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ABSTRACT For beyond fifth-generation (5G) and future wireless communications, spatial consistency that
represents the correlation between propagation channel characteristics in close proximity has become one
of the major issues in channel modeling to describe channels more realistically in emerging scenarios such
as device-to-device (D2D). In this paper, we propose a novel path loss model based on multi-dimensional
Gaussian process regression (GPR) that gives spatial consistency to channels in propagation environment by
predicting local shadow fading while fitting large-scale path loss from measured data. The proposed model
has a special structure consisting of a radial mean function and a local shadow fading term. In contrast to the
log-distance path loss model and other regression-based approaches, the special structure of the proposed
model provides good spatial consistency. Moreover, since the proposed model is based on GPR, it provides
the uncertainty of the predicted path loss. We validate the performance of the proposed model in terms of
prediction accuracy with themeasurement datasets from two different indoor environments. Our experiments
show that the proposed model predicts better than the log-distance path loss model, especially when spatial
correlation gets more significant. The proposed model can be also used to simulate path loss in a general
environment after training the measurement data.

INDEX TERMS Path loss, multi-dimensional Gaussian process regression, machine learning.

I. INTRODUCTION
Propagation channel model, which characterizes the prop-
agation of radio waves with several channel parameters,
is necessary for the design and development of wireless
communication systems [1]. Channel parameters such as
path loss, propagation delay, Doppler frequency shift, arrival
direction and departure direction of each multipath are
obtained from the channel impulse response (CIR) mea-
sured by a channel sounder or simulated by ray-tracing
principles [2], [3]. The propagation channel measurements
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using a channel sounder are exploited to develop var-
ious stochastic channel models such as non-geometrical
stochastic channel models, geometry-based stochastic chan-
nel models (GSCMs), and hybrid GSCMs. While the prop-
agation channel is realized using channel parameters that
do not reflect the geometry of the propagation environ-
ment in the non-geometrical stochastic channel models,
e.g. Turin [4], Saleh-Valenzuela [5], GSCMs consider the
placement of scatterers for channel realization and include
the well-known standard models such as COST 2100 [6],
Third-Generation Partnership Project (3GPP) spatial channel
model [7], and Winner and Winner II [8]. Clusters that have
similar multipath characteristics are modeled in GSCMs and
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the inter-cluster and intra-cluster parameters are developed.
In hybrid GSCMs, the inter-cluster and intra-cluster char-
acteristics are determined geometrically and stochastically,
respectively [9], [10], [11]. The propagation channel simu-
lation using an environment map and ray-tracing principles
are exploited to develop map-based models where the propa-
gation channels are realized deterministically [12], [13], [14].

Among the channel parameters, path loss is themost funda-
mental characteristic of a propagation channel that describes
the power attenuation of a signal between transmitter (Tx)
and receiver (Rx). Accurate modeling of path loss is vital for
system deployment as it determines the received power of a
wanted signal and interference powers of unwanted signals
in wireless communication systems, which are required for
wireless coverage assessment and interference analysis [15],
[16], [17].

Statistical path loss models in representative environments,
e.g., outdoor urban-macro, urban-micro, rural, and indoor,
have been respectively established by various research
groups [8], [18], [19], [20], [21], [22], [23] and standard-
ized in 3GPP and International Telecommunication Union
(ITU) [7], [24]. The twomost widely-used statistical path loss
models are the floating-intercept (FI) model and the close-
in (CI) model [25], [26]. For the construction of the models,
path loss is commonly fitted as the one-dimensional (1D)
affine function of a log-scaled distance between Tx and Rx,
and the residue from the fitted line is further modeled as a
shadow fading. However, these traditional log-distance path
loss models cannot fully reflect the propagation environment
due to its 1D structure. For example, path losses at different
receiving points with the same distance from a fixed TX are
considered to be the same in the fitted line and the shadow
fadings of the receiving points in close proximity are consid-
ered as independent [27].

For beyond fifth-generation (5G) and future wireless com-
munications, temporal or spatial evolution of a channel is
essential in channel model to fully exploit all the chan-
nel states of multi-users connected to a base station (BS)
and to evaluate beam-tracking performance along the user
equipment (UE) movements [28], [29]. The evolution of a
channel should be spatially consistent, which means that
channel characteristics between locations in close proximity
are highly correlated. Furthermore, not only the scenario
that a fixed BS serves multi-users, but also scenarios with
both moving link ends such as device-to-device (D2D) and
vehicle-to-vehicle (V2V) have to be spatially consistent, i.e.,
channels between arbitrary locations of Tx and Rx in the
environment are all correlated.

There have been various studies to simulate spatially con-
sistent path loss in the environment. In GSCMs, correlation
between distinct Rx locations is defined as an exponential
function of a distance between the locations and shadow
fading is realized by using two-dimensional (2D) exponential
filter [7], [30], [31]. However, the models simply consider
generating path loss data to vary smoothly in space, not actu-
ally predicting the local propagation nature from its nearby

multi-dimensional structure. Moreover, spatial consistency
between links with distinct Tx and Rx locations cannot be
realized. In map-based models, the propagation status of the
environment is described using the ray-tracing principles to
reflect the environment [12], [13], [14]. However, the models
require precise three-dimensional (3D) geometric description
of environment including the constituting materials and their
optical propagation properties. Even though it generates the
propagation data actually consistent to its environment, it is
not practical to apply it for arbitrary environments due to
its massive complexity of the required environment descrip-
tion data. Moreover, it is hard to accurately model propaga-
tion effects such as diffuse scattering using the ray tracing
algorithms.

Giving spatial consistency to path loss is basically a pre-
diction problem at arbitrary locations of Tx and Rx, and
this kind of prediction problem can be solved by exist-
ing machine-learning methods with the aid of big data and
improved computing capabilities [32], [33]. There are also
approaches [34], [35], [36], [37], [38], [39], [40] for path loss
prediction using various machine learning methods. How-
ever, it is difficult to apply them to an arbitrary wireless
environment because they need some extra datasets other
than path loss such as maps of the environments or focus
on one-dimensional fitting between the distance and the path
loss, which usually fails to provides good spatial consistency.
In [40], the power delay profile (PDP) is used as an input
of a neural network to predict channel model parameters.
However, to predict path loss at an arbitrary location it needs
the PDPs at the location which is unavailable because the
PDPs can be obtained only by measurement.

To overcome the limit of the existing methods men-
tioned above, we propose a new path loss model based on
multi-dimensional Gaussian process regression (GPR) that
provides path loss predictions at arbitrary link locations in
the environment. Compared with other machine learning
algorithms, GPR is more appropriate when we develop a
predictive model for path loss because it can provide not only
predicted values but also their prediction intervals. If we can
provide prediction intervals in path loss prediction, we can
provide more reliable wireless communication by consider-
ing the prediction intervals. This is one main reason why
we use GPR in this work. In addition, by gradient descent
algorithm GPR automatically finds the optimal parameters
to improve efficiency and accuracy of the prediction. The
proposed GPR-based path loss model has a special structure
consisting of a radial mean function and a local shadow fading
term, which is shown to provide good spatial consistency
from our experiments. Note that the proposed GPR-based
path loss model does not need extra datasets other than path
loss.

For validation purpose, we compare the proposed
GPR-based path loss model with the log-distance path loss
model and the KNN regression model (that is recommended
in [41] for path loss prediction) by using the path loss datasets
obtained from the measurement campaign in two real indoor
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environments. In terms of the prediction error, we see from
our experiments that the proposed GPR-based path loss
model outperforms the log-distance path loss model and the
KNN regression model.

The remainder of this paper is organized as follows: In
Section II, we summarize the log-distance path loss model
and its drawbacks. In Section III, we explain the KNN
regression model and propose our novel path loss model
based on the multi-dimensional GPR. In Section IV, we dis-
cuss the measurement campaign used in our experiments.
In Section V, we provide the experimental details, compare
the prediction performance of the models, and discuss our
observations. Our conclusions are provided in Section VI.
The basic mathematical background on multi-dimensional
GPR is summarized in the Appendix.

II. THE LOG-DISTANCE PATH LOSS MODEL
In a log-distance path loss model [42], path loss is considered
as the function of a log-scaled distance between the Tx and
Rx, i.e.,

PL = PL0 + 10γ log10
d
d0
+ χσ , (1)

where PL is the path loss on a dB scale, γ is the path
loss exponent, d0 is the reference distance, d is the distance
between Tx and Rx, and PL0 is the path loss at the reference
distance d0 on a dB scale. Shadow fading is expressed by χσ ,
which follows a Gaussian distribution with mean zero and
standard deviation σ . We can simplify the model as

PL(d) = β0 + β1 log10 d + χσ (2)

where β0 = PL0 − 10γ log10 d0 and β1 = 10γ .
There are two methods to fit the data with this model. The

first method considers β0 and β1 as the model parameters,
whichmeans they are determined by themaximum likelihood
estimation. This method is called the FI model and it is
equivalent to a simple linear regression problem. The other
method considers only β1 as themodel parameter and it uses a
theoretical value for β0 such as the free-space path loss value
at d0 = 1 m. The model parameter β1 is, of course, estimated
by the maximum likelihood estimation. This method is called
the CI model.

In the log-distance path loss model, path loss depends
only on the distance between Tx and Rx, not on their multi-
dimensional positions. Therefore, any two points that are
located at the same distance from a fixed Tx position have the
same expected path loss in this model. However, this property
is not desirable in complex indoor environments.

Fig. 1 is a visualization of a partial dataset in the indoor cor-
ridor environment. In Fig. 1(a), the Tx position of this dataset
is indicated by the star and the Rx positions are laid along
walled corridors. According to the Rx positions of the dataset,
we split the dataset into 4 groups - one for each passage
(labeled as P1∼P4). Fig. 1(b) visualizes the path loss of each
data point. The x-axis is the log-distance between Tx and Rx.
We see from the figure that all groups have different patterns.

FIGURE 1. (a) The layout of the indoor corridor environment. (b) Plot
between the distance and path loss values. Black line is a fitted line of
the data.

For example, the path loss values in P4 are plotted almost
vertically while the path loss values in P2 and P3 behave
differently even though their distances from Tx are almost
the same. The reason for this is that the propagation distance
is not really the same as the Euclidean distance between
Tx and Rx. The dominant factors determining path loss in
this walled corridor environment are the taxicab distance
and the number of reflections during propagation, which are
strongly relatedwith themulti-dimensional structure between
the points. Therefore, we conclude that the log-distance path
loss model is not suitable for many practical cases, especially
in complex indoor environments. It is clear that this data
cannot be fitted into a single function of the log distance
because it still fails to predict the path loss values for P2 and
P3, for example. This is the reason why a multi-dimensional
path loss model is required. In the next section, we explain
the KNN regression model and propose our model based on
Gaussian process regression.

III. MULTI-DIMENSIONAL PATH LOSS MODELS
As illustrated in Fig. 1, path loss cannot be correctly handled
if it is considered as the function of a single variable d .
To appropriately consider shadow fading due to spatial cor-
relation, we consider a multi-dimensional regression method
to develop a new path loss model. In this paper, we assume
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that both Tx and Rx move simultaneously. This includes a lot
of practical propagation scenarios including D2D and V2V
communications.

The heights of Tx and Rx (denoted by zTx and zRx ,
respecitvely) are fixed in our experiment datasets and hence
the input of a path loss function becomes 4 dimensional
(2 dimensions for xRx and 2 dimensions for xTx). Note that
the problem andmodel can be generalized to 6D easily, where
the dataset contains different Tx and Rx heights. Then our
objective is to construct a path loss function PL(xTx , xRx)
to predict the path loss value at an arbitrary position, given
a dataset {(xi, yi)}Ni=1 where xi is a 4-dimensional Tx-Rx
position and yi is the path loss value at the position of xi.
We consider line-of-sight (LoS) and non-line-of-sight (nLoS)
datasets separately and predict the LoS and nLoS path loss
values separately.

Compared with the log-distance path loss model, a multi-
dimensional path loss model has an advantage that it can
predict path loss at any point by considering spatial corre-
lation in more detail instead of considering the distance only.
In a multi-dimensional path loss model, the objective is to
construct a multivariate path loss function from a given data
set and one possible approach is to simply use regression
algorithms. In fact, there are existing multi-dimensional path
loss models using regression algorithms, e.g., [41]. Among
them, since the KNN regression model is recommended
in [41] because of its prediction accuracy and the fastest
computational time, we consider the KNN regression model
for comparison purpose. In the following, we first explain the
KNN regresson model and then propose our model.

A. KNN REGRESION MODEL
The main idea of the KNN regression model is simple. Given
the position of a test point x∗ and a pre-determined numberK ,
the KNN regressionmodel selects theK closest points xi, 1 ≤
i ≤ K in the training dataset and predicts the path loss value
by the average of the path loss values at xi, 1 ≤ i ≤ K as
follows:

PL =
1
K

K∑
i=1

PLi

where PLi(1 ≤ i ≤ K ) is the path loss at position xi.
The original model in [41] uses 7 variables (Carrier fre-

quency, Tx height, Rx position (3D), Tx-Rx distance, visi-
bility (LoS/nLoS label)) as the input features, but we modify
the model to use 5 variables (Tx position (2D), Rx position
(2D), Tx-Rx distance) to make themodel compatible with our
dataset. Note that the heights of Tx and Rx in our experiments
are fixed and are not needed to consider as the input features.

B. PROPOSED GPR-BASED PATH LOSS MODEL
We propose a GPR-based path loss model which is based on
multi-dimensional GPR.1 We construct our GPR-based path

1Please refer to Appendix A for the mathematical details of GPR.

loss model starting from decomposing PL into two terms:

PL(xTx , xRx) = f (log10 d3D(xTx , xRx))+ g(xTx , xRx) (3)

where we define a 3D distance function d3D : R2
×R2

→ R
as

d3D((x1, y1), (x2, y2))

=

√
(x1 − x2)2 + (y1 − y2)2 + (zRx − zTx)2. (4)

In the model, f (log10 d3D(xTx , xRx)) represents the radial
mean function that exploits the 1D structure of log-distance
model to reflect the one-dimensional tendency and
g(xTx , xRx) represents the discrepancy from the mean func-
tion that compensates the one-dimensional path loss predic-
tion by using multi-dimensional spatial correlation in the
environment. For each term, we further decompose it as
follows:

f (log10 d3D) = P(log10 d3D)+ GP1D(log10 d3D) (5)

and

g(xTx , xRx) =
Q∑
q=1

GP4D,q(xTx , xRx). (6)

Here’s the description of each function given above:
• P is a linear function of log10 d3D(xTx , xRx) as in the
log-distance path lossmodel. The coefficient in the func-
tion is considered as a hyperparameter in regression.

• GP1D is a 1D Gaussian process with kernel (i.e., covari-
ance)

k1D((xTx , xRx), (x′Tx , x
′
Rx)) = kSE (log10 d3D(xTx , xRx),

× log10 d3D(x
′
Tx , x

′
Rx)).

(7)

Since it is a smooth approximation for the mean func-
tion, we use a squared exponential (SE) kernel in this
paper.

• GP4D,q(1 ≤ q ≤ Q) are 4D Gaussian processes. So we
use a mixture of Q(> 1) 4D Gaussian processes to con-
sider various types of kernels in our model. EachGP4D,q
has zero mean and kernel k4D,q which is specified later.

In summary, we use a Gaussian process whose mean function
is a linear function (in log-distance), with kernel

k1D +
Q∑
q=1

k4D,q (8)

to perform a regression for the path loss function
PL(xTx , xRx). The hyperparameters for the mean function
and kernels are trained simultaneously to maximize the log
marginal likelihood function. Once the training is finished,
we compute the posterior mean and variance of the path loss
value at any point by using Bayesian inference. We then use
the posterior mean value as the predicted path loss value at
the point of interest.
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Alongside with the advantages of the multi-dimensional
path loss model itself, we have additional advantages of our
GPR-based path loss model as follows:

• The proposedmodel uses its special structure, that is, it is
the sum of a 1D function f (log10 d3D) and a 4D function
g(xTx , xRx). By training two functions simultaneously,
the proposed model can predict path loss by captur-
ing both local correlation and global tendency. In con-
trast, the KNN regressionmodel determines its predicted
value solely by the values of the K nearest points, which
implies the prediction is performed locally and global
tendency is completely neglected in prediction.

• Using the posterior mean and variance of the path loss
value simultaneously, we can calculate the prediction
interval of the path loss value at any position. The pre-
diction interval can be also calculated in the log-distance
path loss model because it has a Gaussian random vari-
able χσ which corresponds to shadow fading. However,
the GPR-based path loss model can provide much better
prediction interval because shadow fading due to spatial
correlation is taken into account while the log-distance
path loss model assumes independent shadow fading.

To show that the advantages mentioned above actually appear
in real environment, we conduct experiments to measure
path loss in two indoor environments and compare predic-
tion perfomance of the path loss models. Details about the
measurement campaign are explained in Section IV. The
experiment settings and results are provided in Section V,
including comparison and analysis of prediction performance
for the path loss models.

IV. MEASUREMENT CAMPAIGN
In this section, we briefly introduce channel sounder spec-
ifications used to measure indoor propagation channels,
describe measurement environments, and explain how path
loss is derived from CIR measurements.

A. SYSTEM DESCRIPTION
A wideband sliding correlation-based channel sounder is
developed by the Electronics and Telecommunications
Research Institute (ETRI), Korea. The hardware specifica-
tions including sounding signal parameters are summarized
in Table 1 and the hardware is shown in Fig. 2. The Tx con-
sists of a National Instruments (NI) digital baseband module
PXIe-8135, a field programmable gate array (FPGA) module
PXIe-7966, an radio frequency (RF) transmit adapter module
NI 5793 that generates intermediate frequency (IF) signal
at 2.3 GHz by using a 16-bit digital-to-analog converters
(DACs), an RF upconverter, a single-pole four throw (SP4T)
RF switch for four RF ports, and omnidirectional antennas
connected to high power amplifiers (HPAs) at each port. The
Rx consists of four omnidirectional antennas followed by
low-noise amplifiers (LNAs), an SP4T RF switch for the RF
ports, an RF downconverter, receiving RF adapter module
NI 5792 that converts the analog received signal to digital

TABLE 1. Channel sounder specifications.

FIGURE 2. Channel sounder used for the measurement.

signal by using a 14-bit analog-to-digital converters (ADCs),
an FPGA module PXIe-7966, and a digital baseband module
PXIe-8135. As the measurement is for path loss rather than
angular profiles, we terminated all ports but one port in the
Tx and Rx respectively and used single-input single-output
(SISO) system during the measurement.

The sounding signal is a square-root raised cosine
(SRRC) pulse shaped 1023-length m-sequence with chip
rate 100MHz. The RF center frequency and bandwidth of the
sounding signal is 4.1 GHz and 100 MHz, respectively. The
effective isotropic radiated power (EIRP) of Tx is 30 dBm and
the measurable Rx dynamic range of path loss is from 35 dB
to 135 dB.

B. ENVIRONMENT DESCRIPTION
Indoor hotspot (InH) channel has long been measured and
modeled due to its importance as one of the typical wireless
communication environments [20], [23]. InH channel can be
subdivided into indoor office and shopping mall according to
3GPP’s definition [7]. We focus on the indoor office channel,
which is commonly comprised of open cubicle areas, walled
offices, and corridors. Among the components that com-
pose the indoor office channel, corridor has to be separately
investigated because of its special propagation characteris-
tics. Thus, we conduct propagation channel measurements
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FIGURE 3. Measurement scenarios drawn on indoor environment layouts: (a) Office, (b) Corridor.

at indoor office and corridor, respectively. In this paper,
office environment denotes the open cubicle areas without
any walled offices or corridors. Fig. 3 shows the measure-
ment scenarios at indoor office and corridor. The office size
is 17m × 24m, and propagation channels between five Tx
points and 65 Rx points are all measured. The heights of
Tx and Rx antennas are 2.17m and 1.2m, respectively. The
corridor environment is one floor of a building with size
82m× 33m.All propagation channels between four Tx points
and 70 Rx points are measured, and the heights of Tx and Rx
antennas are 2.1m and 1.2m, respectively.

Fig. 4 depicts the measurement campaigns. The office con-
sists of various clutters such as pillars, bookshelves, comput-
ers, and desks that affect multi-path propagation. However,
the corridor environment consists of concrete wall and some
metal doors, which make the waveguide-like propagations.
The two environments are very common in real-life, while
it is considered hard to analyze their propagation properties
because of the various obstacles resulting complex multipath
propagation.

C. PATH LOSS EXTRACTION
All measured CIRs in Section IV-B are processed to extract
respective wideband path loss values by using the method
introduced in [45, Sec. 4.1.1.]. PDP at time instant t as a
function of delay τ is derived from the CIR as

P(t, τ ) = |h(t, τ )|2, (9)

where h(t, τ ) denotes the CIR that represents the channel
responses at each delay bin calibrated by Rx RF chain
and antenna responses. Note that h(t, τ ) in this subsec-
tion includes the Tx RF chain and antenna responses for
convenience to calculate the received power. The PDPs in

FIGURE 4. Measurement campaigns: (a) Office, (b) Corridor.

consecutive time domain can then be further averaged to
reduce the noise floor level and small-scale time-varying
effects as

P(τ ) =
1
Nt

Nt∑
i=1

P(ti, τ ), (10)

where Nt is the number of consecutive CIRs and P(ti, τ ) is
a PDP at time instance ti. Then, we detect the delay corre-
sponding to the highest peak power of the PDP as

τm = argmax
τ

P(τ ) (11)

and its power value P(τm), respectively. PDP is considered
to be valid if and only if the largest power P(τm) is above
20 dB from the noise floor level, and further used for path
loss calculation. Finally, the received power and path loss are
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extracted from the summation of the PDP over delay domain
as

PRx =
Nτ∑
i=1

P(τi) (12)

and

PL = 10 log10(PTx)− 10 log10(PRx) (13)

respectively, where i and Nτ represent the indices and
total numbers of delay bins that have power larger than
10 log10(P(τm))−20 dB, respectively, and PTx is the Tx EIRP
in linear scale. This path loss value is used in the dataset for
the path loss models.

In the office environment, we use 323 sets of path loss data
between 5 Tx points and 65 Rx points where we exclude some
nearby Tx-Rx locations. In the corridor environment, we use
252 sets of path loss data between 4 Tx points and 70 Rx
points where we exclude some nearby Tx-Rx locations and
the locations whose largest powers in PDP do not exceed
20 dB from the noise floor level as mentioned in Section V-C.

V. VALIDATION AND RESULTS
Using the measured path loss values in the previous section,
we compare the path loss models in this section. The
method used for comparison is leave-one-out cross validation
(LOOCV) which is a method to check out whether a given
model predicts a single observation from a dataset excluding
the single observation. LOOCV is widely used to evaluate
prediction performance of machine learning algorithms and
hence is suitable for our experiments. We summarize the
settings that we use for comparison before providing with
comparison results and analysis.

A. DETAILS IN THE SETTINGS
We compare the GPR-based path loss model with the
log-distance path loss model and the KNN regression model.
In this subsection, we explain the error metrics and imple-
mentation methods of all models in comparison.

1) ERROR METRICS
We consider 4 scenarios according to the environments -
office and corridor - and the LoS/nLoS labels. For each
scenario, we obtain an experimental dataset by using the
methodologies in the previous section. We use the leave-
one-out (LOO) cross-validation: For a dataset {(xi, yi)}Ni=1,
we calculate the predicted value ŷi (called leave-one-out pre-
dicted value) at the position xi by a model which is trained
from the whole dataset except the point (xi, yi). The LOO
cross-validation is usually used to evaluate the generalization
performance of a learned model (i.e., to check if the model
prevents the overfitting issue).

We compare prediction performance of the path loss mod-
els by using two metrics based on LOO cross-validation -
LOO mean-squared error (LOO-MSE) and LOO maximum
absolute error (LOO-MAE). Let ŷi be the LOO predicted

value at the position xi. Then the LOO-MSE is defined by

MSE =

√√√√ 1
N

N∑
i=1

(yi − ŷi)2 (14)

and the LOO-MAE is defined by

MAE =
N

max
i=1
|yi − ŷi|. (15)

Both metrics estimate the discrepancy between LOO pre-
dicted values and true (measured) values, but the LOO-MSE
focuses on how a model predicts well in average, while
the LOO-MAE focuses on the worst case performance of a
model in prediction. As a high error at a certain position is
likely to cause a serious connection problem at the position
in real-world applications, minimizing the LOO-MAE is as
important as minimizing the average error (LOO-MSE).

2) LOG-DISTANCE PATH LOSS MODEL
For the log-distance path loss model we apply both the FI
model and the CI model. Hence, the LOO-MSE values for
bothmodels are provided.We use the 1m free-space path loss
value of 44.70 dB in the CI model (49.43 dB in 7.075 GHz
environment given later). We develop a simple code with
Python [46] to implement this model.

3) KNN REGRESSION MODEL
For the KNN regression model, we use the corresponding
library of Scipy [47] for its implementation. The performance
of themodel is significantly affected by the selection ofK , the
number of the closest neighbors. The use of K = 3 yields the
best results in our experiments.

4) GPR-BASED PATH LOSS MODEL
In our experiment, we use Q = 3 and the following four
mixture kernels:
• SE : Mixture of three SE kernels.
• M12 : Mixture of three Matérn 1/2 kernels.
• M32 : Mixture of three Matérn 3/2 kernels.
• Mix : Mixture of SE, Matérn 1/2, and Matérn
3/2 kernels.

The details of the above kernels are provided in Appendix B.
We implement the GPR-based path loss model using Python
and GPFlow [48] which is an extensive Gaussian process
library based on Tensorflow [49]. The Limited-memory
Broyden-Feltcher-Goldfarb-Shannon for Bounded variables
(L-BFGS-B) [50] algorithm is used to maximize the log
marginal likelihood, and we use the default parameter values
used in the Scipy optimizer. We use the following simple
algorithms for the initial values of the hyperparameters:
• The default values of the initial hyperparameters are
vectors of 1.0, i.e., [1.0, 1.0, 1.0, 1.0], etc.

• To ensure that Q copies of GP are trained differently,
we add noises to the initial lengthscales of individual
Gaussian processes.
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TABLE 2. The LOO-MSE of path loss in the experiment environments with
path loss models.

TABLE 3. The LOO-MAE of path loss in the experiment environments with
path loss models.

• Sometimes the optimizer fails to converge and yields an
error in GPFlow. This usually happens when the initial
lengthscales are too small. In this case, we doubles the
initial lengthscales and retry.

Using the above models, we compare the prediction per-
formance of the path loss models. Table 2 and 3 represent
the error metrics in path loss prediction for four different
scenarios, LoS/ nLoS scenarios in two environments.

B. LOG-DISTANCE PATH LOSS MODEL
We first analyze the LOO-MSE of the log-distance path loss
model. From its definition, the LOO-MSE of the log-distance
path loss model is close to σ which is the standard deviation
of shadow fading in the model. As this value gets large, the
environment is considered complex to analyze in the model.

In the office environment, the obstacles are placed in
orders so the multipath components appear very smoothly.
This results in relatively low LOO-MSE in every model.
In the log-distance path loss model, the lowest LOO-MSE
are 2.2394 and 2.1479 for LoS and nLoS, respectively.

In the corridor environment, on the other hand, the propa-
gation nature changes very extremely. This is the observation
that is pointed out in Section II. The observation is supported
by relatively high LOO-MSE in the log-distance path loss
model. The lowest LOO-MSEs are 3.3240 and 6.4335 in
LoS and nLoS, respectively. Especially, the log-distance path
loss model shows poor perfomance in the corridor nLoS

environment because of its strong multi-dimensional corre-
lations as pointed out in Fig. 1.

The LOO-MAE in Table 3 also shows a similar trend to the
LOO-MSE in Table 2, but the values of the error metric get
much larger as it represents the maximum error. In the cor-
ridor nLoS scenario, for example, the LOO-MAE becomes
extremely large like 21 dB. Such a high error implies that the
log-distance path loss model is easy to fail to predict path loss
at certain points, even if the measurement data values exist at
points nearby.

C. KNN REGRESSION MODEL
The LOO-MSE values in the KNN regression model are sim-
ilar to those in the log-distance path loss model as shown in
Table 2, except for the nLoS corridor environment where we
see a substantial improvement (34.8 % smaller LOO-MSE)
compared with the log-distance path loss model. As previ-
ously mentioned in Fig. 1, the nLoS corridor environment has
strong multi-dimnsional spatial correlation. So, this shows
that even the simplest consideration of multi-dimensional
spatial correlation can be effective in a complex propagation
environment.

D. PROPOSED GPR-BASED PATH LOSS MODEL
Our GPR-based path loss model outperforms the log-distance
path loss model for all kernels and scenarios as shown in
Table 2 and Table 3 except for one case (SE kernel, nLoS
office environment).

To see the ability of capturing multi-dimensional spatial
correlation of path loss in the GPR-based path loss model,
we provide in Fig. 5 with the LOO values in the log-distance
path loss model and the GPR-based path loss model along one
passage. As shown in the figure, we see that the GPR-based
path lossmodel outperforms the log-distance path lossmodel.
As pointed out in Fig. 1, the Euclidean distances of the points
are not much different in this case. Therefore, the log-distance
path loss model provides with predicted values that are not
significantly different. In contrast, the GPR-based path loss
model makes predictions closer to the actual path loss data
because spatial correlation is captured well by introducing
Gaussian processes. This shows that the GPR-based path loss
model can predict path loss better than the log-distance path
loss model.

One more thing to worth mentioning in Fig. 5 is that the
GPR-based path lossmodel provides with prediction intervals
with high reliability. That is, as shown in the figure, we easily
see that the 95% prediction intervals of the LOO values cover
all true (measured) path loss values.

When we compare the KNN regression model with our
GPR-based path loss model, Table 2 and Table 3 show that
our GPR-based pass loss model outperforms the KNN regres-
sion model in most cases. In particular, it is worth mention-
ing that our GPR-based pass loss model has 26.4% smaller
LOO-MSE error than the KNN regression model in the
nLoS corridor environment. This shows that we can improve
prediction performance by introducing Gaussian processes.
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FIGURE 5. The LOO values of the log-distance and GPR-based path loss
models in the passage P3 (a) and P4 (b) introduced in Fig. 1. Matérn 1/2
kernel is used in the GPR-based path loss model. The shaded region
represents the 95% prediction interval of predicted path loss in the
GPR-based path loss model.

Unlike the KNN regression model which performs similar to
the log-distance path loss model in the office environment,
our GPR-based path loss model provide consistently better
performance in all cases. This implies that our GPR-based
path loss model is both accurate and stable, even for small
datasets as in our experiments.

To see the performance improvement more clearly for our
GPR-based path loss model, we plot in Fig. 6 the distribution
of the LOO Error for each path loss model in the nLoS
corridor environment. From the figure we see that the most
probabilities of the LOO Error are located closer to 0 in our
GPR-based path lossmodel than in the other path lossmodels.

Choosing a good kernel to explain a given dataset well is
often an important issue when applying Gaussian processes
and usually called the kernel selection problem. In our exper-
iments we try a number of different mixture kernels and see
in Table 2 and Table 3 that the results are quite similar for all
kernels. So, even though there still exists a possibility for per-
formance improvement by choosing a better kernel, from our
extensive experiments we believe the resulting performance
of other kernels would be not much different from ours in the
tables. In fact, we can conclude from our experiments that a
mixture of SE kernels provides with good results and hence
is a good choice for the proposed path loss model.

FIGURE 6. The histogram of LOO errors in the nLoS corridor environment.
The FI model is used for the log-distance path loss model. Matérn 1/2
kernel is used in the GPR-based path loss model.

TABLE 4. The pseudo log-likelihood value for each kernel in the
GPR-based path loss model.

Even the kernel selection problem in GPR can be
automated by introducing an auxiliary metric like pseudo
log-likelihood (PLL). It is the estimated value of the log-
likelihood, which means how much the dataset is probable in
the given GP model. It is calculated by the following formula

PLL =
N∑
i=1

−
1
2
log σ 2

i −
(yi − µi)2

σ 2
i

−
1
2
log 2π (16)

where µi and σ 2
i are the mean and variance of the LOO pre-

dicted value at the position xi, respectively. Table 4 provides
with the calculated PLL values for the selected kernels. Note
that the optimal kernels based on PLL result in the lowest
LOO-MSE values in Table 2. This shows that PLL is a good
candidate of the metric for automated kernel selection.

We would like to mention that our GPR-based path loss
model can be also used to simulate path loss in a given
environment after training the measurement data from the
environment. Fig. 7 provides with the predicted means of
nLoS path losses in the GPR-based path loss model in the
office and corridor environments. We see that the trained
function PL demonstrates path loss well and predicts its
spatial correlation in the environments as well. For example,
we clearly see in Fig. 7 that the predicted path loss is lower
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FIGURE 7. Simulation results for the GPR-based path loss model.
(a) Simulation for office Tx1 nLoS path loss with M12 kernel.
(b) Simulation for corridor Tx1 nLoS path loss with Mix kernel. Stars
indicate Tx positions. White circles indicate Rx positions, and the numbers
given in the circles are the true path loss values. Brighter shadow implies
smaller path loss.

than the surroundings in the left and middle passages of
the office environment or the left passage in the corridor
environment. Both results can be easily expected from the
actual diagrams provided in Fig. 3. The importance of this
observation is that we don’t need any information on the
environment other than the path loss values in our proposed
model.

To show that our proposed model also works well in
various frequencies, we perform an additional measurement
campaign at a higher frequency (7.075 GHz) with the same
channel sounder settings specified in Table 1. In the office
environment, 323 sets of path loss data are used as in the
4.1GHz case, and in the corridor environment, 208 sets of
path loss data are used. In Table 5 and Table 6, we provide
with the LOO-MSE and LOO-MAE of each path loss model
in the 7.075 GHz environment. The tables show a similar
trend to Table 2 and Table 3, that the proposed GPR-based
path loss model shows consistently lower LOO-MSE and
LOO-MAE compared with the log-distance path loss model
and the KNN regression model. Based on our experimen-
tal results, we expect that the proposed model provides

TABLE 5. The LOO-MSE of path loss in the experiment environments with
path loss models at 7.075 GHz.

TABLE 6. The LOO-MAE of path loss in the experiment environments with
path loss models at 7.075 GHz.

consistently good performance and can be used for any
general measurement campaign on path loss, as it does not
require any specific assumption on the dataset.

VI. CONCLUSION
In this paper, amulti-dimensional GPR-based path lossmodel
is proposed to estimate path loss. In our model, the path loss
function is divided into the radial mean function andGaussian
processes representing shadow fading. The parameters of
the Gaussian processes and the coefficients determining the
mean function are estimated by maximizing the log marginal
likelihood function. We consider two indoor environments
to validate the proposed model and show that our model
outperforms the existing models, e.g., the log-distance path
loss model and the KNN regression model. The strength of
the proposed model is that it has a special structure con-
sisting of a radial mean function and a local shadowing
term, which makes the prediction more accurate. In addition,
we see that it can provide the prediction interval of the
predicted path loss value and be used for the simulation as
well. The simulation results can be used to optimize the posi-
tions and channel gains of the antennas with relatively low
cost.

While the proposed model is the first approach to con-
sider the multi-dimensional structure in path loss to the best
of authors’ knowledge, verifying and improving it are the
good directions of our future works. Obviously, the pro-
posed model should be tested and verified in more various
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environments, including outdoor and large-scale environ-
ments. Moreover, while the proposed model trains LoS/nLoS
path losses independently, it can be improved to predict both
at once using, e.g., multi-output Gaussian process (MOGP).
GPR or other machine learning-based regressionmethods can
be also applied to predict raw CIR data with respect to multi-
dimensional Tx-Rx position, instead of path loss data. This
approach can be a great extension of the proposed model
because other channel parameters like delay spread can be
also predicted simultaneously.

APPENDIX A
GAUSSIAN PROCESS REGRESSION
The regression problem is to predict a continuous target
variable y ∈ R corresponding to an input variable x ∈ Rd .
Let D = {(xi, yi) : xi ∈ X , yi ∈ R, i = 1, · · · , n} be a given
dataset.

Gaussian process (GP) is a distribution of the real-valued
function f : Rd

→ R. The distribution p(f ), or simply
f is a Gaussian process if and only if for any finite subset
{x1, · · · , xn} ⊂ Rd , the marginal distribution over the finite
subset {f (x1), · · · , f (xn)} ⊂ Rd is a multivariate Gaussian
distribution. GP is completely determined from two functions
m : Rd

→ R and k : Rd
× Rd

× R, where

m(x) = Ef∼p[f (x)]

k(x, x′) = Ef∼p[(f (x)− m(x))(f (x′)− m(x′))]. (17)

m(x) is called the mean function and k(x, x′) is called the
kernel function of GP.

Gaussian process regression (GPR) [52] is a regression
model using Gaussian process, as its name states. It is a kind
of Bayesian inference. Bayesian inference is conducted as
follows: We give a prior distribution p(f) of the function f and
use the Bayes’ rule

p(f|X, y) =
p(y|X, f)p(f)
p(y|X)

(18)

to derive the posterior distribution p(f|X, y) of f. Therefore,
the result of GPR appears in terms of distribution, not in
terms of a single value. To select a representative value
for prediction, we usually use the mean of the posterior
distribution.

The GPR model assumes each output yi is the sum of f (xi)
and independent Gaussian noise εi ∼ N (0, σ 2

n ). We give a
prior distribution of f by the mean function m(x) and kernel
k(x, x′). The prediction in GPR is conducted by calculating
the conditional distribution. Suppose that we want to predict
the outputs in the test pointsX∗ = [x1, · · · , xm].We first con-
sider the joint probability distribution of y = [y1, · · · , yn]>

and f∗ = [f (x1), · · · , f (xm)]> by[
y
f∗

]
∼ N

([
m(X)
m(X∗)

]
,

[
K(X,X)+ σ 2

n In K(X,X∗)
K(X∗,X) K(X∗,X∗)

])
(19)

where

m([ai]1≤i≤k ) = [m(ai)]1≤i≤k ,

K([ai]1≤i≤k , [bi]1≤i≤l) = [k(ai,bj)]1≤i≤k,1≤j≤l, (20)

and In is the n × n identity matrix. Then, we use the Bayes’
rule to calculate the conditional distribution of f∗ by

f∗|D,X∗ ∼ N (f∗, cov(f∗)) (21)

where

f∗ = m(X∗)+K(X∗,X)K−1n (y−m(X)), (22)

cov(f∗) = K(X∗,X∗)−K(X∗,X)K−1n K(X,X∗). (23)

Here,Kn = K(X,X)+σ 2
n In. Then we use f∗ as the predicted

values of f∗ and use cov(f∗) as the variances of the prediction.
We need to determine the kernel function k when GPR

is applied. The most popular choice of k is the squared
exponential (SE) kernel

k(x, x′) = σ 2
s exp

(
−
|x− x′|2

2`2

)
(24)

where σ 2
s determines the amplitude of the kernel and ` is

called the lengthscale. The SE kernel is usually used to rep-
resent a smooth function. To represent functions with weaker
regularity, the Matérn kernel

k(x, x′) = σ 2
s
1− ν
0(ν)

(√
2ν|x− x′|
`

)ν

×Kν

(√
2ν|x− x′|
`

)
(25)

is considered. Here, σ 2
2 is the amplitude, ` is the lengthscale,

and ν represents the regularity of the kernel.Kν in the formula
is the modified Bessel function of the second kind. As ν gets
bigger, the resulting Gaussian process becomes smoother.
The Matérn kernel with ν = 1

2 is called Matérn 1/2 kernel
and theMatérn kernel with ν = 3

2 is calledMatérn 3/2 kernel.
All of the kernels mentioned above are represented by the

radial term |x − x′|2/`2, and it is weighted equally for any
direction. Such kernel is called an isotropic kernel. In con-
trast, we use heterotropic kernels for Gaussian processes
which are asymmetric in different dimensions. In heterotropic
kernels, the radial term |x− x′|2/`2 in the isotropic kernel is
replaced by

d∑
i=1

(xi − x ′i )
2

`2i
. (26)

In this case, the lengthscales form a vector [`1, · · · , `d ]⊥,
which represent different weights for input dimensions.

The mixture kernel is also widely used since it can repro-
duce various shapes of functions by summing several kernels.
The mixture kernel is used in our experiments, too.
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Before the inference step, we should determine the hyper-
parameters of the GPR model. In general, these hyperparam-
eters (usually denoted by θ ) are calculated by maximizing the
log marginal likelihood function

log p(y|X, θ) = −
1
2
(y−m(X))>K−1n (y−m(X))

−
1
2
log

∣∣∣K(X,X)+ σ 2
n In
∣∣∣− n

2
log 2π.

(27)

We usually use the gradient descent method to maximize this
function.
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