units to classify eight different facial
expressions based on the facial temperature changes. A ReLU
function is applied to bring the non-linearity and batch
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normalization to make convergence faster and have a mod-
erate generalization effect. The performance of the proposed
IRFacExNet is evaluated using different sample size datasets
to compare which datasets are more accurately classified.

Pons et al. [74] developed an Emotion-Guided Thermal
CycleGAN (ET-CycleGAN) for classifying sixth facial emo-
tions. To prevent overfitting, batch normalization was used.
The performance of the ET-CycleGAN and ET-CycleGAN
without involving the loss function was examined to see
which classifiers are preferable for predicting emotional
classifications.

Wang et al. [76] exploited the Otsu threshold algorithm
to remove the highest frequency infrared spectrums while
minimizing the influence of temperature changes. For accu-
rately classified emotional states, a Deep Boltzmann Machine
(DBM) model with layerwise pretraining (using Gaussian-
binary RBM and binary RBM layer network) and joint train-
ing have been proposed, and two types of datasets have been
used: samples from only one datasets and samples from mix
datasets. The results show that DBM performs better when a
large number of sample data are used.

Another finding published in [78] used a noninvasiveness
thermal camera to automatically analyze facial skin tem-
perature changes based on the three levels of mental state
workload. The ANN models with softmax activation function
were employed to accurately classify the cognitive workload
assessment, which included low, moderate and high levels.
The results were compared between individual assessments
and assessments of all participants.

b: STATISTICAL ANALYSIS

In security applications, various research has been introduced
in an attempt to strengthen security measures by analyzing
any possibility of spoofing attacks using facial recognition
systems. For example, Singh and Arora [72] proposed detect-
ing real and fake facial in liveness detection by utilizing facial
thermography in their research. Temperature measurements
were used as the main indicators in this study, for highlighting
which facial ROIs had the average minimum and maximum
temperature readings, which were used to detect spoofing
attacks.

4) MULTI-PARAMETER VITAL SIGNS EXTRACTION
a: DEEP LEARNING METHODS
Filippini et al. [59] proposed end-to-end emotion recognition
using HR, RR and pulse rate. The warping procedure based on
the Local Weighted Mean (LWM) algorithm was utilized to
track the selected ROIs. The infinite impulse response filters
such as the third-order BF were used to filter ECG signals
for HRV, PPG signals for pulse rate and the Encephalan res-
piratory belt sensor for RR signals. The Feedforward Neural
Networks (FFNNs) results were compared to RF algorithms
results, and the best classifiers were chosen as the final clas-
sification.

Another paper showed that estimated HR and BP from
thermal images can be done by transforming the raw PPG
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signals to the frequency domain using FFT and applying
Inverse FFT (IFFT) to transform frequency domain to time
domain [63]. The preprocessed PPG signals are then filtered
using the Short Time Fourier Transform (STFT) for HR and
BP using the Infinite Impulse Response (IIR) Chebyshev
Type 2 Filter (CT2F). The BP was then predicted using a
Fully Connected DNN (FCN) with Nadam optimizer, which
may be classified as SBP or DBP.

The RR and temperature measures are essential indica-
tors used to monitor patients in Intensive Care Units (ICUs)
[80]. To improve feature detection accuracy, two proposed
DL networks, YOLOv4 and YOLOvV4-Tiny were employed.
The optical flow with a temporal filter algorithm was imple-
mented for RR extractions, whereas the relative deviation was
used for temperature extractions. YOLOv4-Tiny performed
better due to the model pruning effect, which reduced the
number of unnecessary parameters.

Reference [62] have also recommended analyzing RR
and facial temperature in monitoring an individual’s physi-
cal activity using home a exercise bike. A two-layer neural
network comprised of the sigmoidal and softmax functions
was deployed to measure the minimum and maximum tem-
perature. The finite impulse response filter was chosen to
eliminate noise and filtered RR signals from thermal video
(using the fixed and moving ROIs) and MS Kinect depth
sensors. Both estimated temperature and RR were studied
to analyze the physiological changes during physical activity
and resting situations.

In the studies presented by Sun et al. [58], physiologi-
cal indications such as HR, RR, temperature and SpO2 are
included to validate the studies. The estimated measurements
such as HR, RR and temperature are analyzed using a neural
network with Kohonen’s Self-Organizing Map (SOM) and a
k-means clustering method. The estimated SpO2 was then
used as areference measurement and was conducted using the
chi-squared test. Both estimated and reference measurements
are used to classify patients into three influenza groups: non-
influenza, lower-risk influenza and higher-risk influenza.

b: STATISTICAL ANALYSIS

Healthcare screening for the elderly with mild cognitive
impairment has been proposed in [81], which includes the
temperature, RR and HR measurements. A morphological
closing operation is performed to improve the representation
of the facial contours and the average temperature variations
are recorded. A Hamming windows is used to select facial
ROIs for the extraction of the HR and RR signals before
using FFT analysis to normalize the temperature signal from
the thermal video. The results were compared to analyze the
physiological differences between the static position and the
effects of head movements.

Estimated blood glucose from biochemical analysis is
insufficient in determining diabetic patients in Diabetes Mel-
litus (DM) applications. Sivanandam et al. [64] indicated
that blood glucose, BP and temperature are significantly
important in diagnosing their patients to verify the results,
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but in research presented by Sejling et al. [56], included
estimated pulse rate as an addition to get the best result in
screening tests. The ECG signals were extracted to analyze
the maximum and minimum pulse rates for five respiration
cycles. The decrease in facial skin temperature caused by high
insulin resistance can be detected with a noninvasive thermal
camera. As a result, the uniqueness of temperature patterns
was examined to analyze the minimum and maximum tem-
perature presented on facial areas.

D. RELATION OF VISION BASED ON THE SUCCESSIVE
VITAL SIGN MEASUREMENTS

Because most invasive methods nowadays can be replaced
with noninvasive ones, many areas of fields have started to
cover all possible vital signs measurements as an essential
biomarker to measure physiological responses of the body.
The curiosity has leads to if the proposed noninvasive ther-
mal vision based approach with minimally use of biosensors
method based on image sensors which can be acquired using
facial thermal imaging is only applicable to common situ-
ations with the included selection of vital signs parameter.
Concerning the input datasets, participants in experiments
typically no longer include average citizens or students, but
their usage is relatively limited and almost no studies have
made use of more than two datasets either by using their own
collected datasets or public datasets. The existing studies use
a small number of subjects that might be biased in age and
gender whereas less focus exclusively on elders or children
subjects in their thermophysiological data analysis. For such
reasons, sensitivity may have a critical effect on the measure-
ment due to human anatomical responses to the environment
are not always the same even for identical twins and may
differ according to the subject’s geographical location and
skin types.

The challenges in this discussion are concerning the
labeled region of measurements for each face frame. For
this, monitoring a common region that predominates in the
vital sign measurements might produce better results with
faster processing time. In several existing studies, it is prefer-
able to eliminate the subjects based on exclusionary criteria,
such as excessive movements with less precise physiologi-
cal readings that may interfere with the reasons for higher
accuracy. Nevertheless, the physiological signal acquisition
that simultaneously read through the use of thermal imaging
has become crucial in analyzing vital signs measurements at
the time of examination. Examples of physiological signal
acquisition that may be acquired from the face directly, such
as the exploration of temperature variations that accurately
portray the important physiological changes as well as HR
estimations that are derived from the maximum and mini-
mum RR pattern, are useful for estimating blood pressures
and pulse rates. However, most of the physiological signal
acquisition relies on the proposed band-pass filtering method,
which was used to filter the frequency of the physiological
signal. For instance, RR patterns often have a narrow and low
frequency, in contrast to HR patterns, which typically have a

115594

higher frequency since that region has the most blood flow
(2], [68].

Reference [83] reveals that video duration and the accuracy
of the vital sign readings are two conditions that influence
the motivation for use. It is worthwhile to note, that longer
videos than necessary are not always practicable in some
applications and may result in less accurate reading when
compared to preferred shorter videos that produce more accu-
rate readings. It is important to remark that the screening
system may require the verification of several physiological
indications to address human states. As we can see, the exper-
iment could be carried out to analyze the referenced mea-
surements using ground truth collected from measurements
of interest with at least one possibly invasive or noninvasive
biosensor and estimated measurements that observed from
noninvasive biosensors directly on the face at a minimum
distance from the thermal camera. Besides, the incremental
sample size is required to improve the training process in
some circumstances whereas it helped monitor a participant
under unrestricted conditions with less physiological signal,
which mainly may provide the lowest accuracy outcomes.

For better obtaining valuable information regarding human
activities and physiology, the proposed methods based on DL
approach and statistical analysis have been highlighted in this
paper. The use DL approach is still receiving less attention
as opposed to the use ML approach in real-time although it
is proven to have superior performance in various studies.
In the last few years, the use of the DL approach has become
demanding more with updated versions of the DL approach
using different training techniques and optimizers. From this,
we believe that it deserves further consideration in better
understanding any potential underlying pathological process
to obtain the most superior accuracy and it remains uncovered
in research for a particular application.

IV. EVALUATION MATRICES

Research suggested three primary categories of evaluation
matrices that may be utilized in validating feature extractor
methods and vital signs estimation in terms of statistical
analysis, accuracy measures and error measures as shown in
Table 6. Based on the analysis, the implementation of the
evaluation matrices is depending on how the researchers ver-
ify their research to produce the best results. Overall, various
applications may have only performed statistical analysis or
been fused with accuracy measures or error measures, while
others may have only used accuracy measures or been fused
with the error measures as illustrated in Fig. 4. Based on
the analysis in Table 5, the use of evaluation matrices from
23 different research articles from years 2012 to 2022 can
be classified into five categories, with the highest percentage
contributions of 31% for statistical analysis and the lowest
percentage contributions of 13% for the fusion of statisti-
cal analysis, accuracy measures and error measures. Most
available applications have rarely mentioned the fusion of
all three categories of evaluation matrices due to the reasons
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M Statistical analysis

M Accuracy measures

M Statistical analysis, accuracy measures
Statistical analysis, error measures

M Statistical analysis, accuracy measures,
error measures

FIGURE 4. The evaluation matrices in the previous studies.

TABLE 6. Evaluation matrices.

Evaluation
. Measurements
Matrices

Statistical Mean, standard deviations, variance, median,

analysis minimum, maximum, total, contrast, correlation,
energy, entropy, homogeneity, Mean Average Precision
(mAP), coefficient of variation, covariance

Accuracy Accuracy, sensitivity, specificity, precision, recall, F-

measures measure, kappa values, ROC area, AUC, TPR, FPR

Error MAE, MSE, RMSE, RAE, RRSE

measures

for their proposed works, which may have offered promising
satisfactory results.

For the statistical analysis, the mean and standard deviation
are two possible statistical measurements that had been used
frequently in most published works specifically in calculating
the vital signs estimations for summarizing data variability.
Other measurements have also been considered, for example
in the experiment described in [44] where statistical analysis
was performed by including twenty two measurements to
compute their extractor methods, in contrast to the proposed
works in [6], which only comprised four types of measure-
ments. Table 7 shows the list of the statistical analysis that
had been used in the prior research.

Previous studies highlight the importance of selecting
alternative accuracy measures and error measures to ver-
ify the efficiency of the proposed methods more accurately
with the deployment of computational algorithms such as
machine learning and deep learning methods. To achieve opti-
mal classifier performance, the sample datasets were tested
and trained to accurately classify the thermal images using
cross-validation, percentage splits method, holdout and no
validation [29]. Table 8 presents the confusion matrix that
was used to generate the accuracy measures as shown in
Table 9. The confusion matrix is divided into two classes: the
rows represent the actual values and the columns represent
the predicted values, both of which are used to evaluate the
model. To ensure that the results are valid and reliable, only
a value which is close to 1 from the standard accuracy mea-
sures is selected because they can indicate perfect accuracy
results. This review also presents the deployment of error
measures that are significantly important as alternatives in the
case whereas the successive classifiers have demonstrated the
similarity of accuracy rate with minimal computational time
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TABLE 7. Statistical analysis.

s:;f;?;/l:izl Descriptions Formula
Mean The average of all the Y x;
observations N
Standard The average amount of B
deviations variability in the dataset Z(xl——,u)
(std) N-1
Variance Calculate the variation from Y — 1)?
the average and mean N
Median The middlemost number or n+1
center value in the set of 2
data
Minimum The low outlier limit which Min(x)
is the smallest value in a set
of values
Maximum The high outlier limit which Max(x)
is the highest value in a set
of values
Total The total amount of number Z X
obtained through addition ¢
Contrast Measure the dissimilarity N-1 P (i )2
between various image z ijeo ¥ =0
features
Correlation The statistical measure that Yxi — )i —¥)
expresses how closely two
variables are linearly J S -0 T -7’
related.
Energy Measures the uniformity of N-1
an image zi,j:o Dij
Entropy Measures the randomness of

N-1
Z_ ) P;j(—InP;)
i,j=0

the intensity distribution in

the image
Homogeneity Used to describe a set of N-1 pij
data with the same variance zi’ iz 1+ (@ —j)2
Mean Measuring the accuracy of
Average object detectors. Calculates 1V
Precision the average precision value N izlAPi
(mAP) for recall values ranging
from 0 to 1
Coefficient of Measurement of the relative o
variation variability or consistency of u
data.
Covariance The relationship between =i —y)
the two variables direction n—1

TABLE 8. The confusion matrix.

Actual Values

Negative (0)
False positive (FP)
True negative (TN)

Predicted Values

Positive (1)
True positive (TP)
False negative (FN)

Positive (1)
Negative (0)

to further improve the exactness of the proposed methods as
illustrated in Table 10. Therefore, in the result, it can be stated
that which one of the selected approaches is the best to use in
comparative analysis with minimizing output error as well as
may result in better classification.

V. RESEARCH GAPS

In this section, some of the research gaps will be discussed
in order to address the limitations of the facial thermography
studies.
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TABLE 9. Accuracy measures.

Accuracy Descriptions Formula
Measures
Accuracy  Defined as a correctly TP+TN
classified measure TP + TN + FP + FN
Recall Referred to as sensitivity or TP
true positive rate (TPR), TP + FN
which is the receiver
operating characteristic
(ROC) curve used to clarify
whether the correctly
classified is genuinely
positive.
Specificity It was known as false FP
positive rate (FPR) is used FP +TN

to indicate that the correctly
classified is genuinely
negative.

Kappa Determined by adjusting the Accuracy — p.

values sensitivity and specificity 1-p,
values.

Area Under Used to summarize the 1 TP TN

The Curve  performance of the 2 x (Tp +FN + TN + Fp)

(AUC) classifiers.

Precision ~ Measure for correctly TP
classified as positive. TP + FP

F-measure  Based on a combination of 2TP
the recall and precision 2TP + FN + FP
measures

TABLE 10. Error measures.

M]:;ﬁies Descriptions Formula
Mean The measure for the average of Yialp — a;l
Absolute the absolute value between the n
Error (MAE) predicted and actual value.

Mean Square  Defined as the predicted value > (pi — a)?
Error (MSE)  of the estimator squared -
deviation from the actual value
Root Mean Measurement of the (P, —T)?
Square Error  dissimilarity between the it L
(RMSE) predicted and actual value. It ;‘1:1(7}' =12
employs a standard deviation
for the prediction errors
operation.
Relative The ratio used to divide the Y lp — ail
Absolute absolute error by the m
Error (RAE)  magnitude of the actual value.

Root Relative measure that relative to the
Squared Error error for the average of the
(RRSE) actual values

Z}l=1(bi —a;)?
Yioi(a; —a)?

A. INFLUENCE FACTORS

Several studies have addressed the influence factors of the
thermal infrared in detecting human physiological dysfunc-
tion. These factors must be further analyzed to ensure proper
measurements can be taken into account. For example, most
thermal imaging always suffers from low resolutions as com-
pared to visible images that are often acquired with a high
resolution. The blurring problem with the thermal image
always occurs because the thermal camera was too costly and
has various sensor characteristics with multiple image colour
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palettes. The distance between skin and camera as well as
recording time can also contribute to the unclear appearances
that could hinder the thermal interpretation that may reduce
the accuracy of vital sign measurements.

Additionally, previous research has shown gender bias
when a large number of studies use male participants rather
than females in the experiments. It will be doubted whether
such research is reasonable if the exclusion of the female
gender is consistently recorded unless a strong argument has
been made. For example, [84] explained that males are more
willing than females to participate in medical research studies
based on study risk level due to a lack of trust and privacy
concerns. In clinical applications, the inclusion of gender-
balanced should be considered so that the experiment can be
conducted to highlight gender-related differences and their
physiological characteristics.

To study the thermal sensitivity and autonomic responses
to environmental impacts in indoor and outdoor settings,
a collection of thermal images may be obtained in a con-
trolled, semi-controlled and uncontrolled environment. In this
setting, the important parameters such as temperature distri-
bution (hot and cold), weather, humidity levels (relative and
absolute), airflow, clothing insulation and metabolic rate must
take priority to prevent less accurate estimation [4], [85], [86].
Because of this, inclusion criteria such as demographic infor-
mation including gender, age and ethnicity must be addressed
when validating the study to overcome measurement bias.
The efficacy of the proposed algorithms to enhance the per-
formance of thermal images in detecting intra-class variations
such as illumination variation (changes in the lighting), facial
expression (watching emotion-induced videos), change of
head poses, voice commands and obstacles (glasses, hat, face
masks) have been discussed in all studies. Most algorithms
may perform well in this scenario if a large number of intra-
class variations sample images are observed.

B. FACIAL THERMOGRAPHY DATASETS
There are a few existing facial datasets that may include ther-
mal imaging that is publicly available for open or restricted
access, allowing for ongoing contributions to improve pre-
vious research works. The number of available datasets for
natural colour images has grown rapidly even in recent years
when compared to thermal images, encouraging researchers
to make decisions by collecting their thermal datasets to test
their approaches. However, most of their thermal datasets
are not publicly available due to privacy issues. It can be
seen that with the latest advanced technology, the quality of
thermal image representation has improved better than the
existing thermal images, which may consist of low quality
images that have caused the loss of informative features.
Table 11 summarizes some head poses, illumination and
expression obtained from a publicly available facial thermog-
raphy dataset in either an indoor or outdoor setting.

Dataset such as Equinox HID face database contains
grayscale images of 91 subjects of 115 subjects after remov-
ing corrupted images from 24 subjects. The thermal images
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are monitored by SWIR, MWIR and LWIR cameras. Subjects
speaking, expressions (frown, surprise, smile) and illumina-
tion variations (frontal, lateral (right, left)) are among the
images captured over two days in indoor settings. However,
3 of the 91 individuals are only wearing glasses. The database
is no longer open access, which may result in a decrease in
the number of available thermal datasets.

USTC-NVIE dataset consists of 215 subjects (157 males,
58 females) aged from 17 to 31 who were recorded while
watching emotion-induced videos for 3-4 minutes using a
SAT-HY 6850 thermal camera. It has six different expres-
sions (angry, disgusted, fearful, sad, happy and surprised)
and illumination variations (frontal, lateral (right, left)). IRIS
thermal/ visible face database, a publicly dataset was con-
ducted in controlled settings involving 30 subjects (28 men,
2 women) using a Raytheon Palm-IR-Pro thermal camera
and Panasonic WV-CP234 visible camera. Each subject was
captured from eleven different angles with three facial expres-
sions (surprise, happy, angry) under five illumination condi-
tions (left light on, right light on, both light on, both light
off, dark room). Some of the facial thermal images have a
dark colour in the nostril because of breathing. Only 10 of
the 30 subjects wear glasses.

Another accessible thermal imaging is the KTFE database.
The datasets involved 26 subjects (16 males, 10 females) aged
from 11 to 32 with different nationalities such as Vietnamese,
Thai and Japanese, and seven expressions including neutral
emotion in controlled settings using NEC R300 thermal cam-
era. It has 14 subjects who wear glasses. To help subjects
return to a state of neutral feeling, instrumental music was
played before and after each session. The longest designed
datasets for long periods such as UND-X1 datasets provide
facial images from 82 subjects taken at various sessions over
10 weeks with three facial expressions (neutral, smile, laugh)
and different lighting changes (FERET lighting, mugshot).
The problem is that thermal images which have a lower res-
olution and noise when compared to high resolution visible
images.

High resolution thermal images can be found in
IRDatabase that were recorded using an Infratec HD820
infrared camera from 90 subjects with eight different facial
expressions (fear, anger contempt, disgust, happy, neutral,
sad and surprise) and nine head poses (upper left, upper
frontal, upper right, frontal right, full frontal, frontal left,
lower left, lower frontal, lower right). Terravic facial IR
database contains grayscale thermal images collected from
20 subjects (19 men, 1 woman) in both indoor and outdoor
settings with different variations (frontal, lateral (right, left))
using a Raytheon L-3 Thermal-Eye 2000AS. However, only
22784 thermal images from 18 subjects can be used as
another image from two subjects was corrupted, with a total
of 2 subjects without wearing glasses and a hat, 7 subjects
wearing glasses and the remaining 9 subjects wearing glasses
and a hat.

RGB-D-T based face recognition acquisitions in the indoor
setting using AXIS Q1922 thermal camera and Kinect RGB
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FIGURE 5. Examples of facial images with glasses [47], [87], [88].

camera. A total of 51 college students participated in the
experiments. The obtained images contain head poses (frontal
view, four side turns of the head, one for turning the head up
and down), facial expressions (neutral, happy, sad, angry, sur-
prised) and varying illumination whereas five lamps are used
as light sources, each lamp being sequentially turned on and
off by the operator. L-CAS thermal physiological monitoring
dataset comprising rosbag files of 5 videos for 5 subjects,
every 2 minutes with the ground truth of the respiration rate
and heart rate using Optris PI-450 thermal camera. It also
includes varying head poses (up, down, forward, backward,
right, left) with 10 seconds for each position after one minute
remains still.

The largest SpeakingFaces dataset, consisting of 142 sub-
jects (74 males, 68 females) ranging in age from 20 to 65,
was recorded from nine different angles positions that were
acquired in semi-controlled laboratory settings with a fixed
intensity of the light source using a FLIR T540 thermal
camera and Logitech C920 Pro HD web-camera. Each sub-
ject was asked to read 100 English phrases or imperative
commands displayed on a video screen. The TFW dataset
provides thermal images of 147 subjects with 16509 labeled
faces collected in indoor (controlled, semi-controlled) and
uncontrolled outdoor (images taken during sunny and cloudy
weather at different locations) settings, with some of them
containing subjects from SpeakingFaces datasets using a
FLIR T540 thermal camera. The images with and without
face masks were collected for semi-controlled indoor and
uncontrolled outdoor environments.

It can be observed the available datasets contained sev-
eral subjects who were either only males or both males and
females to analyze their physiological signs estimations. The
images have a variety of head poses that are not only frontal
and lateral (right, left), but also up, down, forward and back-
ward, as seen in the L-CAS thermal physiological monitoring
dataset. The illuminations variation such as frontal, lateral,
dark room and lighting on and off sequentially at a time are
included in an attempt to study the impact of lighting changes
on facial recognition tasks. It also has existing datasets with
vowel frames, such as the Equinox database, SpeakingFaces
and TFW dataset which asked their participants to speak some
phrases. Then, expression frames like IRDatabase, which has
up to eight emotional moods including fear, anger contempt,
disgust, happy, neutral, sad and surprise.

Several datasets have the collection of facial images
of a subject wearing glasses such as Equinox database,
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TABLE 11. Facial thermography datasets.

Total number of

Datasets Number of subjects images Thermal Visible Poses Illumination ~ Expressions
Equinox HID face 91 subjects 3244 images v v v v
database [25], [36], [76], (320x240) pixels
[89]

USTC-NVIE [74]-{76] 215 subjects N/A v v v v v
(157 males, 58 Thermal image
females) (320x240) pixels
Visible image
(704x480) pixels
IRIS thermal/ visible 30 subjects 4228 images v v v v v
face database® [23], [46], (28 men, 2 women) (320x240) pixels
[48], [90]
KTFE database [28], 26 subjects 126 GB video v v v
[41] (16 males, 10 (320x240) pixels
females)
UND-XI1 [19], [91],[92] 82 subjects 4584 images v v v v v
Thermal image
(312x239) pixels
Visible image
(1600x1200) pixels
IRDatabase' [9], [20], 90 subjects 2935 images v 4 v
[24], [31], [37] (1024x768) pixels
Terravic facial IR 20 subjects 22784 image v v
database® [14], [47], (19 men, 1 woman) (320x240) pixels
[93], [94]
RGB-D-T based face 51 subjects 45900 images v v v v v
recognition® [39], [40], Thermal images
[95] (384x288) pixels
Visible images
(640x480) pixels
L-CAS thermal 5 subjects 3000 image v 4
physiological monitoring (382x288) pixels
dataset’ [81], [82], [96]
SpeakingFaces® [87], 142 subjects 4581595 image v v 4
[88] (74 males, 68 Thermal images
females) (464x348) pixels
Visible images
(768x512) pixels
TFW dataset [87] 147 subjects 9982 images v v v
(464x348) pixels

Shttps://github.com/IS2Al/SpeakingFaces

USTC-NVIE, KTFE database, Terravic facial IR database,
SpeakingFaces and TFW dataset as shown in Fig. 5. For the
Equinox HID face database and USTC-NVIE, those wear-
ing glasses are requested to repeat the experiment twice,
with and without glasses to make it more practical. As a
result, it was effective for facial tracking in liveness appli-
cations under unrestricted conditions or environmental set-
tings. However, USTC-NVIE, UND-X1, RGB-D-T based
face recognition and IRDatabase are among publicly avail-
able but with restricted access. It is difficult to find avail-
able datasets that may include various signs estimations for
physiological monitoring. The L-CAS thermal physiological
monitoring dataset is recommended because it includes the
ground truth for RR and HR estimations derived from ther-
mal images. The appropriate approaches are also essential
because the varying size of datasets includes may affect the
computational complexity.
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C. VARYING VITAL SIGNS ESTIMATIONS

Most of the clinical applications that make use of ther-
mal images have included the measurement of tempera-
ture variations. Motivated by past studies, it is possible
that multi-parameter vital signs estimations can be measured
from thermal images using additional biosensors signal pro-
cessing methods to improve the preciseness of the results.
Although most of these biosensor methods have been effec-
tively deployed using RGB imaging, the current studies have
demonstrated that these biosensors may also work very well
in thermal video cameras since they are more visible to
humans visual. It is beneficially helpful in vital signs esti-
mation because of limitations in human visual perceptions
to see facial colour changes reflected by changes in oxy-
genation levels and blood volume caused by the heartbeats.
In these cases, varying thermal colour palettes can be used to
emphasize facial colour changes, particularly rainbow colour
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palettes for monitoring the smallest change of heat energy
caused by blood passing through facial arteries from the jaw
to the forehead in thermal images [27], [44]. Interestingly,
because the forehead and cheeks have the highest blood flow,
it makes sense that most prior studies include them in their
comparative analysis, along with other face regions such as
the nose and mouth areas where airflow continues in and out
[35],[97]. A countless number of studies have also mentioned
the eye and its inner canthus of the eye region as having the
highest correlation with internal core body temperature in
their experiments [98], [99].

D. DEEP LEARNING METHODS

Over the last few years, extensive studies have revealed
the trending topics about the implementation of DL meth-
ods either to employ a hybrid or stacking methods in their
research instead of ML algorithms in a variety of image
classification tasks to cope with the information loss and
accuracy begins to saturate and eventually degrades. These
issues emerge because of the need to evaluate a wide range
of image features from a large number of input images at the
same time to extract relevant information for further analysis.
Prior research has mainly used the most recent CNN networks
with varying deeper of the network to produce more effective
multiclass facial detection either globally or locally that were
analyzed from a high or low resolution of thermal imaging.
Other studies also have investigated the uses of transfer learn-
ing in DL methods to identify whether there are any new
existing tasks but similar problems that need to be addressed.
As discussed above, it is acceptable to conclude that many
DL methods have been successfully utilized due to lowering
the rate of image misclassification, computational complexity
and processing time.

VI. FUTURE WORKS

For future works, it can recommend contactless or nonin-
vasive monitoring instruments which are widely used in a
variety of applications for continuously monitoring an indi-
vidual’s health as well as their physiological affective states.
Furthermore, the findings of this review suggest that it is
worth considering various vital signs estimations and a range
of symptoms in validating the results to allow many broader
applications to be introduced from the use of facial thermog-
raphy. These estimations which are based on machine learn-
ing or DL methods as well as an additional signal processing
that demonstrates highly good performance, can be deployed
in embedded devices or mobile devices that are running in
real time and can assist users in monitoring their health status
on their own with the assistance of an intelligent personal
assistant. Because of the limitation with available infrared
datasets that are focusing on emotional state classifications,
it may be better in the future if there are existing datasets that
can allow more contributions whereas covering the healthy
applications that include disease diagnosing from rare fea-
tures that are easily observable biometric images using facial
areas, rather than other parts of the body that have already
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been seriously injured, amputation or blindness (eyes). Fur-
thermore, this may be particularly important to highlight in
efforts to improve the feature extraction with the purpose
of utilizing computational algorithms that can enhance the
representation of facial images that include subjects who are
wearing eyeglasses or protective face masks in the real-time
analysis. Importantly, these reviews can provide a possible
reason for future research to address the main challenge in
predicting human abnormal conditions using thermal imag-
ing, which can be potentially applied in very similar ways to
the uses of RGB images.

VII. CONCLUSION

Contactless or noninvasive vital signs estimation from FLIR
video recordings of facial thermography has been introduced
and presented in this paper, along with the discovery of
feature extraction methods and the selection of vital sign esti-
mations with the use of computational algorithms and biosen-
sors signal processing methods, which was then validated
using the selection evaluation matrices. It is not surprising
that when compared to natural colour images that are less
sensitive to temperature changes, facial redness in thermal
imaging is more recognizable to the human visual, which is
not only limited due to physiological features changes, exces-
sive activities, environmental conditions and many other fac-
tors, but it can also be an early sign of abnormal health
issues that require intentions. Measuring only one vital sign
is ineffective for evaluating an individual’s health in both
adults and children unless with other important vital sign
estimations that might potentially be extended and monitored
in medical examination. As a result of these studies focusing
on assessing vital signs that can undoubtedly be monitored
using facial thermography, countless feature extractor meth-
ods have been established to mitigate the challenges caused
by facial misalignment resulting from inaccurate facial local-
izations. However, whether global or local features are per-
formed depends on the experiment that has been proposed,
as numerous research studies may consider using local fea-
tures instead of global features to perform a comparative
analysis on selecting the specific ROIs. Most importantly,
it has shown that ML and DL computational methods are
increasingly being employed to improve the performance
of the feature extractor methods, which can be applied to
infrared images to enhance facial feature representations.
Overall, the findings of this study can provide guidelines for
scholars to encourage and recommend the use of infrared
images in evaluating vital signs in a wide range of clinical
applications.
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