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ABSTRACT Many authors proposed various criteria and concepts to assess manipulability of the robotic
system. The isotropy criterion is used by other authors for synthesis of parallel manipulators, as a criterion
of optimal force and transfer in all directions. In this research we applied this method for the first time
for investigation and synthesis of turning mechanism of a walking robot. Isotropy conditions were derived
for the walking robot with orthogonal-type propellers and on its basis the optimal configurations of the
robot in terms of force and motion transmission are defined. Solutions of the isotropy equations were found
and on the basis of the analysis of isotropic solutions, optimal metric parameters of the robot were found.
An experimental prototype of the legged robot is developed.

INDEX TERMS Walking robot, turning mechanism, isotropy criteria, optimal synthesis.

I. INTRODUCTION
Various ‘‘measures’’ have been proposed to estimate how
far the position of the mechanism is ‘‘remote’’ from the
nearest singular position of the second kind. In Mechanisms
and Machines Theory, for example, there is the concept of
the quality of motion transmission (the closest concept in
German literature is ‘‘Uebertragungsguete’’). In the English-
language literature, there are a number of concepts that are
close in meaning, such as manipulability, the ability of force
and motion transfer, the kinematic performance index, etc.

So, in work [1], as such a measure, the ‘‘transfer coeffi-
cient’’ is proposed as the product of the sines of the pressure
angles related to the output and input links. Takeda et al. [2],
[3] propose to use the sine of the pressure angle related to
the output link, wherein consider the angle formed by the
direction of motion of a rotational or spherical kinematic pair
on the platform and the direction of the relative motion of this
pair around the joint on the input link. Despite the fact that the
equality of the named angle to zero is a sufficient condition
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of singularity, its magnitude is not linear with respect to the
force transmission.

Yoshikava [4] uses the determinant of the Jacobian matrix
as a criterion of manipulability, which transforms the gener-
alized velocities at the input into the generalized velocities
at the output object, and the determinant is a measure that
reflects the transformation of a unit sphere into an ellipsoid,
more precisely, the change in its dimensions along the prin-
cipal axes. In other words, this measure indicates some inte-
grated value of the velocity that is achieved by the generalized
output velocities in different directions. Considering special
cases of symmetric planar and spatial manipulators, Duffy [5]
also introduced a measure based on the determinant of the
Jacobian matrix. It is obvious that these measures are local
criteria and depend on the configuration of the manipulator.
Tsai [6] introduces a global criterion that is the integral of
the square of the determinant (of a matrix that is the product
of the Jacobian matrix and its transposition) over the entire
working volume of the manipulator.

A clearer interpretation of the transfer criterion was
described in the works of Angeles [7], [8], who proposed
to consider as the measure the condition number k of the
Jacobian matrix, which is equal to the ratio of the largest and
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smallest eigenvalues. If we consider the ellipsoids of gen-
eralized velocities and generalized forces, then the number
k reflects the uniformity of the motions and forces trans-
mission. The maximum reciprocal value 1/k over the entire
working volume (which varies from zero to one), is called the
kinematic conditioning index of the manipulator. In addition
to the Chebyshev norm, the root mean square criterion is also
introduced as an integral of the Euclidean norm over the entire
working volume.

The most complete to date is the method of optimal syn-
thesis of parallel manipulators, proposed by representatives
of the German school. In the works of Schoenherr [9], [10],
[11] a generalized functional (Guetefunktional) is introduced
based on the use of the product of the weighted norm of the
Jacobian matrix and the weighted norm of the inverse matrix
and a method of optimal synthesis is presented.

The author’s monograph [12] presents the results of
researches on developing of synthesis methods and new kine-
matic schemes of planar manipulators, which are isotropic (in
terms of force transfer) in the entire working area.

Consider a robot/manipulator with Wq = n d.o.f. and
generalized coordinates Eq = [q1, q2, . . . , qn]T . Assume that
the output object also has Wx = n d.o.f. Then the singular
positions of the manipulator or robot, which are important
in the analysis and synthesis of manipulators, are determined
by the Jacobian matrix (J): in such positions, its determi-
nant is equal to zero: det J = 0. In the vicinity of such
configurations, there is no unique solution to the direct and
inverse kinematics. These positions define the boundaries of
the working area of the manipulator [13], [14] and are worst
in terms of force transfer. The same Jacobian matrix is used
in [12] to define the best configurations in terms of force and
motion transfer:

JT J = α2E, (1.1)

or

JJT = α2E. (1.2)

The configurations, satisfying (1.1) or (1.2), where E is
the identity matrix and α is some real number, are called
‘‘isotropic’’, which are the furthest configurations from
singularity.

In Section II provided are the brief description of a walking
robot (WR) structure and its kinematic-equivalent scheme
that simplifies the study of turning modes. The isotropy cri-
terion (1.2) is applied to the quasi-planar WR in Section III
and on its basis, in Section IV, the optimal geometrical
parameters of the robot were defined. An experimental pro-
totypes of the WR with decoupled motion are presented.
The experimental studies of the synthesized turning mech-
anism will be provided in the future. In this research we
considered only one structural scheme of the WR. Future
directions include also investigation of different structural
schemes.

II. STRUCTURAL MODEL OF THE ROBOT
Number of works were dedicated to investigation of six-
legged walking robot turning mechanisms [15], [16], [17]
however, in general case the number of drives in tradi-
tional bio-inspired systems turns out to be redundant, thus,
it becomes necessary a ‘‘hard’’ coordination of movements
of all drive motors. Errors in the control system and inac-
curacies in kinematic transmissions cause inconsistency in
movements and, as a result, increase loads in mechanical
transmissions and drives [12], [18]. In [18] we presented an
alternative design, based on the motion decoupling principle
and justified the efficiency of this approach in terms of power
consumption and control. Fig. 1a demonstrates the structure
of one d.o.f. WR using rectilinear-guiding leg mechanism.
The main (forward and backward) motion and the adaptation
mechanism were tested on a prototype, shown in Fig. 1b,
Fig.1c and the turning mechanism is under development on
the same layout.

The additional joints Oi, (i = 1, . . . ,6) with vertical
axes are introduced as shown in Fig.2a to carry out turning.
To simplify the study of the turning modes, an equivalent
kinematic scheme of the WR is also presented (Fig.2b, 2c),
where entire rectilinear guiding propellers of the robot were
modeled as prismatic pairs P i(i = 1, . . . ,6).
Actuating the joints Oi to turn the robot will lead to

structural redundancy that mentioned above. Thus, turning is
carried out due to the difference in velocities of P i. An exper-
imental prototype shown in Fig.1b, Fig.1c correspond to the
kinematic-equivalent scheme in Fig.3a, Fig.3b.

III. DERIVATION OF THE ISOTROPY CRITERION
This section is devoted to defining criteria for the WR,
which ensure optimal movement of the robot in terms of
force/motion transmission. Consider a tripod gait, i.e., a com-
mon method, when three legs are in the support, three are in
the transfer (lifted up) phase at all times. In the equivalent
scheme (Fig.4) the first, third and fifth legs are in the support
phase (feet S1, S3, S5), C is the center of mass of the robot
body/hull, O0ξηζ is a global coordinate system fixed with
the bearing surface, CXY is a coordinate system fixed with
the robot body/hull. OiPi(i = 1, 3, 5) is a local coordinate
system, fixed with a link OiPi. The local coordinates of the
joint Si in this coordinate system are xSi = ai, ySi = qi, where
qi are generalized coordinates, i = 1, 3, 5.
For each foot Si the following vector equation holds:

−−→
O0Si =

−−→
O0C +

−→
COi +

−−→
OiSi, i = 1, 3, 5, (3.1)

or in terms of radius vectors of the joint centers,
−→
RSi =

−→
RC + 0 (θ)

−→rOi + 0 (θ + αi)
−→rSi , (3.2)

where 0 (θ) is a rotation matrix:

0 (θ) =

[
cos(θ) −sin(θ )
sin(θ) cos(θ)

]
, and

−→
RSi =

[
ξSi , ηSi

]T
,

−→
RC = [ξC , ηC ]T ,

−→rOi =
[
XOi ,YOi

]T
,−→rSi = [ai, qi]T are

the radius-vectors of the mass center C of the body/hull,
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FIGURE 1. Prototypes of the WR with decoupled motion.

and the centers of the joints Oi, Si in the coordinate systems
O0ξηζ,CXY ,Oixiyizi respectively. θ is a rotation angle of
the robot body/hull with respect to the absolute coordinate
system O0ξηζ .
Differentiation of (3.2) with respect to time gives the fol-

lowing correlation:

E0 =
−̇→
RC + θ̇0

(
θ +

π

2

)
−→rOi +

(
θ̇ + α̇i

)
0
(
θ + α +

π

2

)
−→rSi

+0 (θ + αi) ·
−̇→rSi , (3.3)

since
d
−→
RSi
dt =

−→
0 .

FIGURE 2. WR structural scheme on the plane Oξη with equivalent
kinematics [18].

From (3.3) a Jacobianmatrix Jq of the system can be found,
which is defined as

−̇→x = Jq
−̇→q

or

Jq =
d−→x

d−→q
, (3.4)
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FIGURE 3. Kinematic-equivalent scheme of the WR.

−→x =
[
−→
RCT ,Lθθ

]T
= [ξC , ηC ,Lθθ ]T − output coordinates,

where Lθ – characteristic length, and input coordinates are
−→q = [q1, q3, q5]T .
To eliminate α̇i, from the equation (3.3), we multiply the

equation from the left by the vector
−−→
OiS i = 0 (θ + αi)

−→rSi .
Then since,

(
θ̇ + α̇i

)
−→rSi

T
· 0T (θ + αi) · 0

(
θ + αi +

π

2

)
·
−→rSi = 0,

the equation (3.3) can be rewritten as follows:

−→rSi
T
· 0T (θ + αi) ·

−̇→
RC + θ̇ ·

−→rSi
T
· 0T

(π
2
− αi

)
·
−→rOi

= −qiq̇i, i = 1, 3, 5. (3.5)

Then the Jacobian matrix

Jq = A−1B, (3.6)

FIGURE 4. Kinematic-equivalent scheme of the WR with a ‘‘tripod’’-gate.

where

A =


−→rS1

T
· 0T (θ + α1)

1
Lθ
−→rS1

T
· 0T

(π
2
− α1

)
·
−→rO1

−→rS3
T
· 0T (θ + α3)

1
Lθ
−→rS3

T
· 0T

(π
2
− α3

)
·
−→rO3

−→rS5
T
· 0T (θ + α5)

1
Lθ
−→rS5

T
· 0T

(π
2
− α5

)
·
−→rO5

 ,

B = −

 q1 0 0
0 q3 0
0 0 q5

 .
The isotropy condition (1.1) can be transformed to another
form [12]: (

J−1q

)T
· J−1q =

1
λ2
E, (3.7)

where E is the identity matrix, dimE = 3× 3, and

J−1q

=



1
q1
−→rS1

T
·0T (θ + α1)

1
q1Lθ
−→rS1

T
·0T

(π
2
− α1

)
·
−→rO1

1
q3
−→rS3

T
·0T (θ + α3)

1
q3Lθ
−→rS3

T
·0T

(π
2
− α3

)
·
−→rO3

1
q5
−→rS5

T
·0T (θ + α5)

1
q5Lθ
−→rS5

T
·0T

(π
2
− α5

)
·
−→rO5


(3.8)

The following equation can be derived from (3.8):

1
qi
−→rSi

T
· 0T (θ + αi)

=
1
qi

[
−→eξ T0(θ + αi)

−→rSi
−→eη T0(θ + αi)

−→rSi
]
,

1
qiLθ
−→rSi

T
· 0T

(π
2
− αi

)
·
−→rOi

=
1

qiLθ
−→eζ T

[
−→rOi × 0 (αi)

−→rSi
]
,
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where −→eξ ,
−→eη ,
−→eζ are the basis vectors of the coordinate

system O0ξηζ .
Thus (3.9), as shown at the bottom of the page. The

isotropy condition can be represented in a more compact
form, using the variableβi, the angle between the vectors

−−→
OiPi

and−→rsi , i.e. tgβi =
qi
ai
(see figure 1). To this end we can obtain

1
qi
0 (θ + αi)

−→rSi

=
rSi
qi
0 (θ + αi) ·

[
cosβi
sinβi

]
= =

1
sinβi

[
cos (θ + αi + βi)
sin (θ + αi + βi)

]
,

where rSi =
√
a2i + q

2
i – magnitude of the vector −→rSi , and

cosβi =
ai
rSi
, sinβi =

qi
rSi
. Hence,

1
qi
−→eξi

T
· 0 (θ + αi)

−→rSi =
cos (θ + αi + βi)

sinβi
;

1
qi
−→eηi

T
· 0 (θ + αi)

−→rSi =
sin (θ + αi + βi)

sinβi
;

Also, the right column in the expression (3.9) can be simpli-
fied as follows:

1
qiLθ
−→eζ T

[
−→rOi × 0 (αi)

−→rSi
]

=
rSi
Lθqi
−→eζ T ·

∣∣∣∣ XOi YOi
cos (αi + βi) sin (αi + βi)

∣∣∣∣−→eζ
=

rOi
Lθ sinβi

sin (αi + βi − γi) ,

rOi , γi – polar coordinates of the center of the joint Oi:

rOi =
√
X2
Oi + Y

2
Oi , tgγi =

YOi
XOi

.

Then the expression (3.9), (3.10) as shown at the bottom of
the page. Now, from (3.7)(

J−1q

)T
· J−1q =

 j11 j12 j13
j21 j22 j23
j31 j32 j33

 = 1
λ2
E, (3.11)

where

j11 =
∑

i=1,3,5

cos2 (θ + αi + βi)

sin2 βi
;

j12 =
∑

i=1,3,5

sin 2 (θ + αi + βi)

2 sin2 βi
;

j13 =
∑

i=1,3,5

rOi cos (θ + αi + βi) sin (αi + βi − γi)

Lθ sin2βi
;

j21 =
∑

i=1,3,5

sin 2 (θ + αi + βi)

2 sin2 βi
;

j22 =
∑

i=1,3,5

sin2 (θ + αi + βi)

sin2 i
;

j23 =
∑

i=1,3,5

rOi sin (θ + αi + βi) sin (αi + βi − γi)

Lθ sin2βi
;

j31 =
∑

i=1,3,5

rOi cos (θ + αi + βi) sin (αi + βi − γi)

Lθ sin2βi
;

j32 =
∑

i=1,3,5

rOi sin (θ + αi + βi) sin (αi + βi − γi)

Lθ sin2βi
;

j33 =
∑

i=1,3,5

rOi sin
2 (αi + βi − γi)

L2θ sin
2βi

.

Therefore, we get 6 isotropy conditions:

∑
i=1,3,5

cos2 (θ+αi+βi)

sin2 βi
=

1
λ2
; (3.12)

∑
i=1,3,5

sin2 (θ+αi+βi)

sin2 βi
=

1
λ2
; (3.13)

∑
i=1,3,5

rOi sin
2 (αi+βi−γi)

sin2 βi
=

1
λ2
; (3.14)

∑
i=1,3,5

sin 2 (θ+αi+βi)

sin2 βi
= 0; (3.15)

J−1q = −



1
q1

−→eξ T0 (θ + α1)
−→rS1

1
q1
−→eη T0 (θ + α1)

−→rS1
1

q1Lθ
−→eζ T

[
−→rO1 × 0 (α1)

−→rS1
]

1
q3

−→eξ T0 (θ + α3)
−→rS3

1
q3
−→eη T0 (θ + α3)

−→rS3
1

q3Lθ
−→eζ T

[
−→rO3 × 0 (α3)

−→rS3
]

1
q5

−→eξ T0 (θ + α5)
−→rS5

1
q5
−→eη T0 (θ + α5)

−→rS5
1

q5Lθ
−→eζ T

[
−→rO5 × 0 (α5)

−→rS5
]


. (3.9)

J−1q =


cos (θ + α1 + β1)

sinβ1

sin (θ + α1 + β1)
sinβ1

rO1

Lθ sinβ1
sin (α1 + β1 − γ1)

cos (θ + α3 + β3)
sinβ3

sin (θ + α3 + β3)
sinβ2

rO3

Lθ sinβ2
sin (α3 + β3 − γ3)

cos (θ + α5 + β5)
sinβ5

sin (θ + α5 + β5)
sinβ5

rO5

Lθ sinβ5
sin (α5 + β5 − γ5)

 . (3.10)
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∑
i=1,3,5

rOi cos (θ + αi+βi) sin (αi+βi−γi)

sin2 βi
= 0; (3.16)

∑
i=1,3,5

rOi sin (θ + αi + βi) sin (αi + βi − γi)

sin2 βi
= 0. (3.17)

For convenience in the further studies the derived condi-
tions were used in different forms. From (3.11), (3.12)

1
λ2
=

1
2

(
1

sin2 β1
+

1

sin2 β3
+

1

sin2 β5

)
. (3.18)

Since,∑
i=1,3,5

cos2 (θ + αi + βi)

sin2 βi
=

∑
i=1,3,5

sin2 (θ + αi + βi)

sin2 βi
,

(3.19)∑
i=1,3,5

cos 2 (θ + αi + βi)

sin2 βi
= 0. (3.20)

And from (3.15), (3.20)∑
i=1,3,5

1

sin2 βi

[
cos 2 (θ + αi + βi)
sin 2 (θ + αi + βi)

]
=

∑
i=1,3,5

1

sin2 βi
0 (2θ) ·

[
cos 2 (αi+βi)
sin 2 (αi+βi)

]
=
−→
0 ; (3.21)

Since the last equality holds for any θ , the angle θ can be
eliminated from the conditions (3.12) and (3.13):
cos 2 (α1 + β1)

sin2 β1
+

cos 2 (α3 + β3)

sin2 β3
+

cos 2 (α5 + β5)

sin2 β5
= 0

(3.22)
sin 2 (α1 + β1)

sin2 β1
+

sin 2 (α3 + β3)

sin2 β3
+

sin 2 (α5 + β5)

sin2 β5
= 0

(3.23)

Similarly, the rotation angle can be excluded from the equa-
tions (3.16), (3.17).

If we denote ui = rOi sin (αi + βi − γi) , i = 1, 3, 5, then
the equations (3.14), (3.16), (3.17), taking into account (3.18)
will get the following forms:∑

i=1,3,5

u2i
sin2βi

=
L2θ
2

∑
i=1,3,5

1
sin2βi

; (3.24)
∑

i=1,3,5

uicos(θ+αi+βi)
sin2βi∑

i=1,3,5

uisin(θ+αi+βi)
sin2βi

 = ∑
i=1,3,5

ui
sin2βi

0 (θ)

·

[
cos (αi + βi)
sin (αi + βi)

]
=
−→
0 .∑

i=1,3,5

uicos (αi + βi)
sin2βi

= 0, (3.25)

∑
i=1,3,5

uisin (αi + βi)
sin2βi

= 0. (3.26)

And from (3.22), (3.23)

cos2 2 (α5 + β5)

sin4 β5
=

cos2 2 (α3 + β3)

sin4 β3
+

cos2 2 (α1 + β1)

sin4 β1

+ 2
cos 2 (α3 + β3) cos 2 (α1 + β1)

sin2 β3 sin2 β1
;

sin2 2 (α5 + β5)

sin4 β5
=

sin2 2 (α3 + β3)

sin4 β3
+

sin2 2 (α1 + β1)

sin4 β1

+ 2
sin 2 (α3 + β3) sin 2 (α1 + β1)

sin2 β3 sin2 β1
.

Hence,

1

sin4 β5

=
1

sin4 β3
+

1

sin4 β1
+ 2

cos 2(α3 + β3 − α1 − β1)

sin2 β3 sin2 β1
.

(3.27a)

cos 2 (α3 + β3 − α1 − β1)

=
sin2 β3 sin2 β1

2

(
1

sin4 β5
−

1

sin4 β3
−

1

sin4 β1

)
.

(3.27b)

Due to the symmetricity of equations (3.22), (3.23), using the
cyclic permutation of indices (1 – 3 – 5 – 1),

cos 2 (α5 + β5 − α1 − β1)

=
sin2 β5 sin2 β1

2

(
1

sin4 β3
−

1

sin4 β5
−

1

sin4 β1

)
.

(3.28)

IV. STUDY OF THE ISOTROPY CONDITIONS
A. DESERVE MORE ATTENTION THE SYMMETRIC
SOLUTIONS
Let’s consider the case β i =

π
2 , i = 1,3,5. From (3.18),

1
λ2
=

3
2
, (4.1)

The following can be derived from (3.12), (3.13):

sin2 α1 + sin2 α3 + sin2 α5 =
3
2
; (4.2)

cos2 α1 + cos2 α3 + cos2 α5 =
3
2
. (4.3)

And (3.14) gives

sin 2α1 + sin 2α3 + sin 2α5 = 0. (4.4)

From (4.2) and (4.3) it follows

cos 2α1 + cos 2α3 + cos 2α5 = 0. (4.5)

A simple solution can be found from last formulas:

cos 2 (α3 − α1) = −
1
2
;

Analogically, we can get

cos 2
(
αi − αj

)
= −

1
2
, i, j = 1, 3, 5, i 6= j. (4.6)
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The parameters rOi , γi can be found using (3.14), (3.16) and
(3.17): ∑

i=1,3,5

rOi cos
2 (αi − γi) =

L2θ
λ2

Knowing that (see equation (4.1)∑
i=1,3,5

rOi cos
2 (αi − γi) =

3L2θ
2
, (4.7)

we find ∑
i=1,3,5

rOi sinαi cos (αi − γi) = 0, (4.8)

and ∑
i=1,3,5

rOi cosαi cos (αi − γi) = 0. (4.9)

The last equations are also true for βi = −π2 .
Denote rOi cos (αi − γi) = xi, then

x21 + x
2
3 + x

2
5 =

3
2
L2θ

x1 sinα1 + x3 sinα3 + x5 sinα5 = 0
x1 cosα1 + x3 cosα3 + x5 cosα5 = 0

(4.10)

According to the Cramer’s rule, the solution of the last two
equations:

1 = sin (α3 − α5) ,

x3 = −
x1

∣∣∣∣ sinα1 sinα5
cosα1 cosα5

∣∣∣∣
1

=
x1 sin (α5 − α1)
sin (α3 − α1)

(4.11)

x5 = −
x1

∣∣∣∣ sinα3 sinα1
cosα3 cosα1

∣∣∣∣
1

=
x1 sin (α1 − α3)
sin (α3 − α5)

(4.12)

Thus,

x21 =
L2θ
2
. (4.13)

For example, when Lθ = 1 m
rad ,

rOi cos (αi − γi) = ±
1
√
2
m;

Or if Lθ =
√
2 m
rad ,

rOi cos (αi − γi) = ±1.

B. CONSIDER A MORE GENERAL CASE: β1 = β3 = β5
Rewrite the equations (3.22), (3.23) as follows:(

cos x1
sin2 β1

+
cos x3
sin2 β3

)2

=

(
−

cos x5
sin2 β5

)2

, (4.14)(
sin x1
sin2 β1

+
sin x3
sin2 β3

)2

=

(
−

sin x5
sin2 β5

)2

. (4.15)

Then we get

cos (x1 − x5)

FIGURE 5. Illustration of combinations {α3 − α1, α5 − α1}.

=
sin2 β5 sin2 β1

2

(
1

sin4 β3
−

1

sin4 β5
−

1

sin4 β1

)
(4.16)

And making cyclic permutation (1 – 3 – 5 – 1),

cos (x1 − x5)

=
sin2 β5 sin2 β1

2

(
1

sin4 β3
−

1

sin4 β5
−

1

sin4 β1

)
.

(4.17)

The case of equal angles β1 = β3 = β5 will lead to a simple
solution, which coincides with (4.6):

cos 2 (α3 − α1) = −
1
2
,

cos 2 (α5 − α1) = −
1
2
.

(4.18)

Hence, 
α3 = α1 ±

π

3
+ 2πn, n = 0, 1,

α5 = α1 ∓
π

3
+ 2πk, k = 0, 1

(4.19)

This solution gives 8 combinations of {α3 − α1,α5 − α1},
each of which satisfies (3.22) and (3.23):{π

3
,−
π

3

}
;

{
π

3
,−

2π
3

}
;

{
−
π

3
,
π

3

}
;

{
−
π

3
,−

2π
3

}
;{

−
2π
3
,−
π

3

}
;

{
−
2π
3
,
2π
3

}
;

{
2π
3
,
π

3

}
;

{
2π
3
,−
π

3

}
,

(4.20)

Fig.5a illustrates 1-, 2-, 3-, 4-, 5-, 7-th solutions and the Fig.5b
represents combinations {α3−α1,α5−α1} =

{
−

2π
3 ,

2π
3

}
,

and {α3 − α1,α5 − α1} =
{
2π
3 ,−

π
3

}
.

To search for the parameters β i, rOi , we set β1 = β3 =

β5 = β again. Equation (24) in this case will take the form:∑
i=1,2,3

u2i =
3L2θ
2
, (4.21)

where

ui = rOisin
(
αi + β − γ i

)
.
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Equations (3.25) and (3.26) give a system of two linear
equations in the unknowns {u3,u5}:∑

i=1,3,5

ui0 (β) ·
[
cos (αi)
sin (αi)

]
= 0,

from where ∑
i=1,3,5

ui cos (αi) = 0, i = 1, 3, 5; (4.22)∑
i=1,3,5

ui sin (αi) = 0, i = 1, 3, 5. (4.23)

Solving the last equations by Cramer’s method with respect
to u3 and u5,

u3 = u1
sin (α1 − α5)
sin (α5 − α3)

,

u5 = u1
sin (α3 − α1)
sin(α5 − α3)

. (4.24)

It is known from (3.18) that

sin2 (αi − αj) =
1− cos 2

(
αi − αj

)
2

=
3
4
. (4.25)

Then the solution of (4.21) is

ui = ±
Lθ
√
2
, i = 1, 3, 5. (4.26)

or

sin (αi + β − γi) = ±
Lθ
√
2 rOi

, i = 1, 3, 5. (4.27)

The equality u21 = u23 = u25 follows from (4.20) and (4.21).
The solutions correspond to 8 combinations of {u1, u3, u5}:{

Lθ
√
2
,
Lθ
√
2
,
Lθ
√
2

}
,

{
Lθ
√
2
,
Lθ
√
2
,−

Lθ
√
2

}
,{

Lθ
√
2
,−

Lθ
√
2
,
Lθ
√
2

}
,

{
Lθ
√
2
,−

Lθ
√
2
,−

Lθ
√
2

}
,{

−
Lθ
√
2
,
Lθ
√
2
,
Lθ
√
2

}
,

{
−
Lθ
√
2
,
Lθ
√
2
,−

Lθ
√
2

}
,{

−
Lθ
√
2
,−

Lθ
√
2
,
Lθ
√
2

}
,

{
−
Lθ
√
2
,−

Lθ
√
2
,−

Lθ
√
2

}
(4.28)

As an example consider the case u1 = u3 = u5, i.e. when

sin (αi + β − γi) =
Lθ
√
2 rOi

, i = 1, 3, 5

or

sin (αi + β − γi) = −
Lθ
√
2 rOi

, i = 1, 3, 5.

Only two of eight combinations {α3−α1,α5−α1} satisfy
the conditions (3.25), (3.26) in this case:

1) α3 = α1 − 2π
3 , α5 = α1 +

2π
3 ;

2) α3 = α1 + 2π
3 , α5 = α1 −

2π
3 .

Fig.6a demonstrate the configurations corresponding to
the first, and Fig.6b correspond to the second solutions in
symmetric case when

rO1 = rO3 = rO5 = ±
Lθ

√
2 sin (α1 + β − γ1)

;

γ3 − γ1 = α3 − α1;

γ 5 − γ 1 = α5 − α1.

For γ 1 =
π
3 ,

1) for the first solution, γ 3 = γ 1 −
2π
3 = −

π
3 ; γ 5 =

γ 1 +
2π
3 = π .

2) and for the second solution γ 3 = γ 1+
2π
3 = π; γ 5 =

γ 1 −
2π
3 = −

π
3 .

Note that the second configuration can be obtained from
the first by swapping leg mechanisms with numbers 3 and 5.

And for γ 1 = −
π
3 ,

1) the first solution is γ 3 = −π; γ 5 =
π
3 ,

2) and the second is γ 3 =
π
3 ; γ 5 = −π ,

i.e. swapped are the legs with numbers 1 and 3.
When choosing α1, γ 1, it is necessary that

sin
(
αi + β − γ i

)
, i = 1,3,5 have the same signs. In the

example above, this follows from condition (4.1):

α1 + β − γ1 = α3 + β − γ3 = α5 + β − γ5.

for the first solution, γ 3 = γ 1 −
2π
3 = −

π
3 ;

As can be seen in the Fig.6, in the isotropic configuration
the lines P iSi form an equilateral triangle. Another advantage
is that the center of mass of body C is located in the center
of the supporting triangle1S1S3S5, which ensures ‘‘equal’’
movement (the same ability of movement) in all directions
and an equal margin of stability.
Remark: There is a disadvantage in these two configura-

tions. Let’s call ‘‘the main movement’’ the uniform transla-
tional motion of the WR. During the main movement, when
the main engines rotate uniformly and the angular speeds
ω1, ω3, ω5 reach the nominal value ωnom,, the robot operates
in an energy-optimal mode. During such a movement, the
guides PiSi of our model will be parallel (Figure 4a). And
if β1 = β3 = β5 and a1 = a3 = a5, then the lines OiSi
will be parallel, which means that the mechanism is in a
singular position. To avoid the singularity, a5 can be chosen
differently: a5 6= a1, a5 6= a3. But a more advantageous
solution is the case β3 = β1, β5 = −β1 (Figure 4b) or
β3 = −β1, β5 = β1.
Thus, the expressions are obtained that determine the

parameters P = γ3, γ5, α3, α5, rO1 , rO3 , rO5 for given values
of X = α1, γ1, β1, β3, β5, a. As noted earlier, during the
movement of the robot, two conditions must be maintained:
the absence of a singularity, as well as the stability of the
robot (the center of mass of theWR body should be inside the
support triangle). After numerical studies of different solu-
tions of the isotropy equations, for each solution were found
the boundary values of the generalized coordinates satisfying
both mentioned conditions. The step length of the WR is
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FIGURE 6. Isotropic configurations: rOi
= 1, ai = 0.5, i = 1,3,5.

defined as L0 = min
(∣∣q∗1 − q∗∗1 ∣∣ , ∣∣q∗3 − q∗∗3 ∣∣ , ∣∣q∗5 − q∗∗5 ∣∣).

The optimal solution corresponds to L0 → max. Such a

solution is u1 = u3 = u5, {α3−α1, α5−α1} =
{
−

2π
3 ,−

π
3

}
.

E.g., with the given parameters β0 = β10 = β30 = β50 =
π
4 , γ1 =

π
3 , a1 = 10cm, a3 = 10cm, a5 = 7cm,

rOi =
Lθ

√
2sin (α1 + β − γ1)

, Lθ = 0.1m;
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FIGURE 7. Configurations at the main movement: a) β1 = β3 = β5;
b) β1 = β3 = −β5.

the step length can be up to L0max = 3.610688817 m. This
indicates that the solution ensures a sufficient ‘‘remoteness’’
from singularity and instability.

V. CONCLUSION
Turning modes of theWRwere studied and a parametric syn-
thesis of the turning mechanism has provided. The rotation
of the WR is carried out due to the difference in the veloci-
ties of the main drives. The method of synthesis of parallel
manipulators based on the isotropy criterion is applied for
optimization of the WR turning mechanism. The isotropy
conditions for robots with orthogonal propulsion are derived.
Solutions of isotropy equations are defined. The analysis of
the solutions of the isotropy equations was carried out and on
their basis the metric parameters of the robot were obtained,
which ensure the optimal transmission of forces and motion.
One of the symmetric solutions ensures the stability and
absence of singularity for the step length 3.6 m, while the
characteristic length of the robot is 10 cm.
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