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ABSTRACT Hand gesture is a visual input of human-computer interaction for providing different applica-
tions in smart homes, healthcare, and eldercare. Most deep learning-based techniques adopt standard convo-
lution neural networks (CNNs) which require a large number of model parameters with high computational
complexity; thus, it is not suitable for application in devices with limited computational resources. However,
fewer model parameters can reduce the system accuracy. To address this challenge, we propose a lightweight
heterogeneous deep learning-based gesture recognition system, coined CSI-DeepNet. The CSI-DeepNet
comprises four steps: i) data collection, ii) data processing, iii) feature extraction, and iv) classification.
We utilize a low-power system-on-chip (SoC), ESP-32, for the first time to collect alphanumeric hand
gesture datasets using channel state information (CSI) with 1,800 trials of 20 gestures, including the steady-
state data of ten people. A Butterworth low-pass filter with Gaussian smoothing is applied to remove noise;
subsequently, the data is split into windows with sufficient dimensions in the data processing step before
feeding to the model. The feature extraction section utilizes a depthwise separable convolutional neural
network (DS-Conv) with a feature attention (FA) block and residual block (RB) to extract fine-grained
features while reducing the complexity using fewer model parameters. Finally, the extracted refined features
are classified in the classification section. The proposed system achieves an average accuracy of 96.31%
with much less computational complexity, which is better than the results obtained using state-of-the-art
pre-trained CNNs and two deep learning models using CSI data.

INDEX TERMS Hand gesture recognition, channel state information (CSI), deep learning, depthwise
separable convolutional neural network (DS-Conv), feature attention, residual block, system-on-chip (SoC).

I. INTRODUCTION
Gesture recognition is an artificial intelligence (AI) technique
that aims at illustrating human gestures. Human behavior
or activity thrives with the aid of facial expressions and
proper gestures. Different types of gestures are performed
daily during communication. Gestures act as a medium of
interaction. In the case of people living with disability and
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aged persons, gestures have a significant impact. Gesture
recognition is a fast-paced and demanding research topic.
The integration of human gesture recognition provides more
interactive applications in smart homes, healthcare, eldercare,
resource utilization, security, and energy saving. Traditional
gesture recognition systems have been devised using depth
and infrared image sensors [1], ultrasonic sensors [2], wear-
able sensors [3], radio frequency identification (RFID) [4],
radio detection and ranging (RADAR) [5] and other special-
purpose devices. However, the various drawbacks of these
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systems limit their use. Image sensor-based systems lack
privacy, and their recognition performance is significantly
influenced by the line-of-sight (LOS), illumination condition,
and view angle. Similarly, wearable sensors are obligated to
be worn all the time for functioning, which can be uncomfort-
able for users. Moreover, the establishment cost for ultrasonic
sensors and RADAR-based approaches is high, and they have
a limited range of coverage.

Compared to previous approaches, Wi-Fi signal-based
sensing has recently attracted considerable attention in indoor
environments owing to its wide range of coverage, abundant
availability, noninvasive nature, user’s privacy and identity
protection, non-LOS communication, and contactless sens-
ing. However, Wi-Fi signals are affected by moving and
stationary objects in the propagation path, thereby resulting
in the reflection or refraction of the signal [6]. By analyzing
the properties of the signals, we can model the change in the
environment due to human body movement, which can help
us passively recognize the movement of the human body. The
reflection and refraction of the signal can be analyzed using
various signal properties (received signal strength indicator
(RSSI), and channel state information (CSI)). An RSSI-based
technique has been widely used for indoor positioning [7]
and tracking [6], which measures the variation in a sin-
gle value from each packet. Furthermore, this method is
unable to model complex scenarios because it cannot handle
multi-path fading and time-varying properties. In contrast,
CSI contains fine-grained information in each orthogonal
frequency-division multiplexing (OFDM) symbol. The chan-
nel quality can be evaluated by calculating the amplitude and
frequency at the receiver end of each channel using a complex
number. The signal power is attenuated due to the multi-
path effect, which can be characterized by the amplitude
and frequency of the CSI signal. Recently, the CSI available
in Wi-Fi 802.11n networks has been considered for fine-
grained analysis. Therefore, the detection of human gestures
and activities in both LOS and non-LOS scenarios within
an indoor environment with CSI is very effective. The CSI
captures the amplitude variations and phase information asso-
ciated with different sub-carriers of the Wi-Fi channels. The
amplitude and phase information of CSI signals are affected
by multi-path effects and the existence of moving objects in
the signal propagation path. The changes in the amplitude of
the CSI signals are relatively more stable compared with the
phase information. As such, in this study, we focus on the CSI
amplitude to build the model.

Different types of hardware are used for the realization of
Wi-Fi based gesture sensing applications. Commercial-off-
the-shelf (COTS) network devices are used primarily as an
access point (AP). A number of studies have addressed the
commercial wireless network interface card (NIC) of Intel
5300 with CSI toolkit [8] or Atheros NIC [9]. However,
there are some exceptions to using special hardware platforms
such as the universal software radio peripheral (USRP) [10].
A laptop [11], [12] is used to collect the CSI; thus, it is a
costly and mostly software-centric solution, which is difficult

to deploy. Recently, smartphones [13] have been used for ges-
ture recognition; the solution is primarily hardware-specific.
Therefore, the aforementioned solutions are predominantly
domain-specific and required computing devices, such as lap-
tops, and are unsuitable for the limited computing power of
edge devices. Recently, the low-cost and low-power system-
on-chip (SoC), ESP-32, has provided a complete application
programming interface (API) [14] for handling CSI infor-
mation. Utilizing this SoC for RF-based sensing could be a
viable alternative to modeling the change in environment due
to human body movement.

Machine learning and deep learning methods have been
used as classification techniques in RF-based gesture recog-
nition systems. Machine learning-based CSI signal classi-
fication approaches rely on extracting handcrafted features
from CSI signals using various signal processing methods.
The extracted features are then classified using different
machine learning classification methods. Among them, deci-
sion trees (DT), support vector machine (SVM), k-nearest
neighbors (k-NN), random forest (RF), and hidden Markov
model (HMM) [15] are the most commonly used. However,
these methods do not consider optimizing feature extrac-
tion, and it is unlikely to obtain new features to man-
ually characterize the information enclosed in the time,
frequency, and spatial domains of the CSI signal. To avoid
the process of manually designing features, a convolutional
neural network (CNN) can be used to learn the features
from the input signals. Most deep learning-based approaches
focus on increasing the accuracy rate without sacrificing
the model parameters, computational complexity, and energy
consumption.

Gestures are influenced by individual diversity and incon-
sistencies. Instead of using the coarse-grained features by the
handcraft-based method, a CNN with deep architecture can
perform better compared with the other approaches. In this
study, we focus on the computational deficiency of deep
learning networks using CNN to achieve the desired accuracy
considering the limited computing power of edge devices.
A standard CNN combines a filter with an input in one step to
obtain an output that is inefficient with respect to the model
size and speed. In contrast, a factorized convolution operation
using a depthwise separable convolutional neural network
(DS-Conv) splits the convolution operation into two layers:
a depthwise filtering operation and a linear combination to
reduce the model computation and parameters. However,
we also need to balance the trade-off between model com-
plexity and performance. Hence, a lightweight heterogeneous
deep learning architecture is adopted to obtain better accu-
racy and reduce computational complexity by minimizing
the number of trainable parameters. A feature attention (FA)
block with a residual block (RB) is utilized to enhance the
feature extraction ability, which increases the recognition
accuracy. Moreover, a low-power SoC is used as an AP and
sensing device to provide a cost-effective and large-scale
deployment solution with amplitudes of 52 CSI sub-carriers,
including one transmitter (Tx) and receiver (Rx) antenna.
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To summarize, the contributions of this study are as
follows:

1) We utilize the low-cost, low-power SoC (ESP-32) with
CSI API as a stand-alone device for the first time to
collect the Wi-Fi CSI dataset for alphanumeric-based
hand gesture recognition.

2) We develop a lightweight heterogeneous deep learn-
ing network with DS-Conv, FA block, and RB for
alphanumeric-based hand gesture recognition.

3) We validate the effectiveness of the proposed model
through the collected alphanumeric-based hand ges-
ture datasets (20 alphanumeric characters) in terms of
recognition accuracy, trainable parameters, train time,
and recognition time.

4) We verify the performance of our proposed model with
state-of-the-art models in terms of recognition accu-
racy, trainable parameters, training time, and recogni-
tion time.

The remainder of this study is summarized as follows:
Section II, presents a detailed review of the existing technol-
ogy based on CSI signals is discussed. Section III discusses
the details of the system model, including alphanumeric-
based gesture data processing, feature extraction, and gesture
recognition methodology. Section IV presents the experi-
mental results. Finally, Section V concludes the study and
discusses future work.

II. RELATED WORKS
Wi-Fi based gesture recognition systems are widely used
owing to their large range of benefits. In this study, we focus
on device-free sensing and recognition systems and try to cat-
egorize the existing literature based on three factors: specifi-
cation of signal sensing hardware, properties ofWi-Fi signals,
and human gesture recognition techniques.

A. SPECIFICATION OF SIGNAL SENSING HARDWARE
Compared to other methods, Wi-Fi based sensing plays
an important role because of its robust features, such as:
device-free passive sensing, noninvasive nature to ensure
user privacy, a wider range of coverage, and see-through-
wall. Commercial wireless NIC (such as, Intel 5300 NIC [8],
[16], [17], [18] and Atheros NIC [9], [19]), SoC (such as,
Espressif SoC [14]), smartphones (such as Google Nexus 5
[13]), and USRP [10], [20], [21] devices are different types
of hardware solutions that are used for Wi-Fi based gesture
recognition systems. NICs are primarily designed to support
the networking function; they are also widely used for Wi-Fi
based gesture recognition. A NIC can be used as a receiver
with other computing devices, such as a personal computer
(PC), and a commodity Wi-Fi router is used as a transmitter.
Although the NIC transceiver sends 56 sub-carriers, infor-
mation from only 30 sub-carriers is accessible, resulting in
a loss of 46% of information. The Intel 5300 NIC provides
30 out of 52 sub-carriers with 20 MHz bandwidth for each
transmitter-receiver antenna pair. In contrast, the Atheros

NIC and Espressif SoC support all 52 sub-carriers with a
primary bandwidth of 20 MHz. NIC-based solutions require
computing devices to process the signals. The Android Nexus
5 smartphone using Nexmon firmware is another CSI data
collection device that offers 256 sub-carriers of the CSI signal
with an 80 MHz bandwidth. However, USRP is a hardware
that can be controlled using software, and the number of sub-
carriers can be determined based on demands. Additionally,
it allows modification of the operating frequency, transmis-
sion, and receiving power. Its reusability and programmable
features make it a reliable device for the research community,
irrespective of its high cost. In the case of low-cost, low-
power, and large-scale deployment, SoCs provide an unbid-
dable solution. The SoC acts as a standalone device with the
capability of processing CSI signals. Commercial NIC and
SoC are operated at 2.4 GHz based on the 802.11b/g/n/e/i
wireless local area network (WLAN) standards. However,
CSI measurements using existing tools have several practi-
cal limitations when applied to a variety of domain-specific
applications. The first constraint is the need for a laptop with
a specific NIC to act as an Rx, with previous research studies
requiring up to 10 laptops on the Rx side. In contrast, USRP
can act as a stand-alone device with a configurable operating
frequency and bandwidth; however, it is costly. Owing to their
favorable features, SoC-based solutions are cost-effective for
the deployment of large-scale applications.

B. PROPERTIES OF WI-FI SIGNAL
Wi-Fi signals are affected by reflection, refraction, and scat-
tering caused by the presence or movement of an object
between the transmitter and receiver while the signal is prop-
agated. The environment can be easily modeled by analyzing
the changes in the signal properties. Among the two signal
properties, the RSSI is a widely used solution [9], [10], [20].
RSSI can be used to measure the variation in the signal value
from each packet and can be extracted from any device. The
signal provides only coarse-grained information which limits
the recognition accuracy of this type of approach [22]. The
limitations of handling multi-path fading and time-varying
properties restrict its application to models in complex envi-
ronments. An alternative solution is to use CSI, which pro-
vides information on OFDM in each packet and thus yields
fine-grained information [12], [13], [17], [18], [19]. CSI
can characterize the multi-path effect of the environment by
amplitude and frequency. Hence, the research community is
interested in the CSI of Wi-Fi signals.

C. HUMAN GESTURE RECOGNITION TECHNIQUES
Current human gesture recognition approaches can be
categorized into two types: machine learning and deep learn-
ing method. The machine learning approach utilizes sta-
tistical features, principal component analysis (PCA), fast
Fourier transform (FFT), and inverse fast Fourier transform
(IFFT) for classification. Several researchers have focused
onmachine learning-based approaches, wherein subtle move-
ments of finger gestures are identified through patterns
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matching of CSI in WiFinger [12]. Researchers claimed that
Wi-Fi CSI could be used to identify gestures even in non-
LOS cases. WiFinger comprises two parts: noise filtering
and pattern recognition. Wavelet-based denoising is used to
mitigate multi-path interference in the environment. In addi-
tion, principal component identification is used to extract
the gesture pattern. Finally, multi-dimensional dynamic time
warping (MD-DTW) is exploited to calculate the similarity
between the captured CSI pattern and the pre-constructed
gesture profiles. In the study, the WiFinger approach is tested
in two environments using two AP, and a laptop is used
for CSI collection. Furthermore, the approach exhibited over
93% recognition accuracy for the identification of eight dif-
ferent hand gestures.

Another CSI-based approach is WiCatch [16], which uti-
lizes an Intel 5300 NIC as a transmitter and receiver for CSI
data collection. It utilizes one antenna at the transmitter end
and two at the receiver end. The received data from the two
antennas are fused to remove interference. A trained SVM is
used as a classifier to recognize different gestures. WiCatch
achieves an overall recognition accuracy of 95% in the case
of nine different hand gestures. Dang et. al [17] proposed
10 air-gestures of handwritten numbers 0-9 using the S-DTW
algorithm which is a combination of SVM with a dynamic
time warping algorithm. An Intel 5300 NIC is used to obtain
theWi-Fi CSI amplitude and phase. Average accuracy of 93%
is reported for two different indoor scenes.

An android smartphone-based gesture recognition system
is presented by Li et al. [13], wherein specific hardware
(Nexus 5 smartphone) using Nexmon firmware and commer-
cial routers as AP are used to collect the amplitude of 256 CSI
sub-carrier signals of six different gestures (push-pull, sweep,
clap, slide, circle, zigzag). They adopted a new improved con-
straints multi-dimension dynamic timewrapping (CM-DTW)
algorithm to classify and recognize gestures. The overall
accuracy of 90% is achieved in the three environments.

Sigg et. al [10] used USRP to collect RSSI required to
obtain the transmission channel information between devices
owing to changes in the environment. The features are
extracted using FFT. k-nearest neighbour (k-NN) classifier
with k = 10 and a DT are adopted to classify five different
activities. Another RSSI-based machine learning approach is
presented in WiGest [11] which utilizes RSSI to sense in-
air hand gestures with discrete wavelet transformation and
pattern matching algorithm. Additionally, they reported that
the classification accuracy is positively influenced by the
number of AP. Ding et al. [20] presented a human ges-
ture recognition system based on the RSSI signal using the
XGBoost algorithm through the software-defined radio plat-
form USRP N210. Their method achieves an accuracy of
94.55% when 10 features are used, whereas the accuracy
decreases to 91.75% when two features are used.

Despite the effective results achieved by the previously
mentioned machine learning methods, extracting features
from CSI data that characterize the information related to the
time, frequency, and spatial domains is challenging. A deep

CNN can get proper features from an input signal without
constructing them individually. Qirong et al. [18] introduced
a gesture recognition approach based on CSI signals, using
deep transfer learning. A TP-Link router and a laptop with
an Intel 5300 NIC are utilized as the Wi-Fi transmitter and
receiver, respectively. First, a segmented algorithm is applied
to detect gestures; subsequently, the applied algorithm con-
verted them into an image. They evaluated their dataset
using a deep CNN and fine-tuned CNN, which achieved
better gesture recognition compared with other state-of-the-
art methods. A gesture recognition system, WiGR [19] is
presented using CSI signals. They used depthwise separable
convolution and an inverted residual layer to reduce themodel
computations and parameters. Accuracy of up to 91.4% with
50% fewer parameters than the other existing systems is
reported. They used two Atheros NIC transceivers. Another
dual-attention network based on a deep residual network
(ResNet) gesture recognition technique coinedWiGRUNTby
Gu et al. [21]. They used the online available Widar3 dataset
and achieved better results than state-of-the-art techniques.

From the above-mentioned research, most studies utilize
the CNN-based deep learning model and NIC or USRP
for human gesture recognition. They attempted to increase
the recognition rate by sacrificing the model parameters
and computational complexity. Studies on lightweight deep
learning-based models for gesture recognition are limited.
However, there is a trade-off between the model parameters
and accuracy. In this study, we introduced a heterogeneous
deep learning model using DS-Conv with an FA block and
RB, which can increase the accuracy while reducing the
parameters significantly. Moreover, we utilize a low-cost,
low-power SoC (ESP-32) with CSI API as a stand-alone
device for the first time to collect the Wi-Fi CSI dataset for
alphanumeric hand gesture recognition. This study allows us
to select the right-sized model for application based on the
constraints of the problem.

III. SYSTEM MODEL
The proposed gesture recognition system is divided into three
sections: dataset collection, data processing, and deep learn-
ing model (CSI-DeepNet). An alphanumerical hand gesture
dataset is collected using a low-cost, low-power consuming
specific SoC, called ESP-32 for the first time to collect ges-
ture data, which can be helpful for large-scale deployment
in the Internet of Things (IoT) environment. Fig. 1 shows
the proposed system model. After collecting the dataset,
a data processing technique is implemented for denoising
and segmentation. Finally, a lightweight deep learning Net-
work (CSI-DeepNet) with an FA block, RB and DS-Conv is
adopted to capture the fine-grained automatic features that
ensure a high recognition rate and reduced computational
complexity.

A. DATASET COLLECTION
In this study, we utilize the SoC-based standalone device
ESP-32 as a transmitter/AP and receiver for CSI data
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FIGURE 1. Block diagram of the CSI-DeepNet gesture classifier.

collection. ESP-32 [14] is a highly integrated low-cost SoC
with a dual-core 32-bit processor developed by Espressif
systems. ESP-32 is packed with peripherals, such as built-
in antenna switches, RF baluns, power amplifiers, low-noise
receiving amplifiers, filters, sensors, and power management
modules. This SoC is suitable for different applications, such
as mobile devices, IoT, and wearables owing to its ultra-low
power consumption features. It can act as a standalone device
with both Wi-Fi and Bluetooth connectivity. Furthermore,
it can act as an AP mode with a full 802.11b/g/n/e/i WLAN
MAC protocol and can communicate to most Wi-Fi routers
in the station (client) mode. It can mimic both the Tx and
Rx without the aid of any special Tx or Rx for CSI mea-
surements. It favors the CSI API [23] to provide the most
accurate CSI measurement from all 52 sub-carriers in the
frequency domain and is thus suitable for use in device-free
wireless sensing applications. Hence, we utilize for the first
time ESP-32 with the CSI API to efficiently capture the CSI
gesture dataset efficiently in our interest domain.

CSI in ESP-32 contains the channel frequency responses
(CFRs) of the sub-carriers; it is calculatedwhen packets travel
from Tx to Rx. Each CFR of a sub-carrier registers as two
bytes of signed characters; the first part is the imaginary,
and the second part is the real value. The CSI API based on
ESP-32 is set up during the installation process tomeasure the

FIGURE 2. The stoke order of 20 alphanumeric characters.

FIGURE 3. Timing diagram for gesture data collection.

CSI values efficiently. Twenty different alphanumerics based
on hand gestures, including 10 capital letters (A, B, C, D,
E, F, G, J, O, and P) and 10 numbers (0-9) are considered
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FIGURE 4. Test-bed scenario when the transmitter and receiver are 2 m apart.

for data collection. Ten participants are involved in recording
the hand gestures of 20 alphanumeric characters. A total of
1,800 trials are performed; in each trial, each person performs
ten gestures frequently with 2 sec of no activity (steady state)
at the beginning. Fig. 2 shows the stokes order of 10 letters
and 10 numbers used for CSI data collection. During the
recording, one start beep is used as an indication to get ready,
and after the second beep, the user starts making gestures
on the air with the selected alphanumeric characters. This
is repeated ten times. Fig. 3 Illustrates the timing diagram
for recording. The testbed scenario is shown in Fig. 4. Ten
participants are involved in the data collection, of which two
are female, and eight are male; furthermore, three scenarios
(distance between transmitter and receiver is 1 m, 1.2 m,
and 2 m) are considered. The total number of trials is 1,800,
with 10 gestures in each trial. The dataset statistics and
number of samples for each gesture are presented in Fig. 5.

Our dataset is imbalanced in that the numbers of samples for
each gesture are different. The possibility of having a dataset
with balanced classes in real-world data is low. Highly imbal-
anced data can hamper model accuracy a lot. Although our
dataset is imbalanced in nature, this imbalance is negligible.

B. DATA PROCESSING
Scattering, diffraction, and reflectance events occur in the
passage of the signal channel owing to the presence of mov-
ing and stationary objects. As the entire wireless channel is
split into several narrowband sub-carriers in an OFDM, the
communication system can be modeled as [25]

yi = Hixi + v, i = 1, 2, 3, . . . ,N , (1)

whereHi ∈ CNR×NT denotes the CSI matrix of ith sub-carrier,
v denotes the noise term, N represents the number of OFDM
sub-carrier frequencies, and yi ∈ RNRx and xi ∈ RNTx is the
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FIGURE 5. Summary of the collected data sample in CSI-based gesture dataset.

ith received and transmitted signal.

Hi =


h11i h12i · · · h1NRi
h21i h22i · · · h2NRi
...

...
. . .

...

hNT 1i hNT 2i · · · hNTNRi

 , (2)

where hjki is the CSI of the ith sub-carrier for the link between
the jth transmitted antenna and the k th receiving antenna. The
hjki is a complex value represented as

hjki = |h
jk
i |e

j6 hjki , (3)

where |hjki | and 6 h
jk
i denote amplitude and phase respec-

tively. In this study, we use one transmitting antenna and
one receiving antenna. Hence, the CSI measurement matrix
contains the frequency response of all the 52 sub-carriers.
In the data packets, the real and imaginary values of CSI
data are subsequently stored. Subsequently, amplitude and
phase components are calculated from the captured CSI data
as follows:

|hjki | =
√
dimag + dreal, (4)

6 hjki = tan−1
(
dimag

dreal

)
, (5)

where dimag and dreal denote the imaginary and real parts of
the collected CSI data.

CSI in ESP-32 contains the channel frequency responses
of 52 active subcarriers. In OFDM, Inverse Fast Fourier

Transform (IFFT) and Fast Fourier Transform (FFT) are used
on transmitter and receiver sides respectively. The number
of inputs in IFFT and FFT should be 2n. To satisfy this,
12 inactive subcarriers are replaced with 0, which makes a
total of 64 subcarriers. We have excluded all the inactive
subcarriers in the data processing section, to make the input
dimension 256× 52.
Noise may be induced during propagation owing to high-

frequency environmental noise and multi-path effect. Hence,
a Butterworth filter is used to remove the noise. Subsequently,
Gaussian smoothing is employed to suppress the small peaks.
The samples of the recorded CSI, filtered, and smooth signals
are shown in Fig. 6.
The CSI signal is split into smaller dimensions or windows

through segmentation to ensure effective use of the hardware
resources. Gesture performance time is not unique; hence,
proper segmentation is helpful in extracting the feature that
will eventually affect the recognition accuracy. It took aver-
age 2.5s to 3.1s to perform each gesture and the sampling rate
was 100Hz. We could record 255 to 310 data frames for each
gesture. We have set different window lengths empirically
and found maximum recognition accuracy in the case of
window length 256. Therefore, in this study, we use a sliding
window size of 256× 52, and it is shifted by 128 to ensure a
50% overlap of the signal.

C. DEEP LEARNING MODEL (CSI-DeepNet)
The deep learningmodel (CSI-DeepNet) consists of twomain
sections: feature extraction and recognition section as shown

VOLUME 10, 2022 114793



M. Humayun Kabir et al.: CSI-DeepNet: Lightweight Deep Convolutional Neural Network Based Hand Gesture Recognition System

FIGURE 6. Raw, filtered, and smoothing signals of the gesture CSI data.

in Fig. 7. The feature extraction section involves obtaining
the fine-grained feature that is used by the subsequent recog-
nition section to detect the exact gestures. In addition, the
features extraction section use one 2D CNN followed by
batch normalization (BN), ReLU activation, and four lay-
ers of dense convolutional (DS-Conv) blocks. Among the
layers, two DS-Conv blocks are followed by an FA-block
and RB. DS-Conv blocks significantly reduce the number
of parameters compared to the conventional CNN-based
approach, which is advantageous for low-resource device
implementation. However, FA blocks assist in obtaining fine-
grained features that are more resilient. Moreover, RB pro-
vides features that are able to remove the vanishing gradient
removal, increase strength propagation, and support feature
reuse. In contrast, the recognition section takes advantage of
the global average pooling, dropout, dense, and softmax for
recognition. As such, the proposed model uses fewer param-
eters compared with the existing state-of-the-art approach;
thus, its training time is reduced in addition to the testing
time with low memory. By doing so, the proposed model is
advantageous for implementation in low-resource devices in

IoT devices. The features from the feature extraction section
are introduced to classifiers in the recognition section to
ensure that they are classified into 21 different classes. The
model summary of the feature extraction and recognition
sections is tabulated in Table 1 and Table 2, respectively.

1) DEPTHWISE SEPARABLE CONVOLUTION (DS-CONV)
To build a lightweight deep learning model, we utilize the
power of DS-Conv [24] instead of state-of-the-art CNN archi-
tecture. DS-Conv splits the convolution processes into depth-
wise convolution (Dconv) and pointwise convolution (Pconv).
The Dconv utilizes a single convolution kernel in each input
channel, whereas a 1× 1 convolution operation is conducted
on the outcomes from theDconv to combine the outputs using
Pconv. This approach reduces the computational complexity
as well as model size, which is advantageous for low hard-
ware resource device applications. The DS-Conv architecture
is illustrated in Fig. 8.

Consider that K and x are kernel and feature map, respec-
tively; Subscripts i, j, and m represent the height, width,
and depth of the feature map, respectively; and k and l are
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FIGURE 7. Proposed CSI-DeepNet model architecture.

TABLE 1. Summary of the feature extraction block.

the height and width of the kernel, respectively. Depthwise
convolution with one filter per input channel (depth) yields

Dconv(K, x)i,j,m = 6k,lKk,l · xi+k,j+l,m. (6)

However, pointwise convolution can be expressed as

Pconv(K, x)i,j = 6mKm · xi,j,m. (7)

TABLE 2. Summary of the recognition block.

2) FEATURE ATTENTION (FA) BLOCK
The attention concept is used to enhance the performance
of CNNs. Neural network architecture focuses on the local
features that fail to show the relationships among local fea-
tures. The feature attention mechanism helps to reveal the
relationship between the different descriptive local features
among the two neighbors. To motivate our study based on
the previous studies, we have utilized a version of the feature
attention block with the average pooling and max pooling.
First, the features map obtained from the previous layer
underwent average pooling and max pooling operations to
obtain the spatial features; subsequently, they are summed up
element-wise to obtain the concatenated features. Next, a 2D
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FIGURE 8. DS-Conv model architecture.

FIGURE 9. Feature attention block architecture.

convolution layer with a sigmoid activation function is used
to build the spatial attention feature map. Fig. 9 shows the
feature attention block.

Considering, the features x ∈ RF×S where F is the number
of frames, and S is the number of sub-carriers. Variable
x undergoes two different pooling operations concurrently:
xmax-pool ∈ RF×S and xavg-pool ∈ RF×S , where xmax−pool
denotes max pooling and xavg-pool is average pooling. After
an element-wise concatenation, a 2D convolution operation
is used with a 3 × 3 single kernel and stride size of 1.
However, sigmoid activation function linearizes the output
feature map SA(x). The output features map is matched with
input features (x) using element-wise multiplication to obtain
finer features x̃,

xavg-pool = AvgPool(x), (8)

xmax-pool = MaxPool(x), (9)

SA(x) = σ
(
f 3×3[xavg-pool]⊕ [xmax-pool]

)
, (10)

x̃ = x · SA(x), (11)

FIGURE 10. Residual block architecture.

where σ represents the sigmoid activation function, f 3×3

denotes a 3× 3 single kernel, and⊕ denotes a concatenation
operator.

3) RESIDUAL BLOCK (RB)
The conventional deep learning networks utilize a number of
convolution layers, followed by the fully connected layers for
classification without evaluating the features transaction in a
block. Each layer passes its processed data to the next layer,
similar to a sequential network. As layer size increased, the
vanishing or exploding gradient in the network progressed.
RB is used to enhance the gradient propagation, and it enabled
the training of the deeper block without gradient vanishing
problems. The RB consists of two convolutional layers, BN,
and the LeakyReLU function activation layer as shown in
Fig. 10. The LeakyReLU activation function layer is per-
formed on the concatenated features from the previous layers
with the fresh input features before feeding into the convolu-
tion layer.

The functions of the residual layer can be defined as:

x ′ = x ⊕ f (x), (12)

LeakyRelU(x′) =

{
1, if x ′ > 0
α, otherwise.,

(13)

where x denotes the input feature, f (x) the output of any layer,
⊕ the concatenation operator, x ′ denotes the concatenated
inputs, and α denotes the leakage factor.

4) METHODOLOGY
A statistical model is developed in three steps: building, train-
ing and validation, and evaluation of the model. A sufficient
amount of data diversity is necessary for proper training of
a model. However, the inability to set up a proper model
hyper-parameter leads to misconceptions. The proposed
CSI-DeepNet is verified using the collected alphanumeric
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FIGURE 11. Cohen’s kappa score interpretation.

gesture dataset. This model is trained for up to 100 epochs
with a batch size of 64. An early stop callback for validation
loss with 10 epochs of patience is utilized to end the training
in case of improvement failure. A desktop computer with an
AMD Ryzen 5 5600X 6-core processor of 3.70 GHz and
NVIDIA GeForce RTX 3060 12 GB GPU, 500 GB SSD,
and 32 GB RAM are utilized to perform the experiment.
The network is run using the Keras API supported with
TensorFlow as a backend running in a Python environment.
First, the network starts with a small learning rate. When
the validation accuracy failed to improve in six consecutive
epochs, the learning rate is updated by 0.75 times with respect
to the previous value. The Adam optimizer [25] is adopted to
minimize the error. For the evaluation of the proposed model,
three evaluation metrics (accuracy, F1-score, and k-score) are
reported. Accuracy is defined as the total number of correctly
identified predictions divided by a total number of predictions
produced using the dataset. It is adequate when the target
class is well balanced, but inaccurate when the target class
is unbalanced. True positive (TP) is a result where the model
accurately identifies the positive class, whereas true negative
(TN) is a result where the model accurately identifies the
negative class, false positive (FP) is a result in which the
model incorrectly identifies the positive class, and false nega-
tive (FN) is a result in which the model incorrectly identifies
the negative class. The mathematical representations of the
performance metrics are as follows:

Recall =
TP

TP+ FN
, (14)

Precision =
TP

TP+ FP
, (15)

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
, (16)

F1-score = 2×
Recall× Precision
Recall+ Precision

. (17)

The F1-score represents the harmonic mean of two mea-
sures (recall and precision). Its numerical value ranges from
0 to 1, where 0 denotes the worst value, and 1 denotes the
best value. Another important metric is Cohen’s kappa score,
(k-score) which indicates the recognition performance pro-
duced by random guessing based on the number of samples
in each class [26]. The interpretation of the k-score is shown
in Fig. 11.

IV. RESULT AND DISCUSSION
In this section, we present a performance evaluation of
our proposed method. The collected alphanumeric hand-
gesture datasets are used for the evaluation. A 10-fold

cross-validation (CV) technique is followed to train and test
the model. The entire dataset is randomly partitioned into
ten non-overlapping data of equal size. Subsequently, the
data are fitted with the model in an iterative manner. The
overall performance is the average of the outcomes achieved
in each iteration. The number of epochs is set to 100, and
the Adam optimizer [27] is used to update the weights by
considering the cross-entropy [28] loss function. The perfor-
mance of the proposed model is evaluated based on three
well-known metrics: accuracy, F1-score and Cohen’s kappa
(k-score). The performance evaluation results are summa-
rized in Table 3. The average ± standard deviation values
of accuracy (%), F1-score, and Cohen’s kappa (k-score) are
96.31±0.28%, 0.97±0.0042, and 0.96±0.0067, respectively.
Themaximum values of accuracy (%),F1-score, and Cohen’s
kappa (k-score) are 96.76%, 0.97, and 0.96, respectively.
The values are achieved for 3rd fold. The minimum case
of accuracy (%), F1-score and Cohen’s kappa (k-score) are
95.88%, 0.96, and 0.95, respectively. The values are achieved
in 1st fold. Twenty gesture classes, including one steady
state (no gesture) in total twenty-one (21) gesture classes
are considered for classification. A confusion matrix with a
heatmap is presented in Fig. 12 for insight into the accuracy
of each class. The diagonal elements represent the average
recognition accuracy for each of the 21 classes. Misclassifi-
cations occurred because the similarity between gestures and
the beginning of certain gestures is identical to that of steady-
state gestures. The non-diagonal elements of the confusion
matrix indicate the rate of misclassification.

The t-SNE plot helps to evaluate the generalization capa-
bilities of a model. This shows how the model represents
data in a high-dimensional feature space. Fig. 13 (a) shows
a sample of the data before processing using the classifier.
The samples are congested and more challenging to iden-
tify. However, 21 well-separated distributions of the data are
shown in Fig. 13 (b). The clear and well margin among the
21 classes demonstrated the capability of the classifier to
separate the feature space.

The proposed model is trained and evaluated using a
10-fold CV technique. The fold-wise performance results in
Table 3 assumes that the highest accuracy is achieved for the
3rd fold. To observe the training and validation losses, the
accuracy and loss curves are shown in Fig. 14. The figures
reveal that the proposed model converged within 60 epochs.

To make a performance comparison with other deep learn-
ing based approaches, we use four different models: two
pre-trained CNNs (ResNet-50 [29], DenseNet-121 [30]),
an end-to-end deep learning framework (E2EDLF) [31], and
CSI-IANet [32]. Two pre-trained CNNs are tuned via the
transfer learning concept using the collected CSI gesture
dataset. Zero-padding is applied to adjust the size of each
input, and the number of neurons in the last dense layer is
set to 21, which is equal to the gesture classes, followed
by global average pooling (GAP) and a dense layer. The
E2EDLF consists of three blocks of the CNN architecture,
with two blocks for the feature extraction phase and one
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TABLE 3. Results obtained from 10-fold CV of the proposed CSI-DeepNet model.

FIGURE 12. Confusion matrix of the proposed CSI-DeepNet model for gesture recognition.

TABLE 4. Performance comparison of CSI-DeepNet model.

for the recognition phase. Each CNN block in the featured
extraction phase is followed by a BN layer and rectified linear
unit (ReLU) activation layer. The third block consists of a
flattened layer, a fully connected layer, and a softmax layer.

Another CNN-based approach is CSI-IANet, which utilizes a
modified inception CNN with a feature-attention mechanism
to classify the CSI signal. All four models are evaluated using
the same training and testing dataset using a 10-fold CV
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FIGURE 13. Two-dimensional t-SNE visualization of the testing data a) before and b) after the prediction.

FIGURE 14. Training and validation a) accuracy and b) loss curve of proposed CSI-DeepNet model.

procedure. The proposed model, along with four state-of-
the-art techniques, is compared based on the percentage of
recognition accuracy, number of trainable parameters, train-
ing time, and recognition time.

A performance comparison between the proposed
CSI-DeepNet and other state-of-the-art techniques is pre-
sented in Table 4. The average recognition accuracies
computes across all 21 gesture classes for the pre-trained
ResNet-50 and DenseNet-121, E2EDLF, and CSI-IANet
are 70.38%, 69.13%, 84.30%, and 90.50% respectively.
However, the average recognition F1-score computes across
all gesture classes for the pre-trained ResNet-50 and
DenseNet-121, E2EDLF, and CSI-IANet are 0.70, 0.69, 0.84,
and 0.91, respectively. Furthermore, the average k-scores
computes across all gesture classes for the pre-trained
ResNet-50 and DenseNet-121, E2EDLF, and CSI-IANet
are 0.69, 0.68, 0.83, and 0.89, respectively. The num-
ber of trainable parameters for the pre-trained ResNet-50
and DenseNet-121, E2EDLF, and CSI-IANet are 264987,
133915, 972321, and 516321, respectively. The proposed

CSI-DeepNet obtaines a recognition accuracy, F1-score, k-
score, and number of trainable parameters of 96.31%, 0.97,
0.96, and 119273 respectively. Compared with existing stud-
ies discusses in the literature, our proposed model exhibits
superior performance to any existing work in terms of gesture
recognition from CSI data. The performance analysis of the
proposed CSI-DeepNet model demonstrates that it outper-
forms the existing best model, CSI-IANet, by 6% in terms of
accuracy, F1-score, and k-score. In the case of computational
complexity, the proposed model utilizes four times less than
that of the existing best model. This improvement may be due
to the new architecture of the proposed model and optimal
hyper-parameter selection. Therefore, our proposed model
can use for gesture recognition and is suitable for low-
resource device applications.

The number of trainable parameters in the model relates
with the computational complexity. The fewer trainable
parameters, the lesser computational complexity. We have
evaluated the complexity of a model based on the training
and recognition time. Therefore, a runtime comparison of the
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FIGURE 15. Runtime comparison between different deep learning model.

proposed CSI-DeepNet with other state-of-the-art techniques
is performed. The training and recognition times of the
proposed CSI-DeepNet along with four other state-of-the-
art techniques (pre-trained ResNet-50 and DenseNet-121,
E2EDLF, and CSI-IANet) are shown in Fig 15. Two pre-
trained models ResNet-50 and DenseNet-121 requires addi-
tional training time (5998 s and 7200 s, respectively) and
recognition time (89µs and 108µs, respectively). Although
E2EDLF can train (518 s) and recognize (19µs) in less time
owing to the utilization of the less depth model, it suffers
from low accuracy (84.30%). Previous studies on CSI-IANet
reports moderate training time (1154 s) and recognition
time (30µs) with moderate accuracy (90.5%). The proposed
CSI-DeepNet has a shorter training time (966 s) and recog-
nition time (18µs), and better accuracy (96.31%) than the
CSI-IANet.

V. CONCLUSION
A device-free gesture recognition system plays an important
role in satisfying user privacy and comfort. In this study,
a low-power SoC has been used for the first time to cap-
ture 20 alphanumeric hand gestures among which ten are
numbers and ten letters. Ten people are involved in record-
ing 1,800 trails of 20 alphanumeric hand gestures. Con-
currently, a lightweight heterogeneous deep learning model,
CSI-DeepNet using DS-Conv, FA block, and RB has utilized
for the extraction and classification of features. DS-Conv
with the FA block and RB help to learn fine-grained features
while significantly utilizing fewer model parameters without
sacrificing the recognition accuracy. Moreover, RB increases
the propagation of gradients and allows the training of deeper
CNNs, mitigating gradient vanishing problems. The aver-
age accuracy of 96.31% is achieved for the classification of
21 gestures, which outperformed the two pre-trained CNNs

and two state-of-the-art deep learning CSI-based classifiers.
Overall, the proposed CSI-DeepNet has utilized fewer param-
eters, as well as training and recognition time. Owing to the
use of low-power SoCs in data collection and lightweight
deep learning models, this system can be applied to low-
resource devices that ensure large-scale deployment. Anno-
tating the data for large systems is a tedious and complicated
task. In the future, we will expand our system to include a
greater number of different gestures in multiple antennas sce-
narios and adopt a semi-supervised learning-based solution to
handle data annotation challenges.
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