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ABSTRACT In this paper, we propose RiemannianFlow, a deep generative model that allows robots to learn
complex and stable skills evolving on Riemannian manifolds. Examples of Riemannian data in robotics
include stiffness (symmetric and positive definite matrix (SPD)) and orientation (unit quaternion (UQ)) tra-
jectories. For Riemannian data, unlike Euclidean ones, different dimensions are interconnected by geometric
constraints which have to be properly considered during the learning process. Using distance preserving
mappings, our approach transfers the data between their original manifold and the tangent space, realizing
the removing and re-fulfilling of the geometric constraints. This allows to extend existing frameworks to
learn stable skills from Riemannian data while guaranteeing the stability of the learning results. The ability
of RiemannianFlow to learn various data patterns and the stability of the learned models are experimentally
shown on a dataset of manifold motions. Further, we analyze from different perspectives the robustness of the
model with different hyperparameter combinations. It turns out that the model’s stability is not affected by
different hyperparameters, a proper combination of the hyperparameters leads to a significant improvement
(up to 27.6%) of the model accuracy. Last, we show the effectiveness of RiemannianFlow in a real peg-in-
hole (PiH) task where we need to generate stable and consistent position and orientation trajectories for the
robot starting from different initial poses.

INDEX TERMS Compliance and impedance control, deep learning methods, learning from demonstration,
motion control of manipulators, Riemannian manifold.

I. INTRODUCTION
Robots operating in everyday environments nowadays are
required not only to follow some rigid movements, but also
to accomplish complex physical interactions with the envi-
ronment, including tools, humans, and/or other robots. Dur-
ing these activities, the reference position, stiffness, and
orientation are changing along with the procedure, which
makes it extremely time-consuming to implement with tra-
ditional hard-programming methods. In such a situation,
Learning from Demonstration (LfD) [1] is considered as
a more efficient way for robots to acquire new abilities,
as even people with no robotics knowledge are able to give
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demonstrations teaching robots their own specialties (see
Fig.1). The learning-based solution proposed in this work
can be directly exploited by robotics experts and non-experts
to accomplish desired tasks without complex programming,
which will accelerate the transition from ideas to prod-
ucts in manufacturing and save much cost at the same
time.

The Trajectory-tracking task is an active research topic in
robotics, which is indeed a fundamental component in a LfD
system. In these path-following tasks, the main focus is to
generate a robust and precise route w.r.t.1 the position and
orientation [2], [3]. However, to achieve more complicated
motions, different kinds of control information like force

1w.r.t.stands for with respect to.
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FIGURE 1. Left : A human operator teaches a robot how to perform a PiH
task. Right : a snapshot showing the PiH task executed by a Franka Emika
Panda robot.

and stiffness [4] are regarded as objects to be learned from
demonstrations. Unlike simple data, e.g., data of position or
joint angles where Degrees-of-Freedoms (DoFs) are inde-
pendent, some data are represented by special formats. For
instance, when we handle stiffness, inertia, or sensory data
organized as covariance features, Symmetric Positive Defi-
nite (SPD) matrices are encountered, while Unit Quaternions
(UQs) are used to represent orientations. For such data, DoFs
are related by particular constraints arising from the structure
of the underlying space, which makes the learning problem
more difficult as the learner has also to fulfill those con-
straints.

In this paper, we propose a geometry-aware approach to
correctly handle complex data structures and their underly-
ing constraints. In particular, we focus on data evolving on
Riemannian Manifolds (RMs). As handling geometric con-
straints directly on the RM is complex, we exploit a dis-
tance preserving mapping to move the data from a manifold
to a local tangent space. As the tangent space is a finite
dimensional linear space, it is isomorphic to the Euclidean
space and tools from linear algebra can be applied freely
on the transformed data. On the tangent space, the trans-
formed data are considered as generated from a stochastic
nonlinear dynamical systemwhose dynamics is learned using
the ImitiationFlow approach [5]. The learned model is used
at run-time to retrieve the data on the tangent space which
are then projected back to the original RM using a reverse
mapping. The inverse mapping automatically imposes con-
straints of the geometric structure of the manifold on the
tangent space motion. A similar approach is used in [6] to
learn stable UQ motions. The main difference is that [6]
works on Lie groups like UQ, while our approach is more
general as it works also on manifolds like SPD matrices
that are not a Lie group. In our experiments, the proposed
RiemannianFlow is proved to be able to accurately learn
stable dynamical systems evolving on different, possibly
high dimensional RMs. To summarize, our contribution is
three-fold:

• We propose a geometry-aware approach to learn stable
robotic skills on RMs.

• We show that our approach allows to straightforwardly
extend existing approaches, including modern deep
learning techniques, to learn from manifold data.

• We compare our approach with two baselines and two
state-of-the-art approaches on a public benchmark.

The rest of the paper is organized as follows. Section II
presents the related work and highlights similarities and dif-
ferences with our method. In Sec. III, basic knowledge of
RM and the LfD model used in this work are introduced.
Section IV presents the proposed approach. We compare
RiemannianFlow with two baseline and two state-of-the-art
approaches in Sec. V and show an experiment in a typical
industrial task. Section VII states the conclusions and pro-
poses further research directions.

II. RELATED WORK
For robot-environment interaction, robots need to have a
sophisticated adaptation of their end-effector pose and stiff-
ness. The importance of controlling pose and stiffness for the
successful accomplishment of robotic tasks makes them fun-
damental research topics in the field of robot manipulation.

For the stiffness, an intuitivemethodwas provided by [7] to
generate the stiffness directly from the limb postures and sur-
face Electromyography (EMG) signals of the human demon-
strator. Authors in [8] used human demonstration along with
EMG to learn stiffness from human muscle activity mea-
surements. The learning framework proposed in [4] used
the measured trajectories and interaction forces to derive
a full stiffness matrices profile encoded in a probabilistic
model to be executed later with unseen situations. Kronan-
der and Billard [9] exploited the variability in the demon-
strations, injected by shacking the robot during the motion,
to learn a variable stiffness profile where high variance cor-
responds to low stiffness (less accurate tracking). Kernelized
Movement Primitives (KMPs) [10] were exploited in [11]
to generalize variable stiffness profiles. Jaquier et al. [12]
proposed a Gaussian Mixture Model (GMM)-based frame-
work to learn SPD profiles with a particular focus on robot
manipulability.

For the orientation, early work [13] did not consider
geometric constraints—unit norm for UQs or orthogonality
for rotation matrices—when they were learning the orienta-
tion data. Instead, they modified the generated trajectory at
run-time to fulfill the constraints, causing deviations from
the demonstrated motion. To remedy this issue, the work
in [14], [15] extended the classical dynamic movement prim-
itives (DMP) formulation [16] to properly handle orientation
data. The stability of the obtained approach is shown in [17]
for UQs. Abu-Dakka et al. [18] extended periodic DMPs
to encode periodic orientation patterns. GMMs and Task-
Parameterized Gaussian Mixture Models (TP-GMMs) were
extended to describe the distribution of UQs in [19] and [20],
respectively. Rozo and Dave [21] proposed a Riemannian
extension of the probabilistic movement primitives frame-
work. KMPs were also extended to represent orientation
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trajectories by exploiting themappings betweenUQmanifold
and its tangent space [22].

RiemannianFlow exploits the idea of projecting data in
the tangent space to remove geometric constraints and then
re-fulfilling them by projecting the generated data back to the
manifold.Working in the tangent space allows to use standard
tools from Euclidean geometry to encode the demonstrations
and fit a stable dynamics in the tangent space to ensure
convergence to a given target on the manifold. Moreover,
it makes the formulation relatively general and easy to adapt
to different manifolds. Indeed, the major change is to use the
proper projection operations which are manifold dependent.
It is worth mentioning that working in the tangent space is a
local approach that is exact only if the data belong to the same
chart on the manifold. This problem affects UQs, but not SPD
matrices [23]. As shown in [24], if quaternion data spanmulti-
ple charts then using a single tangent space introduces signif-
icant approximation errors. Instead of using multiple tangent
spaces as in [24], which requires clustering of the data, we use
a simple pre-processing step to ensure that quaternion data
belong to the same hemisphere (see Sec. IV-A).

III. BACKGROUND
This section briefly describes the geometric structure of SPD,
UQ manifolds and the key aspects of ImitationFlow [5].

A. DISTANCE PRESERVING TRANSFORMATIONS ON rms
In this paper, we focus mainly on two RMs, namely the d×d
SPD matrices S+d and the unit-sphere S3 (UQs). As already
mentioned, the RiemannianFlow works by moving manifold
data into the local tangent space T M and back to the mani-
foldM. We are also interested in preserving the convergence
of the learnedmotion to a given point on themanifold, namely
the goal g ∈M. Therefore, we consider the tangent space at
the goal T gM and project our data on it. For this, we need
to define the logarithmic mapping function Logg(p) :M→

T gM which moves a point p from the manifold to p on
the tangent space of g, along the projection of the geodesic
(the shortest curve on the RM) between p and g. In this way,
data on the RM can be transferred to the tangent space to be
manipulated freely. After the learning procedure, the expo-
nential mapping function Expg(p) : T gM→M, which is
the inverse of the logarithmic mapping, can transfer the data
back to the RM.

For the manifold S+d , p and g are represented by SPD
matrices and p is described by a symmetric matrix, these
2 mappings can be computed as [23]:

Logg(p) = g
1
2 logm(g−

1
2 pg−

1
2 )g

1
2 , (1)

Expg(p) = g
1
2 expm(g−

1
2pg−

1
2 )g

1
2 , (2)

where logm(·) and expm(·) are the matrix logarithm and
exponential respectively. Last, we use Mandel’s notation to
transform the symmetric matrix p to a vector vec(p) and vice
versa. Therefore, the whole process realizes the conversion
between SPD matrices and vectors.

For the manifold S3, p is represented by a UQ, where
p = ν + u, and p is described by a 3-dimensional vector.
Therefore, the logarithmic and exponential mappings [14]
are:

Logg(p) = Log(p ∗ ḡ) =

arccos(ν)
u
||u||

, u 6= 0

[0 0 0]>, otherwise.
(3)

Expg(p) =


[
cos(||p||)+ sin(||p||)

p

||p||

]
∗ g, p 6= 0[

1+ [0 0 0]>
]
∗ g, otherwise.

(4)

where ∗ denotes UQs multiplication as in [14].

B. FLOW-BASED DYNAMIC MODEL
ImitationFlow [5] assumes that observations are sampled
from an unknown, arbitrary complex distribution p ∼ ψ(p)
that is related to a latent, known distribution q ∼ π (q)
through a diffeomorphic—continuous, bijective, and with
continuous derivative—map b(·) : Rd

→ Rd . Specifically,
having the latent distribution q ∼ π(q), a different distribu-
tion p ∼ ψ(p) is acquired by p = b(q).
In a LfD setting, observations of the complex distribution

ψ(p) are given in the form of expert demonstrations and
can be used to learn the diffeomorphism b(·), e.g., using a
Normalizing Flow [25]. To enforce the stability of the learned
motion, ImitationFlow assumes that the transition model in
the latent space follows a known stable dynamics. The sim-
plest stable stochastic dynamics is given by

q̇(t) = Vφq(t)+ Fφβ(t), (5)

where q ∈ Rd represents the state and β : R → Rd

(called Brownian motion or Wiener process) represents noise
and variability in the demonstrations. Matrices Vφ and Fφ
are parameterized by the set of parameters φ. To ensure sta-
bility of the base dynamics, φ are constrained such that the
eigenvalues of Vφ have negative real part. The output of (5)
is

p = bθ (q), (6)

where bθ is the diffeomorphic mapping parameterized by θ .
The free parameters of the model are θ and φ which can be
learned from the given demonstrations. As shown in [5], the
observation space dynamics obtained by differentiating (6) is
stable if the latent space dynamics is stable.

The presented approach assumes that both the latent and
the observation space are isomorphic to an Euclidean space.
In the following section, we are discussing how to extend
flow-based models to RMs.

IV. PROPOSED APPROACH
The problem of LfDs on stiffness or orientation profiles is
to properly consider the geometric constraints imposed on
these complex data structures. To tackle it, a geometry-aware
approach is proposed considering that geometric constraints
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FIGURE 2. A pipeline indicates the whole process of the methods. Note:
For each coupling layer, the second dimension is either in the upper
group or in the lower group, and between each coupling layer there is a
swap among dimensions to enlarge the capacity. For the 2 transformation
functions: F ,G : Rd → Rd , they are implemented by multi-layer
perceptron.

‘‘disappear’’ when data are transferred from the RM to the
local tangent space. Therefore, once the data are transferred
to the tangent space, standard tools can be used to learn the
demonstrated patters. We choose to learn a stable trajectory
in the tangent space by applying a diffeomorphic transfor-
mation on a linear and stable dynamics. To learn the dif-
feomorphism, we use the deep generative model proposed
in [5]. Last, we apply the the reverse mapping to project
the generated data back to the RM which imposes geometric
constraints on the generated data. An in-depth description
of our RiemannianFlow approach is given in the rest of this
section.

A. ACQUIRE TRAINING DATA FROM DEMONSTRATION
We want to learn the diffeomorphic mapping bθ , parame-
terized by θ , that maps the trajectory of a simple dynam-
ics into a more complex, desired one. As commonly done
in LfDs, we assume that a set of N ≥ 1 demonstrations
of the same skill is given, i.e., D = {D1,D2, . . . ,DN },
where each demonstration Dn contains M points on a RM,
i.e., Dn = {p1, p2, . . . , pM }, and each point pm ∈ S+d or
pm ∈ S3, m = 1, . . . ,M . For simplicity, the sampling time
δt is assumed to be the same for all the demonstrations. Since
we are interested in learning converging motions, we also
assume that all the demonstrations converge to the same goal,
i.e., pM = g, ∀Dn.
The first pre-processing step, needed only if pm ∈ S3,

is to check whether the dot product pm · pm+1 > 0. In case
the dot product is negative, we substitute pm+1 with −pm+1
to prevent discontinuities in the quaternion trajectory. As a
result of this step, we ensure that the entire quaternion trajec-
tory is contained in a single chart (hemisphere) where loga-
rithmic and exponential mappings are bijective. It is worth
mentioning that a similar step is not needed for S+d since
logarithmic and exponential maps are bijective everywhere
inside the SPD cone. After this check, we project all the points
in the tangent space by means of the logarithmic mapping

Logg(pm), which is defined in (1) for SPD and in (3) for UQ.
Only for SPD manifold, we vectorize the data on the tangent
space using Mandel’s notation. The result is the new set of
demonstrations with the same structure of the original ones
but on the tangent space. It is worth noticing that, having
placed the tangent space in the last point of the demonstra-
tions, it holds that pM = Logg(pM ) = Logg(g) = 0.

B. DEEP STABLE DYNAMICS ON RMs
Using the approach presented in the previous section we
transform the given demonstrations into a new set of demon-
strations T containing points in the tangent space. Given
the tangent space is a finite dimensional linear space, where
points can be vectorized without loss of information, it is pos-
sible to exploit existing approaches to learn a stable dynam-
ics in the tangent space. Since our targets manifolds contain
complex objects like stiffness or orientation of robots, not
only the precision of the learning results matters, but also
the robustness. Therefore, a generative model based on prob-
ability is chosen for its advantage of generality. In particu-
lar, we adopt a flow-based model (Sec. III-B) to fit a stable
stochastic dynamic in the tangent space. The learned model
can be directly used to generate stable tangent space trajecto-
ries, as shown in Fig. 4.

To generate a Riemannian trajectory, we proceed as fol-
lows. Given an initial point p1 ∈ S+d (or p1 ∈ S3) and a
desired goal point g ∈ S+d (or g ∈ S3), we use the logarith-
mic mapping to project p1 onto the tangent space centered
at g, obtaining p1 = Logg(p1). Then, we pass p1 through
the learned tangent space dynamic and numerically integrate
the generated velocity to obtain p2. Last, we project back the
point onto themanifold bymeans of the exponential mapping,
obtaining p2 = Expg(p2). The last step is fundamental as
it re-imposes constraints on the generated point preserving
the geometric structure of the manifold. We repeat until the
goal is reached. To check for convergence, we recall that,
having placed the tangent space in the goal, the tangent space
trajectory should converge to zero. Therefore, we simply stop
the procedure when the generated point ‖pm‖ < ξ ≈ 0,
where ‖ · ‖ is the Euclidean norm and ξ is a user defined
threshold. The proposed approach to generate stable motions
on RMs is summarized in Algorithm 1 and can be visualized
in Fig. 2.

V. EXPERIMENTAL EVALUATION
In this section, we test RiemannianFlow both in simulations
and a real experiment. For the simulations, we augment a
popular dataset [26] with UQ and SPD data. For the exper-
iment, we use a 7 degrees-of-freedom Franka Emika Panda
manipulator to perform a PiH task.

A. DATASET CREATION
The dataset we used is based on LASA dataset [26] which
consists of 30 shapes, each with 7 trajectories of 1000 points
in 2- dimensional. We recombined the dimensions of differ-
ent trajectories of the same shape and got 4 3-dimensional
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Algorithm 1 RiemannianFlow
1: Compute training data

– Collect demonstrations D = {D1,D2, . . . ,DN } of
Riemannian data Dn = {p1, p2, . . . , pM }

– Define the goal g, e.g., the last point of each Dn.
– Check ifS3 data are in the same chart: ∀pm ∈ Dn→

pm · pm+1 > 0. If not, substitute pm+1 with −pm+1
– Project all the points to the tangent space using

the logarithmic map:
∀pm ∈ Dn→ pm = Logg(pm).
Vectorize S+d data (e.g., using Mandel’s notation)

– Save tangent space data into the set of demonstra-
tions T = {T1, T2, . . . , TN }

2: Learn a stable motion in tangent space, e.g., with Imita-
tionFlow [5], using T as training data.

3: Generate Riemannian trajectories
pm← Logg(p1)
while ‖pm‖ ≥ ξ do

ṗm← ImitationFlow(pm)
pm← Expg(ṗmδt)

end while

FIGURE 3. Left : ‘‘A’’ shape of original LASA data. Right : ‘‘A’’ shape of
created data.

trajectories for each shape. More in detail, we first stacked
the 7 demonstrations of each shape in a matrix Di for
i = 1, . . . , 30 with 14 rows and 1000 columns. Given Di,
we extracted the 4 demonstrations by selecting the rows
[0, 1, 2], [4, 5, 6], [8, 9, 10], and [12, 3, 0]. In this way, the
obtained 4 demonstrations have the third dimension sampled
from the x-axis of the original data. This implies that the
added dimension contains similar patterns for the same shape,
as usually required in LfD.

One example of ‘‘A’’ shape data is shown in Fig. 3.We con-
sider those 3D data as projections in the tangent space of UQ
from which one can directly compute UQ profiles using (4).
For SPD matrices, we assume that the 3D data represent the
vectorization of symmetric 2×2matrices obtained withMan-
del’s notation. We then invert Mandel’s notation to compute
2×2 symmetric matrices (in tangent space) and retrieve SPD
matrices using the exponential mapping in (2). The center
of the tangent space was placed at gSPD = diag([100, 100])
for SPD matrices and at gq = 1 + [0, 0, 0] for UQs. Before
training, we normalized each dimension of the tangent space
data to zero mean and unit variance.

FIGURE 4. Visualization of data generated by our model (solid line) and
given demonstrations (dot line) on the tangent space.

B. TRAINING PROCESS
Being each shape significantly different (see Fig. 8),
we trained different models for each of the 30 shapes in the
dataset. We randomly chose several shapes of our dataset to
test the performance of the trained model. For each shape, the
corresponding 4 demonstrations were used as the dataset for
training.

In this stage, the number of coupling layers with ran-
dom initialization was 10, playing the role of the emission
function. Generally, after 40 epochs of training, the gener-
ated trajectories could reproduce accurately the given pat-
tern. Further, all trajectories converged to the goal point in
the end, which empirically proves the stability of the model.
Examples of these data are shown in Fig. 4, where all the
trajectories were generated by the model trained for only
40 epochs.

During the training process, Dynamic Time Warping
(DTW) [27], indicating the similarity between the generated
trajectories and given demonstrations, was considered as the
evaluation factor and it was computed using the implemen-
tation provided by [28]. We monitored the value changes of
DTW during 200 epochs of training for all 30 shapes, the
value reached the lowest before 100 epochs in 25 cases out
of 30. Therefore, for hyperparameter search, the maximum
number of training epoch was limited to 100 to accelerate the
process. Typical loss curves trained for 200 epochs are shown
in Fig. 5.

C. HYPERPARAMETERS SEARCH
There are several hyperparameters in ourmodel, including the
number of layers, the activation function, the learning rate,
and the optimizer. But before searching for the best com-
bination, we first tested some different initialization meth-
ods to make sure the inside parameters were set correctly in
the beginning. We tried popular initialization methods like
He et al. [29] and found out that randomly uniform initializa-
tion made the training process to converge faster. Therefore,
we used it in the following search process.

To make sure that different hyperparameter combinations
affecting on the same model we set a certain seed for random
initialization and chose the data of ‘‘N’’ shape to train the
model. The search method used is provided by Optuna pack-
age [30] and it automatically prunes improper combinations
based on the evaluation values during the search and gen-
erates the combination that tends to achieve a better perfor-
mance, which can accelerate the whole process significantly.
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TABLE I. Hyperparameters considered in the search, their initial range,
and the best value found.

FIGURE 5. Loss curves indicating training process for ‘‘N’’ shape dataset.
Loss is computed every 5 epochs. The orange curve indicates the training
process under a random hyperparameter combination while the blue
curve shows the loss trend with the best combination searched in
Sec.V-C.

During the first rough search, the options for the hyper-
parameters are shown in Table I. We generated 100 combi-
nations among which only 37 combinations were executed
completely and the rest were pruned. From the search results,
we noticed that for the activation function ReLu beats the
other one; for the learning rate, the range shrinks to 1e-4 to
1e-2; and for the optimizer, Adam and Adamax [31] stand
out. Also, we found Adamax was able to generate more stable
training processes while Adam tended to reach lower mini-
mum of errors.

Based on the above results, we carried out several rounds
of fine search only utilizing ReLu as the activation func-
tion and just 2 options (Adam or Adamax) for the optimizer
and the shrunk range for learning rate. However, since the
random initialization shall also affect the training process,
we gave different random seeds for different search pro-
cesses. With this procedure and a seed of 20, we found the
best hyperparameter configuration in Tab. I resulting in a
DTW error of 274. Figure. 5 shows the learning curve with
and without hyperparameters search. Moreover, the figure
shows that the lower training error is achieved with the best
parameters.

Regarding training and generation time, using the best
hyperparameter setting in Tab. I, a batch size of 128 and
100 training epochs, and considering that a motion trajec-
tory contains 4000 samples (3D vector), the average train-
ing time is 61 minutes for one shape utilizing a NVIDIA
RTX 2060 GPU. Our approach takes only 20 s to generate
an entire trajectory of 1000 samples.

For the best hyperparameters, we did further testing by
transferring the generated data on the tangent space back
to the manifold (S+2 and S3) and comparing the distance
between generated and given data. For SPD matrices, we use
the Log Euclidean distance (LEd) [23]:

LEd =
∥∥logm(s)− logm(ŝ)

∥∥
F , (7)

FIGURE 6. Distances of each pair of SPD matrix and quaternion.

where s and ŝ are the given and generated SPD matrices
respectively, logm(·) is the matrix logarithm, and ‖ · ‖F indi-
cates the Frobenius Norm.

For UQs, we use the Log Quaternion distance (LQd):

LQd =
∥∥∥2Logg(〈q, q̂〉)∥∥∥, (8)

where q is the given quaternion, q̂ is the conjugate of the gen-
erated quaternion, and 〈·, ·〉 represents the Hamilton product,
whose result is a quaternion mapped to the tangent space by
the (3) to be a vector.

For each demonstration, we also visualized the change of
the LEd and LQd along the sequence in Fig. 6. From which
we notice that the distance error in the middle of the set are
larger than that of the start and the end. The reason is that
the 4 starting samples are used to generated the whole 4 sets,
and because of the stability of the model, in the end, they
will converge to the last sample. Hence, the distances in the
start and the end are very small. In the middle of the motion,
the generated data depend on the pattern that the model has
learned, and the error also accumulates there, so the distance
reaches its highest in the middle. It is worth mentioning that
the shape of the 2 graphs in in Fig. 6 is the same because they
all come from the same data on the tangent space.

D. GENERALITY TESTING
The top 3 hyperparameter combinations, found using the
approach described in the previous section, were computed
considering only data of the shape ‘‘N’’. In this section,
we investigate whether they are also proper for training mod-
els for other shapes. Therefore, we took the combination with
the best performance to train the other shapes and compared
the results with those from random combination but also
with 11 layers (making sure that the 2 models have the same
capacity).

We experimentally found out that the average DTW error
(DTWe) of the whole dataset given by the best hyper-
parameter combination of ‘‘N’’ shape (mean DTWe =

284) is slightly better than that by random combination
(mean DTWe = 294). Although it is not what we expected
but it is also reasonable since the patterns to be learned by the
model are distinguishing, the best combination for one pattern
maybe just a random one for another pattern. As qualitatively
shown in Fig. 7, where we visualized two sample motions
on their manifolds, the learning process and the successive
projection of the generated profiles on the corresponding RM
is already accurate. Indeed the projection’s analytical form is
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FIGURE 7. Two different shapes visualized on the respective RMs,
i.e., S+

2 ((a) and (b)) and S3 ((c) and (d)). Light solid (dark dotted) lines
represent the generated (demonstrated) data.

know and does not affect the accuracy. If the particular task
demands for higher reproduction accuracy, it is recommended
to search for a better combination of hyperparameters in the
specific case. For instance, we observed in the case of ‘‘N’’
shape that the DTWerror decreases from 378.5 to 274, i.e., by
27.6% with the best set of hyperparameters.

Next, we also want to know the generality of the model
concerning the demonstration area i.e., another perspective
of the robustness of the learning results. To have a intu-
itive view of the model, we plotted the stream figures in
the cubes containing the normalized data of demonstrations
on the tangent space shown in Fig. 8. We plotted the gen-
erated trajectories, the corresponding demonstrations, and
the stream lines (cyan curves) representing the velocity field
(direction to the next predicted point). To provide a better
visualization without all stream curves in the area mess-
ing together, we just selected the plane most fitting those
demonstrations to show the shape patterns that the model has
learned.

From these stream figures, the learning results of themodel
are well illustrated. First, it is clear that the models are able
to accurately learn the patterns of very different shapes. Sec-
ond, except the area that the demonstrations go through, the
model also equips the surrounding space with the similar
basic pattern which also proves the robustness of the model.
Last, all the generated stream curves tend to converge to the
final point of the demonstrations indicating the stability of the
model.

E. COMPARISON
We compare our approach with Riemannian GMM
(R-GMM) [24] and Fast DiffeomorphicMatching (FDM) [32],
as well as with two baseline approaches. R-GMM extends the
classic GMM/GaussianMixture Regression (GMR) appraoch
to perform regression on UQ and SPD manifolds. FDM
has been proposed to learn a diffeomorphism between
Euclidean spaces. The procedure presented in Sec. IV allows
to extend FDM to learn stable Riemannian skills. The base-
lines are naive versions of our procedure where we ignore
the constraints from the manifold during the learning and
post-process the generated data in order to fulfill the geomet-
ric constraints. In particular, unit quaternions are considered
as 4-D Euclidean vectors during the learning and normalized
after the generation. SPD matrices are vectorized by stacking
the 3 unique components of the 2 × 2 SPD matrix into a

FIGURE 8. Stream figures of the demonstration area for each shape.

3-D Euclidean vector used for learning.2 From the generated
vector, we build a symmetric matrix and find the nearest SPD
matrix to this one using the approach in [33]. For all the
approaches, we train a separate model for each manifold (UQ
and SPD) and each motion in the Riemannian LASA dataset
(Sec. V-A). For validation, we take only the first point in
each demonstration and use it to generate the entire trajectory
of 1000 steps as described in Algorihm 1 (point 3). This
procedure is commonly adopted to validate LfD approaches
based on stable dynamical systems [5], [26], [32].

From the comparison results shown in Fig. 9, transfer-
ring the data to the tangent space and acquiring the corre-
sponding model will lead better average performance (8.2%
for SPD and 17.7% for UQ on average). The bottom row
in Fig. 9 shows mean accuracy and standard deviation for
each approach on the entire dataset. On average, Riemannian-
Flow outperforms all the considered approaches. Moreover,
compared to the naive version, RiemannianFlow has simi-
lar performance, but more accurate as it has smaller mean
and standard deviation. These results for SPD matrices are
in-line with a previous study [4], where authors have shown
that the approximation error becomes significant for higher
dimensional matrices. Moreover, looking at the shapes 27 to
30 in Fig. 9 (first row), R-GMM and FDM fail in learning
multimodal skills with different behaviors in different parts
of the manifold (see the third row, columns 2 to 5 of Fig. 8).
This is because FDM learns from a single (average) demon-
stration, while R-GMM takes a time-like input and regress
always the same motion on the manifold. On the contrary,
RiemannianFlow is capable to accurately encode single- and
multimodal Riemannian skills.

2As SPD matrices are symmetric matrices, then we use Mandel’s notation
to vectorize the SPD matrices, and use the inverse of Mandel’s notation to
matricize an Euclidean vector.
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FIGURE 9. Comparative results obtained with different approaches on
the Riemannian LASA dataset for SPD matrix (left column) and UQ (right
column).

F. ROBOT EXPERIMENT
In order to evaluate our RiemannianFlow approach exper-
imentally, we studied a typical industrial insertion task,
namely Peg-in-Hole. However, we applied it to a shape fitting
toy. In this game, the robot needs to follow accurately the
demonstrated trajectory to perform a successful insertion. It is
worth mentioning that, even if several state-of-the-art meth-
ods exist to solve PiH, we used PiH as an industrial applica-
tion example as it shows the key features of our procedure.

We provided 7 kinesthetic demonstrations starting
at different poses and converging to the hole pose
(see Fig. 10) defined by the position of gp =

[0.675,−0.051, 0.203]>m and the orientation of UQ: gq =
0.022+ [0.991,−0.125, 0.035]>. The demonstrations are in
the form of {{pdemom,n , q

demo
m,n }

M
m=1}

N
n=1 where M = 4000 is the

total length of the demonstrations and N = 7 is the number
of demonstrations. Robot Operating System (ROS) was used
to record the demonstration data. Afterwards, we projected
the UQ trajectories, from all demonstrations, to the tangent
space T gS3 using (3). Subsequently, we trained two models
for both position and orientation trajectories. These 2 models
were used later to predict a new pose trajectory that started
from a new arbitrary pose, which was different from the
demonstrations starting poses, and ended up in the hole pose
performing a successful PiH insertion using ROS with the
generated prediction data. An illustration of the demonstra-
tions, the prediction (black dashed line), and robot pose (red
solid line) trajectories when performing in the tangent space
is shown in Fig. 11.

In this experiment we did not performed an hyperparameter
search and used the combination of (11 layers, ReLu, Adam,
0.001) with random uniform initialization. From Fig. 11,
although there were situations where the generated trajecto-
ries were not perfectly following the given demonstrations,
the convergence of the final state was ensured and the task
was successfully executed. Moreover, when the robot per-
formed the task according to a new generated trajectory,

FIGURE 10. An illustration of the PiH experiment. A human operator is
teaching the robot to perform PiH task by starting from different poses
and ending up in the hole pose.

FIGURE 11. Results for the PiH task. (a) Position and (b) orientation
(projected on the tangent space) data of the real robot experiment. The
dash black curves represent the prediction for a new starting point, and
the thick red lines indicate the movement that robot performs in both
figures.

it also reached the same goal as expected. More executions
of the task under different conditions is shown in the accom-
panying video.

VI. DISCUSSION
Experiments in Sec. V-E and V-F show the effectiveness of
RiemannianFlow both in simulations and in a real experi-
ment. The experimental comparison, performed on a pub-
lic benchmark, has confirmed known results and highlighted
some new findings. An expected result is that approaches that
effectively learn from multiple demonstrations are in general
more accurate. This can be clearly seen in the bottom plots
of Fig. 9 where both Naive and RiemannianFlow outperform
FDM and R-GMM. Another expected results is data nor-
malization affects the accuracy, especially if the motion is
integrated over time as the error accumulate. In our com-
parison, each motion lasts for 1000 steps and the error is
still limited (although already visible in Fig. 9). It is clear
that, in a real setting where the motion may last for several
minutes, the accumulated error may cause the task to fail.
Similar considerations apply to the Cholesky decomposition,
where increasing the matrix size also affects accuracy [4].
Finally, from our comparison, it is possible to conclude that
imitation learning approaches based on dynamical systems
are sufficiently flexible to accurately encode complex mani-
fold motions while preserving the stability.

The accuracy of RiemannianFlow comes at the cost of a
longer training time (Sec. V-C), but in most cases, training
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can be performed in about 1 hour on a PC equipped with
a consumer GPU—in our test where we used a NVIDIA
RTX 2060 and acquire a good model. As for the hyperpa-
rameter search, an elaborate search will bring large gain of
performance but cost longer time. And the search needs to
be repeated to learn motions that significantly differ from
each other (Sec. V-D). Once the network is trained, the time
needed to generate one sample allows to close a control loop
at about 50Hz (Sec. V-C), which is sufficient for a kine-
matic controller. Therefore, RiemannianFlow can be poten-
tially deployed on resource-constrained robots like mobile
platforms, exploiting low-power GPUs like the NVIDIA
Jetson series.

VII. CONCLUSION AND FUTURE WORK
In this paper, have we proposed a deep generative model
to properly encode complex data that have to fulfil spe-
cific geometric constraints. From the geometric perspective,
we consider those constrained data forming RMs, and utilize
distance reserving mappings to project them on the tangent
space, successfully releasing the constrains. After the learn-
ing in the tangent space, we project back the generated data
on the manifold to re-fulfill the original constraints.

The resulting approach, namely RiemannianFlow, has been
evaluated on a benchmark of Riemannian motions and in a
PiH task with a real robot. Obtained results show that the
approach has the ability of learning various kinds of complex
Riemannian patterns while guaranteeing the stability and ful-
filling geometric constraints for both stiffness (SPDmatrices)
and orientation data (UQs). Although the learned model is
already accurate if the learning process starts with a random
initialization of the hyperparameters, hyperparameters search
has been shown to be an effective solution to significantly
reduce the reproduction error, which is necessary for for tasks
that require higher accuracy (e.g., PiH task). Last, through
stream figures, we prove the high robustness of the model in
a region around the demonstration area.

In the future work, we will try to let the model learn more
control information including position, orientation, stiffness,
and velocity at the same time, increasing the dependence
among those attributes to handle more sophisticated situa-
tions. Further, we will find some faster initialization methods
to give better performance in general.
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