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ABSTRACT Data loss is ubiquitous in practical engineering applications due to communication delay or
congestion. Data loss rate is a key metric to evaluate the reliability of state estimation. To jointly estimate
system state and data loss rate, we propose a class of Gaussian-Beta filters for linear and moderate nonlinear
Gaussian state-space models with unknown probability of measurement loss. In the filters, the arrival of the
measurement at each time is formulated as a binary random variable, which is determined by the classical
threshold technology. In addition, the hidden state and the unknown probability of measurement loss are
modeled as a product of Gaussian and Beta distributions, and the form remains unchanged through recursive
operations. Simulation results verify the effectiveness of the proposed Gaussian-Beta filters compared with
the existing filtering algorithms.

INDEX TERMS State-space model, measurement loss, threshold technology, Gaussian-Beta filter.

I. INTRODUCTION
The filtering problem for linear/nonlinear state-space models
consists in recursively estimating the hidden state variables
from the observable contaminated data online [1], [2], [3],
[4]. Design, development and application of linear/nonlinear
filters have received considerable attentions in the past few
decades, since they have numerous significant applications
in science and engineering, such as sonar ranging, radar
tracking, missile orbit determination, and navigational and
guidance systems, etc [5], [6], [7], [8], [9], [10], [11]. As is
well known, the performance of a designed filter depends not
only on the structure of itself, but also on the reliability of the
sensing systems. A common feature of modern sensor net-
work systems is the presence of severe communication delays
and data loss through the network [12], [13], [14]. From the
viewpoint of filtering theory, severe communication delay is
equivalent to data loss, because only when data arrive in time
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can it be used for online estimation. For example, consider the
navigation problem for a vehicle by utilizing the estimations
of its current position and velocity from a sensor network.
Measurements may be delayed or lost due to the unreliability
of communication links. In order to reliably perform the
navigation task, it is necessary to estimate the probability
of measurement loss for the sensor network system to judge
the reliability of the current state estimation according to the
maximum data loss rate that the estimator can tolerate, since
the covariance matrix of the state will tend to infinity if the
measurement loss rate is greater than this threshold. When
the unreliability occurs, we need to adjust the communication
protocol to meet constraints. In this paper, we mainly focus
on the filtering problem for Gaussian state-space models with
unknown probability of measurement loss.

For a state-space model with known measurement loss,
an intermittent Kalman filter (IKF) has been developed,
in which measurement loss is modeled as a random pro-
cess [14]. IKF is a minimum covariance estimator and
has a recursive structure similar to the standard Kalman
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filter (KF) [5]. The unique difference between IKF and KF
is that the former needs to choose the measurement noise
covariance involved in the filtering gain via the known mea-
surement loss variable. Then, the stability of the IKF is
analyzed from the perspective of estimation error covariance.
In [14], the authors prove that there exists a critical value
for the probability of measurement loss, beyond which the
expectation of estimation error covariance is unbounded and
the performance of the IKF may severely deteriorate. In addi-
tion, explicit upper and lower bounds on the critical value are
provided. In [15], an explicit expression of the critical value
is obtained underMarkovian measurement losses. In [16], the
bound of the expected error covariance of the IKF has been
derived. Therefore, the probability of measurement loss is a
significant variable to evaluate the stability of a filter and it
needs to be explicitly modeled.

The filtering problem for state-spacemodels with unknown
measurement loss becomes more complicated. In [17], two
different Bayesian Kalman filters (BKFs) have been devel-
oped for a linear Gaussian state-space model with unknown
sensor measurement loss. BKF1 is based on the estimation
of the sensor measurement loss process, and BKF2 is based
on the estimation of the posterior density of the sensor mea-
surement loss. However, the two BKFs cannot adaptively
estimate the probability of measurement loss, resulting in
limited estimation accuracy. Recently, a variational Bayesian-
based adaptive Kalman filter (VBAKF) has been proposed to
solve the filtering problem for a linear Gaussian state-space
model with unknown probability of sensor measurement
loss [18], in which the joint posterior density of the state,
the measurement arrival variable, and the measurement loss
rate are derived by the variational Bayesian technology [19],
[20], [21]. Although the VBAKF shows better estimation
accuracy than the BKFs and can simultaneously estimate the
sensor measurement loss rate to determine the reliability of
the state estimation, it requires more time cost due to a large
number of iterative operations, which degrades its real-time
performance.

Motivated by the above discussions, a class of Gaussian-
Beta filters are proposed in this paper for linear and moderate
nonlinear Gaussian state-space models with unknown prob-
ability of measurement loss. They recursively estimate the
joint posterior density of the hidden state and the unknown
measurement loss rate, which are respectively formulated as
a Gaussian distribution and a Beta distribution, conditionally
on both the sensor measurement sequence and the estimated
random process of the measurement arrival. There are three
chief differences between the Gaussian-Beta filters and the
VBAKF. Firstly, instead of computing the expected value of
the measurement arrival variable in VBAKF, we utilize the
threshold technology [22], [23], [24] to directly determine
the value of the measurement arrival variable in Gaussian-
Beta filters, since threshold technology has a complete the-
oretical basis and is widely used in practical applications.
Secondly, when deriving the joint posterior density of the
hidden state and the unknown measurement loss rate, the

posterior density of measurement arrival needs to be esti-
mated simultaneously in the VBAKF, while, in Gaussian-
Beta filters, the estimated sequence of measurement arrivals
is viewed as extra measurement information, leading to better
estimation accuracy. Finally, the computational complexity
of the VBAKF increases with the number of iterations, while
Gaussian-Beta filters only require a single recursive operation
and their structures are similar to that of the standard Gaus-
sian filters [23]. Numerical results further validate the supe-
riority of our Gaussian-Beta filters in estimation precision,
convergence speed and computational complexity compared
with the existing filtering algorithms.

The main contributions of the paper are as follows. Firstly,
a novel Kalman-Beta filter (KBF) is proposed for linear
Gaussian state-space models with unknown probability of
measurement loss, and it can jointly estimate the hidden state
and unknown probability of measurement loss. The KBF
has a simple form, which facilitates its practical applica-
tion. Secondly, the proposed KBF is further extended to the
nonlinear case, and the extended Kalman-Beta filter (EKBF)
and the unscented Kalman-Beta filter (UKBF) are developed.
Finally, two target tracking scenarios are used to verify the
effectiveness of the proposed filtering algorithms.

The rest of the paper is outlined as follows. In Section II,
we formulate the filtering problem for a linear Gaussian
state-space model with unknown probability of measurement
loss. In Section III, the Kalman-Beta filter is designed to
jointly estimate the hidden state and the unknown proba-
bility of measurement loss. In Section IV, we extend the
KBF to moderate nonlinear Gaussian stochastic systems,
and give the specific implementations of Gaussian-Beta fil-
ters in both extended-Kalman and unscented-Kalman fil-
tering frameworks, named as extended-Kalman-Beta filter
and unscented-Kalman-Beta filter, respectively. In Section V,
numerical simulation is performed to validate the effective-
ness of the proposed algorithms. Finally, we conclude the
paper in Section VI.

II. PROBLEM FORMULATION
Consider the following linear Gaussian state-space system

xk = Fkxk−1 + wk (1)

yk = Hkxk + vk (2)

where k is the time index, xk ∈ Rn is the hidden state vector,
Fk ∈ Rn×n is the state transition matrix, wk ∈ Rn is the
process noise, subjected to a Gaussian distribution with zero
means and covariance matrix Qk , i.e., wk ∼ N (wk ;0,Qk),
yk ∈ Rm is the measurement vector, Hk ∈ Rm×n is the
observation matrix, and vk ∈ Rm is the measurement noise.
To address the filtering problem for the linear Gaussian

state-space model with intermittent measurements, the arrival
of the measurement at time k is defined as a binary random
variable γk ∈ {0, 1} with probability Pr (γk = 0) = τk ,
where γk = 0 denotes the estimator does not receive the
sensor measurement originated from state at time k , while
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γk = 1 means that the estimator receives the sensor mea-
surement originated from state at time k , and τk denotes
the probability of measurement loss at time k . Then, the
measurement noise vk can be formulated as follows [14]:

p (vk |γk) =

{
N (0,Rk) , γk = 1

N
(
0, σ 2

k I
)
, γk = 0

(3)

where σ a real scalar, and I ∈ Rm×m is an m-dimensional
identity matrix. From (3), the covariance matrix of measure-
ment noise R̃k is related to the measurement arrival variable
γk , i.e., R̃k = Rk if γk = 1, and R̃k = σ 2

k I otherwise. The
measurement loss in reality corresponds to the limiting case
of σk → ∞ [14]. This equivalent to the sensor receiving a
very large outlier. In this paper, it is presumed that the initial
state x0, wk and vk are mutually independent.
The goal of this paper is to derive a Bayesian fil-

ter to adaptively estimate the joint posterior density of
the hidden state and the unknown probability of measure-
ment loss conditionally on both the sensor measurement
sequence and the estimated measurement arrival sequence,
i.e., p

(
xk , τk |y1:k , γ1:k

)
, where y1:k and γ1:k are respectively

the collections of the variables y and γ until time k . It should
be emphasized that when computing the joint posterior den-
sity of the hidden state and the unknown measurement loss
rate, the estimated measurement arrival sequence γ1:k , deter-
mined by the threshold technology [22], [23], [24] (see in
Section III-C), is also viewed as extra measurement informa-
tion to obtain better estimation performance.

III. KALMAN-BETA FILTER
To solve the filtering problem for a linear Gaussian
state-space model with unknown probability of measurement
loss, a Kalman-Beta filter (KBF) is developed in this section.
First, the time update is introduced, in which a heuristic
dynamic model is employed for the probability of measure-
ment loss. Then, a variational Bayesian approach is used
to infer both the state and probability of measurement loss.
Finally, we briefly introduce the threshold technology, which
is used to estimate the binary variable of the measurement
arrival.

A. TIME UPDATE
Assume that the joint posterior density of the hidden state
xk−1 and the unknown probability of measurement loss τk−1
at time k − 1 has a product form of Gaussian and Beta
distributions as follows:

p
(
xk−1, τk−1|y1:k−1, γ1:k−1

)
= N

(
xk−1; xk−1|k−1,Pk−1|k−1

)
×Beta

(
τk−1;αk−1|k−1, βk−1|k−1

)
(4)

where Beta (·;α, β) denotes the Beta distribution with two
positive shape parameters α and β, and its probability density
function [25] is

p (τ ;α, β) =
0 (α + β)

0 (α) 0 (β)
τα−1(1− τ)β−1

=
1

B (α, β)
τα−1(1− τ)β−1 (5)

where 0 (·) is the Gamma distribution, B (·) is a normaliza-
tion constant. If τ ∼ Beta (τ ;α, β), then E [τ ] = α

α+β
, where

E [·] denotes the expectation operator.
The joint predicted density of the hidden state xk and

the unknown probability of measurement loss τk at time
k can be obtained by the following Chapman-Kolmogorov
equation [1],

p
(
xk , τk |y1:k−1, γ1:k−1

)
=

∫
p (xk , τk |xk−1, τk−1)

× p
(
xk−1, τk−1|y1:k−1, γ1:k−1

)
× dxk−1dτk−1 (6)

where p (xk , τk |xk−1, τk−1) is the dynamical model of the
state and the probability of measurement loss. In the frame-
work of Byesian theory, it is necessary to construct an appro-
priate dynamic model for variables xk and τk . In order to
retain the product form of Gaussian and Beta distributions
for the joint predicted density (6), the following modelling
assumptions, which are also consistent with practical appli-
cations, need to be made.
Assumption 1: The dynamics of the hidden state and the

probability of measurement loss are mutually independent,
i.e.,

p (xk , τk |xk−1, τk−1) = p (xk |xk−1) p (τk |τk−1) (7)

Thus, the factored form will remain in the time update
step, and the predicted density of the hidden state can be
obtained according to the standard KF’s time update [5], i.e.,
p
(
xk |y1:k , γ1:k

)
= N

(
xk ; xk|k−1,Pk|k−1

)
, where the mean

xk|k−1 and the covariance Pk|k−1 are computed by

xk|k−1 = Fkxk−1|k−1 (8)

Pk|k−1 = FkPk−1|k−1FT
k + Qk (9)

where (·)T denotes the transpose operator.
Assumption 2: The dynamic of the probability ofmeasure-

ment loss p (τk |τk−1) is unknown and it is not straightforward
to choose a dynamic model for the variable τk to yield a Beta
distribution as its predicted distribution. Here, we adopt the
heuristic dynamic model for τk suggested in [18] and [26],
which simply propagates its previous approximate posterior
distribution (4), i.e.,

αk|k−1 = ραk−1|k−1 (10)

βk|k−1 = ρβk−1|k−1 (11)

where ρ ∈ (0, 1] is a forgetting factor. The value ρ = 1means
a stationary probability of measurement loss and a smaller
value means its fluctuation in time. Related studies have
shown that choosing a constant close to 1 usually satisfies
engineering applications.

The rationality of Assumption 2 can be explained from the
following three aspects. On the one hand, the heuristic model
ensures that the predicted density of the unknown probability
of measurement loss also is also a Beta distribution, i.e.,
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p
(
τk |y1:k , γ1:k

)
= Beta

(
τk ;αk|k−1, βk|k−1

)
. On the other

hand, the predicted expectation of the measurement loss rate
τk at time k is equal to the posterior expectation of measure-
ment loss rate τk−1 at time k − 1, i.e.,

E
[
τk|k−1

]
= E

[
τk−1|k−1

]
(12)

It means that the measurement loss rate does not change
drastically in a short period of time, which is consistent with
practice. Finally, the heuristicmodel has a simple form,which
facilitates its practical application.

Therefore, the joint predicted density of the hidden state
and the unknown probability of measurement loss at time k
remains a product form of Gaussian and Beta distributions
based on the above Assumptions 1 and 2, and is given by

p
(
xk , τk |y1:k−1, γ1:k−1

)
= N

(
xk ; xk|k−1,Pk|k−1

)
×Beta

(
τk ;αk|k−1, βk|k−1

)
(13)

The involved parameters in (13) are obtained by (8), (9), (10)
and (11).

B. MEASUREMENT UPDATE
Assume that the joint predicted density of the hidden state xk
and the unknown probability of measurement loss τk at time
k has a product form of Gaussian and Beta distributions as
shown in (13), then the joint posterior density is updated by
the Bayesian’s rule [1] as follows:

p
(
xk , τk |y1:k , γ1:k

)
∝ p

(
yk , γk , xk , τk |y1:k−1, γ1:k−1

)
= p

(
yk , γk |xk , τk

)
p
(
xk , τk |y1:k−1, γ1:k−1

)
(14)

where the likelihood function p
(
yk , γk |xk , τk

)
can be fac-

tored by

p
(
yk , γk |xk , τk

)
= p

(
yk |xk , γk

)
p (γk |τk) (15)

For the first term on the right-hand side of (15), it can
be formulated by a product form of power functions (for
the convenience of mathematical derivations in Proof 1) as
follows [18]:

p
(
yk |xk , γk

)
=
[
N
(
yk ;Hkxk ,Rk

)]γk
×

[
N
(
yk ;Hkxk , σ

2
k I
)]1−γk

(16)

i.e.,

p
(
yk |xk , γk = 1

)
= N

(
yk ;Hkxk ,Rk

)
(17)

p
(
yk |xk , γk = 0

)
= N

(
yk ;Hkxk , σ

2
k I
)

(18)

which are consistent with the observation models of (2) and
(3). For the second term of the right-hand side of (15),
in which the binary stochastic variable γk is subjected to a
Bernoulli distribution with probability Pr (γk = 1) = 1− τk ,
thus its probability density function is given by

p (γk |τk) =

{
(1− τk)γk (τk)1−γk , γk ∈ {0, 1}

0, otherwise
(19)

Substituting (15), (16) and (19) in (14), the joint posterior
density p

(
xk , τk |y1:k , γ1:k

)
is given by

p
(
xk , τk |y1:k , γ1:k

)
∝ p

(
yk , γk , xk , τk |y1:k−1, γ1:k−1

)
=
[
N
(
yk ;Hkxk ,Rk

)]γk [N (
yk ;Hkxk , σ

2
k I
)]1−γk

×N
(
xk ; xk|k−1,Pk|k−1

)
(1− τk)γk (τk)1−γk

×Beta
(
τk ;αk|k−1, βk|k−1

)
(20)

With rigorous mathematical deduction, the joint posterior
density p

(
xk , τk |y1:k , γ1:k

)
has a closed-form solution, and

is still a product form of Gaussian and Beta distributions as
follows:

p
(
xk , τk |y1:k , γ1:k

)
=N

(
xk ; xk|k ,Pk|k

)
Beta

(
τk ;αk|k , βk|k

)
(21)

where the mean xk|k and the covariance Pk|k of the state xk
are computed by

xk|k = xk|k−1 + Kk
(
yk − Hkxk|k−1

)
(22)

Pk|k = Pk|k−1 − KkHkPk|k−1 (23)

Kk = Pk|k−1HT
k

(
HkPk|k−1HT

k + γkRk + (1− γk) σ
2
k I
)−1
(24)

and the shape parameters αk|k and βk|k of the probability of
measurement loss τk are computed by

αk|k = αk|k−1 − γk + 1 (25)

βk|k = βk|k−1 + γk (26)

It can be seen that the measurement update of the hidden
state xk in KBF is consistent with that of the standard KF [5],
except that the choice of the measurement noise covariance
R̃k for the filtering gain is related to the estimation of γk , i.e.,
R̃k = Rk if γk = 1, and R̃k = σ 2

k I otherwise. In addition,
the shape parameters αk|k and βk|k of the probability of
measurement loss τk are adjusted through the estimation of
the binary variable γk . The detailed mathematical derivations
of the joint posterior density p

(
xk , τk |y1:k , γ1:k

)
is presented

in the following Proof 1.
Proof 1: Since (20) has a product form of multiple

functions, we utilize the idea of the variational Bayesian
method [19], [20], [21] to seek its solution, i.e.,

p
(
xk , τk |y1:k , γ1:k

)
≈ qx (xk) qτ (τk) (27)

Variational Bayesian methods are widely used to compute
approximate posterior inference. They derive a simple and
analytical tractable form for the posterior distribution, which
is either a factored form distribution or a fixed-form distri-
bution. Using variational Bayesian technique, the Kullback-
Leibler (KL) divergence [27] between the factorized densities
and the true posterior density is minimized

q̂x (xk) q̂τ (τk)

= argmin
qx ,qτ

KL
(
qx (xk) qτ (τk) ||p

(
xk , τk |y1:k , γ1:k

))
(28)
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where KL (q (·) ||p (·)) ,
∫
q (x) log q(x)

p(x)dx is the KL diver-
gence. Then analytical solutions for q̂x and q̂τ can be obtained
by fixed point iterations, i.e.,

log qx (xk) ← E
qτ

[
log p

(
yk , γk , xk , τk |y1:k−1, γ1:k−1

)]
+ cx

(29)

log qτ (τk) ← E
qx

[
log p

(
yk , γk , xk , τk |y1:k−1, γ1:k−1

)]
+ cτ

(30)

where← denotes assign or reassign operators, the expected
values on the right-hand sides of (29) and (30) are computed
with regard to the current qτ and qx , cx and cτ are constants
with regard to the variables xk and τk , respectively.
According to (20), the logarithmic form of the joint pos-

terior density p
(
xk , τk |y1:k , γ1:k

)
, which is needed for the

mathematical derivations, is given by

log p
(
yk , γk , xk , τk |y1:k−1, γ1:k−1

)
= −

γk

2

(
yk − Hkxk

)TR−1k (
yk − Hkxk

)
−

1− γk
2

(
yk − Hkxk

)T(
σ 2
k I
)−1 (

yk − Hkxk
)

+ γk log (1− τk)+ (1− γk) log τk

−
1
2

(
xk − xk|k−1

)TP−1k|k−1 (xk − xk|k−1)
+
(
αk|k−1 − 1

)
log τk +

(
βk|k−1 − 1

)
log (1− τk)+ c

(31)

where c is a constant with respect to the variables xk and τk .
Substituting (31) in (29), we obtain

log qx (xk) = −
γk

2

(
yk − Hkxk

)TR−1k (
yk − Hkxk

)
−

1− γk
2

(
yk − Hkxk

)T(
σ 2
k I
)−1 (

yk − Hkxk
)

−
1
2

(
xk − xk|k−1

)TP−1k|k−1 (xk − xk|k−1)+ cx
(32)

Hence,

qx (xk)

∝

{
N
(
yk ;Hkxk ,Rk

)
N
(
xk ; xk|k−1,Pk|k−1

)
, γk = 1

N
(
yk ;Hkxk , σ

2
k I
)
N
(
xk ; xk|k−1,Pk|k−1

)
, γk = 0

(33)

Therefore, according to the standard KF’s measurement
update [5], qx (xk) of (33) still obeys Gaussian distribution,
i.e., qx (xk) = N

(
xk ; xk|k ,Pk|k

)
, where the mean xk|k and

the covariancematrixPk|k are obtained by (22), (23) and (24).
Substituting (31) in (30), we obtain

log qτ (τk) = γk log (1− τk)+ (1− γk) log τk
+
(
αk|k−1 − 1

)
log τk +

(
βk|k−1 − 1

)
× log (1− τk)+ cτ

=
((
αk|k−1 − γk + 1

)
− 1

)
log τk

+
(
βk|k−1 + γk − 1

)
log (1− τk) (34)

Hence, qτ (τk) of (34) is still a Beta distribution, i.e.,
qτ (τk) = Beta

(
τk ;αk|k , βk|k

)
, where the shape parameters

αk|k and βk|k are obtained by (25) and (26).
It should be emphasized that the solution of (27) is strictly

closed, i.e., qx (xk) qτ (τk) = p
(
xk , τk |y1:k , γ1:k

)
. On one

hand, since qx (xk) of (33) is a product form of two Gaussian
densities, which are conjugate priors, and is unrelated to
variable τk , we have

p
(
xk |y1:k , γ1:k

)
= qx (xk) = N

(
xk ; xk|k ,Pk|k

)
(35)

On the other hand, since qτ (τk) of (34) is a product form
of Beta and Bernoulli distributions, which are conjugate pri-
ors [18], [28], and is unrelated to variable xk , we have

p
(
τk |y1:k , γ1:k

)
= qτ (τk) = Beta

(
τk ;αk|k , βk|k

)
(36)

Therefore, according to (35) and (36), the joint posterior
density of (21) is strictly closed.

C. COMPUTING MEASUREMENT ARRIVAL VARIABLE
Instead of computing the expectation of the binary variable
γk in [17] and [18], we utilize the threshold technology [22],
[23], [24] to directly determine the value of γk , i.e., the pro-
cess of the measurement arrival. Considering the state-space
models based on Gaussian distribution, the Chi-square dis-
tribution, denoted by χ2, is a useful tool to determine the
threshold gate. Assume that the probability of the sensor
measurement falling into the threshold gate is pG, where G
is the size of the gate, then pG and G satisfied the following
relationship:

p
(
χ2
η > G

)
= 1− pG (37)

where η is the degree of freedom (dof). Employing (37), for
a certain value of pG, the corresponding threshold gate value
can be directly found in the Chi-square Distribution Table.
In the measurement update of the KBF, the innovation

ỹk|k−1 = yk − yk|k−1 and its covariance Sk can be easily
obtained, and the measurement noise covariance involved in
Sk is Rk . The norm of the innovation is defined as

D2
k = ỹTk|k−1S

−1
k ỹk|k−1 (38)

It has been proved that the variableD2
k obeys a χ

2 distribution
with dof parameter η = m, where m is the dimension of the
measurement. Then, γk can be determined by

γk =

{
1, D2

k ≤ G
0, D2

k > G
(39)

The detailed implementations of the KBF are presented in
Algorithm 1.

IV. EXTENSION AND UNCENTED KALMAN-BETA FILTERS
In Section III, we have derived the KBF to solve the
filtering problem for linear Gaussian state-space models
with unknown probability of measurement loss. Obviously,
KBF can be extended to the moderate nonlinear Gaussian
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Algorithm 1 Kalman-Beta Filtering Approach
Require: Fk , Hk , Qk , Rk , σk , yk , xk−1|k−1, Pk−1|k−1,

αk−1|k−1, βk−1|k−1, ρ, G
Time update: compute xk|k−1, Pk|k−1, αk|k−1, βk|k−1

1: xk|k−1← Fkxk−1|k−1
2: Pk|k−1← FkPk−1|k−1FT

k + Qk
3: αk|k−1← ραk−1|k−1
4: βk|k−1← ρβk−1|k−1

Measurement update: compute xk|k , Pk|k , αk|k , βk|k
5: ỹk|k−1← yk − Hkxk|k−1
6: Sk ← HkPk|k−1HT

k + Rk
7: D2

k ← ỹTk|k−1S
−1
k ỹk|k−1

8: γk ←

{
1, D2

k ≤ G
0, D2

k > G

9: Kk←Pk|k−1HT
k

(
HkPk|k−1HT

k +γkRk+(1−γk) σ
2
k I
)−1

10: xk|k ← xk|k−1 + Kk ỹk|k−1
11: Pk|k ← Pk|k−1 − KkHkPk|k−1
12: αk|k ← αk|k−1 − γk + 1
13: βk|k ← βk|k−1 + γk
14: τk|k ←

αk|k
αk|k+βk|k

Ensure: xk|k , Pk|k , τk|k

state-space models by introducing the general Gaussian fil-
ters [23]. Next, we first give the general recursive structure
of the Gaussian-Beta filters, and then present the specific
implementations under the standard extended-Kalman and
unscented-Kalman filtering frameworks. The mathematical
derivations of the Gaussian-Beta filter for moderate nonlinear
Gaussian systems with unknown probability of measurement
loss is similar to that of the KBF for the case of linear
Gaussian systems, which will not be provided in the paper.

Consider the following moderate nonlinear Gaussian state-
space model

xk = f (xk−1,uk)+ wk (40)

yk = h (xk)+ vk (41)

where k is the time index, f (·) and h (·) are nonlinear func-
tions, xk ∈ Rn is the hidden state vector, uk is the input,
wk ∈ Rn is the process noise, subjected to a Gaussian
distribution with zero means and covariance matrix Qk , i.e.,
wk ∼ N (wk ;0,Qk), yk ∈ Rm is the measurement vector,
and vk ∈ Rm is themeasurement noise, subjected to themodel
of (3).

A. TIME UPDATE
Assume that the joint posterior density of the hidden state
xk−1 and the unknown probability of measurement loss τk−1
at time k − 1 is approximated to a product form of Gaussian
and Beta distributions as shown in (4). Then, the joint pre-
dicted density p

(
xk , τk |y1:k−1, γ1:k−1

)
can be approximated

to a product form of Gaussian and Beta distributions as shown
in (13), where the mean xk|k−1 and the covariance Pk|k−1 of

the hidden state xk are computed by

xk|k−1 =
∫
f (xk−1,uk)

×N
(
xk−1; xk−1|k−1,Pk−1|k−1

)
dxk−1 (42)

Pk|k−1 =
∫ (

f (xk−1,uk)− xk−1|k−1
)

×
(
f (xk−1,uk)− xk−1|k−1

)T
×N

(
xk−1; xk−1|k−1,Pk−1|k−1

)
dxk−1 + Qk

(43)

and the shape parameters αk|k−1 and βk|k−1 of the unknown
probability of measurement loss τk are computed by
(25) and (26).

B. MEASUREMENT UPDATE
Assume that the joint predicted density of the hidden state
xk and the unknown probability of measurement loss τk is
approximated to a product form of Gaussian and Beta distri-
butions as shown in (13), then the joint posterior density can
also be approximated to a product form of Gaussian and Beta
distributions as shown in (21), where the mean xk|k and the
covariance Pk|k of the unobservable state xk are computed by

yk|k−1 =
∫
h (xk)N

(
xk ; xk|k−1,Pk|k−1

)
dxk (44)

Pyy,k =
∫ (

h (xk)− yk|k−1
) (
h (xk)− yk|k−1

)T
×N

(
xk ; xk|k−1,Pk|k−1

)
dxk

+ γkRk + (1− γk) σ 2
k I (45)

Pxy,k =
∫ (

xk − xk|k−1
) (
h (xk)− yk|k−1

)T
×N

(
xk ; xk|k−1,Pk|k−1

)
dxk (46)

Kk = Pxy,kP
−1
yy,k (47)

xk|k = xk|k−1 + Kk
(
yk − yk|k−1

)
(48)

Pk|k = Pk|k−1 − KkPyy,kKT
k (49)

and the shape parameters αk|k and βk|k of the unknown prob-
ability of measurement loss τk are computed by (25) and (26).
The Gaussian-Beta filters have recursive structures similar

to the standard Gaussian filters, except for additional param-
eters γk , αk|k and βk|k , which are calculated in the same
way as the KBF in previous section. The detailed implemen-
tations of the Gaussian-Beta filter in the extended-Kalman
and unscented-Kalman filtering frameworks are presented in
Algorithm 2 and 3.

V. SIMULATIONS
In this section, we demonstrate the proposed KBF, EKFB and
UKBF in linear and moderate nonlinear Gaussian state-space
models with unknown probability of measurement loss,
respectively.
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Algorithm 2 Extended-Kalman-Beta Filtering Approach
Require: f (·), h (·), Qk , Rk , σk , uk , yk , xk−1|k−1, Pk−1|k−1,

αk−1|k−1, βk−1|k−1, ρ, G
Time update: compute xk|k−1, Pk|k−1, αk|k−1, βk|k−1

1: xk|k−1← f
(
xk−1|k−1,uk

)
2: Fk ←

∂f (xk−1)
∂xk−1

∣∣∣
xk−1=xk−1|k−1

3: Pk|k−1← FkPk−1|k−1FT
k + Qk

4: αk|k−1← ραk−1|k−1
5: βk|k−1← ρβk−1|k−1

Measurement update: compute γk , xk|k , Pk|k , αk|k , βk|k

6: ỹk|k−1← yk − h
(
xk|k−1

)
7: Hk ←

∂h(xk )
∂xk

∣∣∣
xk=xk|k−1

8: Sk ← HkPk|k−1HT
k + Rk

9: D2
k ← ỹTk|k−1S

−1
k ỹk|k−1

10: γk ←

{
1, D2

k ≤ G
0, D2

k > G

11: Kk←Pk|k−1HT
k

(
HkPk|k−1HT

k +γkRk+(1−γk) σ
2
k I
)−1

12: xk|k ← xk|k−1 + Kk ỹk|k−1
13: Pk|k ← Pk|k−1 − KkHkPk|k−1
14: αk|k ← αk|k−1 − γk + 1
15: βk|k ← βk|k−1 + γk
16: τk|k ←

αk|k
αk|k+βk|k

Ensure: xk|k , Pk|k , τk|k

A. LINEAR EXAMPLE
Considering the linear Gaussian stochastic system shown in
(1) and (2), the involved model parameters are set as

Fk =
[
0.6 0.4
0.1 0.9

]
, Qk =

[
1 0
0 1

]
,

Hk =
[
1 −2

]
, Rk = 150 m2, σk = 500000. The true

probability of measurement loss is

p (τk) =


0.1, 0 ≤ k ≤ K/3
0.3, K/3 < k ≤ 2K/3
0.1, 2K/3 < k ≤ K

(50)

where total simulation time isK = 100 s, the sampling period
is T = 0.01 s.

In the simulation, the proposed KBF are compared with
the existing IKF [14] with known measurement loss and the
VBAKF in [18] over N = 500 Monte Carlo trials. The sim-
ulating parameters of the filtering algorithms with unknown
probability of measurement loss are shown in Table 1. The
averaged absolute error (AAE) at time k is defined by

AAEk ,
1
N

N∑
j=1

abs
(
xjk,i − x

j
k|k,i

)
, i ∈ {1, 2} (51)

where N is the total number of Monte Carlo trials, j is the jth

Monte Carlo trial, i is the dimension index, xjk,i and x
j
k|k,i are

Algorithm 3 Unscented-Kalman-Beta Filtering Approach
Require: f (·), h (·), Qk , Rk , σk , uk , yk , xk−1|k−1, Pk−1|k−1,

αk−1|k−1, βk−1|k−1, ρ, G
Time update: compute xk|k−1, Pk|k−1, αk|k−1, βk|k−1
Choose 2n+ 1 sigma points, n is the dimension of xk

1: ς0k−1|k−1← xk−1|k−1
2: ς ik−1|k−1 ← xk−1|k−1 +

(√
(n+ κ)Pk−1|k−1

)
i, i =

1, . . . , n
3: ς ik−1|k−1 ← xk−1|k−1 −

(√
(n+ κ)Pk−1|k−1

)
i, i = n+

1, . . . , 2n
Propagate the sigma points ς ik−1|k−1 using f (·)

4: ς ik|k−1← f
(
ς ik−1|k−1,uk

)
, i = 0, 1, . . . 2n

5: ωi←

{
κ/(n+ κ) , if i = 0
0.5κ/(n+ κ) , if i = 1, . . . , 2n

6: xk|k−1←
∑2n

i=0 ω
iς ik|k−1

7:
Pk|k−1←

∑2n

i=0
ωi
(
ς ik|k−1−xk|k−1

)(
ς ik|k−1−xk|k−1

)T
+ Qk

8: αk|k−1← ραk−1|k−1
9: βk|k−1← ρβk−1|k−1

Measurement update: compute xk|k , Pk|k , αk|k , βk|k
Propagate the sigma points ς ik|k−1 using h (·)

10: ξ ik ← h
(
ς ik|k−1

)
, i = 0, 1, . . . 2n

11: yk|k−1←
∑2n

i=1 ω
iξ ik

12: ỹk|k−1← yk − yk|k−1

13: Sk ←
∑2n

i=1 ω
i
(
ξ ik − yk|k−1

) (
ξ ik − yk|k−1

)T
+ Rk

14: D2
k ← ỹTk|k−1S

−1
k ỹk|k−1

15: γk ←

{
1, D2

k ≤ G
0, D2

k > G

16:
Pyy,k ←

∑2n

i=1
ωi
(
ξ ik − yk|k−1

) (
ξ ik − yk|k−1

)T
+ γkRk + (1− γk) σ 2

k I

17: Pxy,k ←
∑2n

i=1 ω
i
(
ς ik|k−1 − xk|k−1

) (
ξ ik − yk|k−1

)T
18: Kk ← Pxy,kP

−1
yy,k

19: xk|k ← xk|k−1 + Kk ỹk|k−1
20: Pk|k ← Pk|k−1 − KkPyy,kKT

k
21: αk|k ← αk|k−1 − γk + 1
22: βk|k ← βk|k−1 + γk
23: τk|k ←

αk|k
αk|k+βk|k

Ensure: xk|k , Pk|k , τk|k

TABLE 1. Simulating parameters.

the true state and its estimation at time k , and abs (·) denotes
the absolute value operator.
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FIGURE 1. AAEs of x1 and x2 from different filters.

FIGURE 2. Estimations of the unknown probability of measurement
loss τk .

Figure 1 shows the AAEs of x1 and x2 for different filters.
It can be seen from Figure 1 that the estimation accuracy of
the KBF proposed in this paper is very close to that of the
IKF with known measurement loss, and better than that of
the VBAKF.

Figure 2 shows the true and estimated probabilities of mea-
surement loss. It can be seen from Figure 2 that, compared
with the VBAKF, the proposed KBF has faster convergence
speed and higher estimation accuracy for the measurement
loss rate, which leading to higher estimation accuracy for the
state variable as shown in Figure 1.

The averaged time costs of single Monte Carlo trial for
different filtering algorithms are given in Table 2. Compared
with the IKF, the proposed KBF needs to spend extra compu-
tational cost to estimate the measurement arrival variable and
the measurement loss rate, while the VBAKF takes the most
time cost because it needs many iterations to achieve stable
state estimation.

TABLE 2. The averaged time costs of single Monte Carlo trial for different
filters (10000 time samples).

FIGURE 3. Estimations of the measurement loss rate τk with different ρ.

In addition, the estimated probabilities of measurement
loss by the proposed KBF with different ρ are shown in
Figure 3, and their associated errors are shown in Figure 4.
It can be seen that when ρ is small, the estimated proba-
bilities of measurement loss fluctuate significantly, resulting
in large errors. With the increase of ρ, the KBF performs
better. However, when the value ρ is infinitely close to 1,
especially when ρ = 1, the performance of the KBF seriously
deteriorates when the probability of measurement loss jumps.
The main reason is that the probability of measurement loss
is regarded as a stationary process when ρ = 1, which results
in that the KBF cannot respond quickly when the variable τk
changes significantly. In general, choosing a constant close
to 1 for ρ usually satisfies engineering applications, and can
respond quickly even when the probability of measurement
loss jumps. The optimal forgetting factor is beyond the scope
of this paper.

B. NONLINEAR EXAMPLE
Considering a target tracking application of the nonlinear
stochastic dynamic and measurement models as shown in

(40) and (41), the state vector is xk =
[
x̃Tk , ωk

]T
, where

x̃k =
[
px,k , ṗx,k , py,k , ṗy,k

]T consists of the planar position(
px,k , py,k

)
and velocity

(
ṗx,k , ṗy,k

)
, ωk is the turn rate. The

state transition model is

x̃k+1 = F (ωk) x̃k + Bwk (52)

ωk+1 = ωk + Tµk (53)
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FIGURE 4. Errors of the measurement loss rate τk with different ρ.

where

F (ω) =


1

sin (ωT )
ω

0 −
cos (ωT )

ω
0 cos (ωT ) 0 − sin (ωT )

0
1− cos (ωT )

ω
1

sin (ωT )
ω

0 sin (ωT ) 0 cos (ωT )

,

B =


T 2

2
0

T 0

0
T 2

2
0 T

,

wk ∼ N
(
wk ;0, σ 2

wI
)
, µk ∼ N

(
µk ; 0, σ 2

µI
)
, T = 0.01 s,

σw = 2 m/s2, σµ = (π/180) rad/s. The measurement model
is

yk =

[
arctan

(
px,k/py,k

)√
p2x,k + P

2
y,k

]
+ vk (54)

where the statistic properties of vk is shown in (3), Rk =
diag

([
σ 2
θ1, σ

2
r1

])
, σk = [σθ2, σr2], σθ1 = (π/180) rad,

σr1 = 5m, σθ2 = π rad, σr2 = 10000m. The true probability
of measurement loss is set as (50), where the total simulation
time is K = 100 s.
In the simulation, the proposed EKBF and UKBF are com-

pared with the existing IEKF and IUKFwith knownmeasure-
ment loss over N = 500 Monte Carlo trials. The simulating
parameters with unknown probability of measurement loss
are set as: the initial shape parameters α0 = β0 = 5, the for-
getting factor ρ = 0.99, and the probability of threshold gate
pG = 0.99. The averaged root mean square error (ARMSE)
at time k is defined by

ARMSE ,

√√√√√ 1
N

N∑
j=1

((
pjx,k − p̂

j
x,k

)2
+

(
pjy,k − p̂

j
y,k

)2)
(55)

FIGURE 5. The true target trajectory and the estimations of different
filters.

where
(
pjx,k , p

j
y,k

)
and

(
p̂jx,k , p̂

j
y,k

)
are the true and estimated

positions of target at time k in the jth Monte Carlo trial.
Figure 5 shows the true target trajectory and estimations

of different filters for a single Monte Carlo trial. Figure 6
shows the ARMSEs of different filters over N = 500 Monte
Carlo trails. It can be seen from Figure 6 that, on the one
hand, the estimation accuracies of the IUKF and UKBF are
obviously better than that of the IEKF and EKBF, since
the latters have larger linearization errors for the nonlinear
system. However, the formers take more time cost as shown
in Table 3, since they need to propagate multiple sigma points
in each recursive process. On the other hand, the estimation
accuracy of the propose UKBF is very close to that of the
IUKF with known measurement loss, while, as time goes
on, the estimation accuracy of the proposed EKBF is worse
than that of the IEKF with known measurement loss. The
possible reason may be that the accumulated linearization
approximation error leads to the worse estimation of the
measurement arrival variable γk .

Figure 7 shows the true and estimated probabilities of
measurement loss. It can be seen from Figure 7 that both
the EKBF and UKBF can obtain accurate estimations for the
measurement loss rate with fast convergence speed, and the
estimation accuracy of the latter is slightly better than that
of the former. In addition, the averaged time costs of single
Monte Carlo trial for different filtering algorithms are given
in Table 3. Although the estimation accuracies of the UKBF
in both state and measurement loss rate are superior to that of
the EKBF, the former takes more time cost. Therefore, it is
necessary to make tradeoff between the estimation accuracy
and time cost in practical applications.

It should be pointed out that, compared with the result
of the KBF shown in Figure 2, both the EKBF and UKBF
estimators have a biased estimation of the probability of
measurement loss. By analyzing the three algorithms, the
main reason is as follow. The key parameter that affects the
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FIGURE 6. ARMSEs for different filters.

FIGURE 7. Estimations of the unknown probability of measurement
loss τk .

TABLE 3. The averaged time costs of single Monte Carlo trial for different
filters (10000 time samples).

probability of measurement loss is the binary variable γk ,
which is determined by the residual (or called innovation)
ỹk|k−1. Compared to the KBF, which can obtain an accurate
predicted measurement, both the EKBF and UKBF can only
obtain an approximation of the predicted measurement due
to the nonlinear properties of the system, which leads to a
larger residual. A large residual may cause the measurement
generated by the state to fall outside the designed threshold
and be mistaken as an outlier, resulting in the overestimation
of the probability of measurement loss by the EKBF and
UKBF. Therefore, for a nonlinear system, how to improve the
predicted values of the state and measurement based on the

nonlinear model, so as to improve the estimation accuracies
of the state and the probability of measurement loss, is still an
important research orientation to solve the nonlinear filtering
problem.

VI. CONCLUSION
In this paper, a class of Gaussian-Beta filters are proposed to
solve the filtering problem for linear and moderate nonlin-
ear Gaussian state-space models with unknown probability
of measurement loss. The proposed Gaussian-Beta filters,
where the hidden state and the unknown probability of mea-
surement loss are respectively modeled by Gaussian and Beta
distributions, have recursive structures similar to the standard
Gaussian filters. Simulation results shows the superiority
of the proposed Gaussian-Beta filters compared with the
existing filtering algorithms for the systems with unknown
probability of measurement loss. In addition, the proposed
Gaussian-Beta filters can be directly extended to other vari-
ants of KF, such as cubature Kalman filter (CKF) [29], [30],
quadratic Kalman filter (QKF) [31], etc. Next, we will inves-
tigate the filtering problem for nonlinear and non-Gaussian
state-space models with unknown probability of measure-
ment loss.
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