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ABSTRACT Climate change is increasing the frequency and the intensity of weather events, leading to
large-scale disruptions to critical infrastructure systems. The high level of interdependence among these
systems further aggravates the extent of disruptions. To mitigate these impacts, models and methods are
needed to support rapid decision-making for optimal resource allocation in the aftermath of a disruption
and to substantiate investment decisions for the structural reconfiguration of these systems. In this paper,
we leverage infrastructure simulation models and Machine Learning (ML) algorithms to develop resilience
predictionmodels. First, we employ an interdependent infrastructure simulationmodel to generate infrastruc-
ture disruption and recovery scenarios and compute the resilience value for each scenario. The infrastructure-,
disruption-, and recovery-related attributes are recorded for each scenario and ML algorithms are employed
on the synthetic dataset to develop accurate resilience prediction models. The results of the predictionmodels
are analyzed and possible design strategies suggested based on the resilience enhancement attributes. The
proposed methodology can support infrastructure agencies in the resource-allocation process for pre- and
post-disaster interventions.

INDEX TERMS Interdependent infrastructure systems, simulation, resilience, machine learning, predictive
analytics.

I. INTRODUCTION
Modern cities heavily rely on the proper functioning of
infrastructure systems such as power, water and transporta-
tion networks. Disruptions to infrastructure systems not only
threaten safety, security, and health of the inhabitants, but
also incur economic losses. Climate change has resulted in
more frequent and intense weather events, often causing
large-scale disruptions to urban infrastructure systems [1].
These impacts are exacerbated by inadequate urban planning,
aging infrastructure, and population growth, which subject
the infrastructure to increasing levels of stress [2]. Recent
weather-related extreme events, such as 2017 Hurricane Har-
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vey in the Houston-Galveston region, 2021 Texas winter
storm in Central Texas [3], [4], and 2022 European heatwaves
have resulted in extensive disruptions to regional infrastruc-
ture systems and significant socio-economic impacts [5].

Urban infrastructure systems are highly interdependent
and the failure of one system may lead to cascading failures
in other systems [6]. Floods or hurricanes may cause the
failure of power supply to water pumps operations and result
in disruptions to water supply. Power driven transportation
systems (e.g., city trains) may also stall due to a power failure.
Flooding and debris may prevent roads from providing access
to critical components of power and water systems leading to
large delays in the restoration of essential services. In such
situations, a holistic approach to infrastructure resilience
considering both pre- and post-disaster interventions and
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interdependencies in urban infrastructure systems is imper-
ative for minimizing disruption impacts as well as speeding
up recovery [7].

The problem of infrastructure network modeling for
resilience analysis has been extensively studied in the last
decades [8]. Though initial studies focused on individ-
ual infrastructure systems, their growing interdependencies
were also brought into the focus of infrastructure sys-
tems research [9], [10]. Approaches for resilience analy-
sis can be broadly classified into (i) computational and
(ii) empirical [11].

Computational approaches rely on analytical methods to
model system operations and interdependencies. Common
computational models include graph-based models, system-
dynamics models, agent-based models, and domain-specific
simulation models [12]. Specifically, co-simulation models
were developed to simulate the collective behavior of interde-
pendent urban infrastructure networks [13], [14], [15]. While
these models can be used to test the effectiveness of realistic
resilience strategies and interventions, they require a signif-
icant amount of computational resources and their applica-
tion in rapid decision-making for emergency management is
limited.

Empirical approaches are data-driven and rely on histor-
ical datasets and expert judgments to identify relationships
between various attributes (i.e., related to system configu-
ration, disruption and recovery) and system performance.
In particular, Machine Learning (ML) models have proven
effective in learning these nonlinear relationships and can
be used for optimal pre- and post-disaster resource alloca-
tion [16], [17]. However, while ML models have been mostly
applied to individual infrastructure systems, including energy
networks [18], [19], [20] and road networks [21], [22], their
application to interdependent infrastructure systems is lim-
ited due to data availability constraints.

In order to overcome these gaps, computational and
empirical models can be combined to achieve desired objec-
tives [23]. In this paper, a simulation model for interdepen-
dent infrastructure systems is combined with ML algorithms
in order to develop resilience prediction models. Suchmodels
support rapid decision-making for optimal resource alloca-
tion in the aftermath of a disruption. Furthermore, by learning
the inherent system features that make it more resilient, these
models can substantiate investment decisions for the struc-
tural reconfiguration of the system.

The methodology proposed in this paper consists of
three steps. First, a simulation model for the interdependent
power-water-transportation network is employed to simu-
late a large number of disruption and recovery scenarios
and compute the resilience value for each scenario. Second,
ML models are trained to predict system resilience based
on infrastructure-, disruption- and recovery-related features.
Third, the results returned by the ML-based resilience pre-
dictive models are analyzed and possible design strategies
to enhance the resilience of the interdependent infrastructure
network suggested.

The rest of the paper is organized as follows: section II dis-
cusses the infrastructure simulation and hazard
generation methodology, section III elaborates on the
simulation-generated dataset, section IV discusses the devel-
opment of ML models, and section V presents the results
of the case study based on the synthetic city of Micropolis.
Finally, in section VI, a few design recommendations based
on the findings from the study are enlisted and section VII
summarizes the key findings.

II. INFRASTRUCTURE MODELING AND HAZARD
SCENARIO CREATION
In this section, we describe the simulation model for assess-
ing the resilience of an integrated power-water-transportation
network subject to disruptions.

A. SIMULATION PLATFORM OVERVIEW
The simulation model InfraRisk [24] has been deployed
to model the interdependent power-water-transportation net-
work. InfraRisk calls three Python packages to run simula-
tion for the individual infrastructure systems. Specifically,
Pandapower [25] is used to solve the optimal power flow
problem. WNTR (Water Network Tool for Resilience) [26]
is used to run pressure-dependent demand simulations in the
water network. The static traffic assignment package [27] is
used to compute road travel times between origin-destination
(OD) pairs under a given set of traffic conditions. The
individual infrastructure simulators communicate with each
other using an object-oriented interface. In addition to the
integrated infrastructure model, modules are also available
for hazard generation and infrastructure vulnerability mod-
eling, recovery modeling, and resilience quantification. The
InfraRisk model is made publicly available for the research
community [28].

B. HAZARD SCENARIO GENERATION
This study focuses on damage to infrastructure system com-
ponents and the subsequent loss of service due to weather-
related events, which are simulated via the hazard module
in the simulation platform [24]. The failure probability of
components is computed as:

p(failurei) = p(hazard)× p(exposurei|hazard)

×p(failurei|exposurei) (1)

where p(failurei) is the failure probability of the ith
component, p(hazard) is the probability of the hazard,
p(exposurei|hazard) is the probability of the component
being exposed to the hazard and p(failurei|exposurei) is the
failure probability of the component given its exposure to the
hazard.
InfraRisk embeds methods to simulate point events (such

as random failures, fire incidents, acts of sabotage or van-
dalism) and track-based events (such as floods, cyclones and
tornadoes). Fig. 1 represents an example point event and two
track-based events. In the InfraRisk model, simulation of a
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point event requires 3 input parameters: the location of the
event, the radius of impact and the intensity of the event.
The failure probability p(failurei|exposurei) depends on the
event intensity. The factor p(exposurei|hazard) is a function
of the ratio between the distance of the component to the
location of the event and the radius of impact. The input
parameters for the track-based events are the track of the
event, the offset distance of the impact and the event intensity.
For the track-based events, p(exposurei|hazard) is calculated
as a function of the ratio between the perpendicular distance
of the component from the track and the offset distance of
the impact. We do not use any hazard-specific models for
generating disruptions because the primary objective of the
study is to obtain a dataset with a large number of distinct
disruptive scenarios, rather than realistically modelling those
scenarios.

C. NETWORK RECOVERY
The recovery actions are deterministically sequenced and
implemented based on the availability of repair crews and
the repair sequence, which is obtained by prioritizing failed
components for repair based on a pre-determined recovery
strategy and accounting for road-accessibility constraints as
shown in Fig. 2 [24]. According to the algorithm in Fig. 2,
a repair sequence is first computed based on a pre-defined
recovery strategy. If the sequence of components (i.e., in the
power, water and road networks) to be repaired is non-empty,
the first component in the sequence is selected for repair.
If the selected component is accessible by road, then the
respective crew is sent to perform the repair and the repair
sequence is updated. If the selected component is not acces-
sible by road, then the next most important component in the
sequence is selected for repair. The algorithm iterates until all
components are repaired.

In order to compute the repair sequence, three criteria,
which have been developed for vulnerability analysis [29],
[30], are used, namely:

1) Capacity - the components with higher flows of
resources through them during normal operating con-
ditions are prioritized for repair.

2) Betweenness centrality - the components that are tra-
versed more often by the flow of resources in the
network are prioritized for repair.

3) Zone - the failed components in a certain zone (e.g.,
industrial, school, etc.) are prioritized for repair.

D. RESILIENCE QUANTIFICATION
This module implements the integrated infrastructure simula-
tion in two steps, namely event table generation and interde-
pendent infrastructure simulation. The event table provides a
schedule of all the disruptions and repairs.

After the event table is generated, the interdependent net-
work simulation is performed. InfraRisk adopts a sequential
simulation approach in which individual infrastructure mod-
els are successively updated at every simulation time step
according to the actions scheduled in the pre-generated event

table. In order to quantify the network impacts of disrup-
tion scenarios, we use the Equitable Consumer Serviceability
(ECS), which is computed as the average satisfied demand
for power/water assuming that all the demand nodes have
equal importance. The ECS implicitly accounts for the road
network performance, since travel times affect the repair
times of components.

Finally the Total Performance Loss (TPL) is used as
resilience metric and computed according to the well-known
resilience triangle paradigm [8]:

TPL =
∫ T

0
[1− ECS(t)] dt (2)

where T is the total time taken to recover the system perfor-
mance [31]. Resilience is inversely related to the TPL value.
A lower TPL value corresponds to better system resilience.

III. SIMULATION-GENERATED DATASET
In this section, we describe the benchmark town used as
case study and the generation of the synthetic dataset for ML
analysis.

A. MODEL TOWN: MODIFIED MICROPOLIS NETWORK
Micropolis, a synthetic town of 5,000 inhabitants, was ini-
tially developed by Texas A&M university to study the water
distribution system [32]. The networkwas later extendedwith
power and communication systems [33]. The power, water
and transportation networks are adapted for our study and
the resulting topology is illustrated in Fig. 3. Buildings are
represented in grey blocks in Figure. Details of the power,
water and transportation networks are provided in Table 1.

TABLE 1. Modified Micropolis Network Components.

B. SYNTHETIC DATASET
In order to create a large dataset to train and test the ML
models, we simulate various disruption and recovery scenar-
ios. Specifically, point and track-based events are randomly
generated using the hazard module described in section II-B.
The probability of occurrence of point and track-based events
is set to 0.75 and 0.25, respectively. For both types of
events, the location (or track) are randomly distributed on
the network and the radius of a point event (or the offset
distance, in the case of a track event) is sampled from a
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FIGURE 1. Example of disaster scenarios.

FIGURE 2. Repair scheduling algorithm.

FIGURE 3. Micropolis integrated power-water-transportation network.

discrete uniform distribution with values [50, 100, 150, 200]
meters to create high variability in the disruption scenar-
ios and resemble realistic disruptions. To define the failure
probability of components, three disruption intensity lev-
els, i.e., low, moderate and high, are considered. In this
study, only main power lines, water mains, and transportation
links are failed. A total of 3,090 disruption scenarios are
simulated.

In order to analyze the effects of recovery- and
infrastructure-related attributes on system resilience, multiple
recovery scenarios are simulated for every disaster event by

varying the number of available repair crews, the recovery
strategy (i.e., capacity, betweenness centrality and zone) and
the level of meshedness of the network (i.e., low, medium
and high). Specifically, low and high meshed networks are
computed by removing or adding 20% of the original links
from the respective networks, while medium meshed net-
works correspond to the original network topologies. After
eliminating the disruption scenarios that did not impact the
infrastructure and combining themwith the different recovery
and infrastructure scenarios, a total of 26,600 scenarios are
generated.
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TABLE 2. Input features for ML models.

C. INPUT FEATURES FOR MACHINE LEARNING
Input features for the ML models can be classified as
disruption-, recovery- and infrastructure-related. In order to
reduce the computational complexity of the ML models,
features only include aggregated quantities, rather that the
full list of simulation inputs. The features, their coded names
and range/level representing the minimum and maximum
observed values over all simulated scenarios are reported in
Table 2.

Disruption-related features include the number of power
lines, water mains and transportation links failed as well
as two topological metrics, i.e., betweenness and degree
centrality, to assess their relative importance in the net-
work. Link betweenness centrality is computed by averag-
ing the betweenness centralities of the corresponding start
and end nodes. Betweenness centrality (BC) of a node ν
is defined as:

BC(ν) =
∑

s6=ν,t 6=ν

σst (ν)
σst

(3)

where σst is the total number of shortest paths between
node s and t and σst (ν) is the number of those paths that
pass through ν. Similarly, link degree centrality is com-
puted by averaging the degree centralities of the corre-
sponding start and end nodes. Degree centrality (DC) of a

node ν is defined as:

DC(ν) =
∑
i∈N

∑
j∈N

lij (4)

whereN is the set of all nodes and lij denotes the link between
node i and j.

Recovery-related features include the number of repair
crews available for the power, water and transportation net-
works, respectively, and the recovery strategy adopted to
compute the repair sequence.

One infrastructure-related feature, i.e., meshedness level,
is also considered to test the effect of different topologies on
system resilience.

IV. APPLICATION OF MACHINE LEARNING MODELS
The simulation-generated dataset is used to train several ML
models to predict system resilience for new disruption and
recovery scenarios for which they are not trained. A super-
vised learning approach is adopted to develop suitable ML
models for this regression problem. The simulator output, i.e.,
TPL value which is inversely related to the resilience, and the
input features in Table 2 are used to train the ML models.

A. MACHINE LEARNING ALGORITHMS
A single ML model does not always perform the best for dif-
ferent regression problems. Therefore, four commonly used
ML models, briefly described below, are adopted for the
regression problem.

1) LINEAR REGRESSION
Linear Regression (LR) fits a linear model f (x) = βx to the
data by minimizing the residual sum of squares (RSS):

min
β

RSS =

√√√√ n∑
i=1

(
yi − f (xi)

)2
(5)

where β = [β0, . . . , βp] is the vector of coefficient cor-
responding to the p input features, yi is the actual value,
f (xi) = βxi the predicted value and xi = [xi1, . . . , xip]T

the vector of predictors. The LR model is easily interpretable
from the coefficient values. However, the data need to satisfy
a number of assumptions, such as non-collinearity of the input
features, normally distributed errors and a linear relationship
between the predicted value and input features [34].

2) SUPPORT VECTOR REGRESSION
Support Vector Regression (SVR) fits a set of hyperplanes
in a high dimensional space to the data and finds a model
of the form f (x) = wTφ(x) + b, where φ(x)T is a linear
or non-linear transformation of the feature space [35]. The
resolution algorithm is [36]:

min
b,w

C
n∑
i=1

V
(
yi − f (xi)

)
+

1
2
||w||2 (6)
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where

V (r) =

{
0 if |r| < ε

|r| − ε otherwise
(7)

is an ε-insensitive error function [37] and C is the regular-
ization parameter, which controls the trade-off between the
margin w and the error. The prediction model returned by the
optimization model is of the form:

f (x) =
n∑

n=1

(ai − âi)k(x, xi)+ b (8)

where ai, âi are positive weights given to each observation
and estimated from the data and k(x, xi) is a kernel func-
tion [36]. Specifically, the polynomial kernel is expressed as

k(x, xi) = (γ 〈x, xi〉 + coef0)d (9)

where γ is equal to 1/number_of_features when the parame-
ter gamma is set to ‘auto’ and d = 3 by default.

3) RANDOM FOREST REGRESSOR
Random Forest Regressor (RFR) uses an ensemble of deci-
sion trees and relies on bagging or bootstrap aggregation,
which is a technique for improving the accuracy of the predic-
tor by training an ensemble of trees in parallel [38]. Specifi-
cally, RFRfits an ensemble of trees of size n_estimators. Each
tree Tb in the ensemble is built from a bootstrapped sample
of the training data and by randomly selecting a subset of
predictor features and identifying the best splitting variables
and split-points for tree nodes. Specifically, when the param-
eter max_feature is set to ‘sqrt’, features are sampled from
a subset of size

√
number_of_features. The selection and

splitting process is repeated for each tree until the maximum
depth (max_depth) is reached or until the number of samples
in a node equals the default value of the minimum sample
split parameter (i.e., min_sample_split = 2). The prediction
model returned by the algorithm is of the form [39]:

f (x) =
1
B

B∑
b=1

Tb(x, θb) (10)

where θb characterises the bth random tree and B corresponds
to the parameter n_estimators. RFR has proven very effective
in terms of prediction accuracy and offers features importance
scores based on the reduction in the criterion used to select
split points.

4) (EXTREME) GRADIENT BOOSTED TREE REGRESSOR
Similar to RFR, (Extreme) Gradient Boosted Tree Regressor
((X)GBR) uses an ensemble of decision trees. (X)GBR relies
on boosting, which is a technique for improving the accuracy
of the predictor by training an ensemble of trees sequen-
tially [40]. At each iteration of the algorithm, a tree Tm is built
that minimizes the error based on a subsample of the training
data, the size of which is controlled by the parameter sub-
sample. Therefore, the initial prediction is updated by adding

the average error, multiplied by the parameter learning_rate
(equal to 0.1 by default), which controls the contribution of
each sequential tree and therefore determines the speed at
which the model learns the outcome. The prediction model
returned by the algorithm is of the form:

f (x) =
M∑
m=1

Tm(x, θm) (11)

where M corresponds to the parameter n_estimators and θm
characterises the mth tree.

XGBR [41] is a more regularized form of GBR. It uses an
advanced regularization technique that enhances the model
generalization capabilities and delivers high performance
compared to the original GBR. Additionally on subsampling
the training data to train each tree, in XGBR also the features
used to train each tree and the features used in each node to
train each tree are subsampled according to the parameters
colsample_bytree and colsample_bylevel, respectively.

In both GBR and XGBR, the importance score associated
with each feature indicates how useful or valuable the feature
is in the construction of the boosted decision trees within the
model.

Model accuracy and interpretability are the main criteria
driving our model selection choice. In discussing the results,
we focus on the RFR and (X)GBR models, since they have
proven more accurate than LR and SVR, as shown by the
experimental results. All four models are interpretable, since
they include embedded methods for assigning a score to each
input feature indicating its relative importance in making a
prediction. These scores are used for performing a feature
importance analysis in order to understand which factors are
most likely to influence system resilience in the current case
study.

B. EVALUATION METRICS
The performance of different ML models in our regression
problem is assessed using the Root Mean Squared Error
(RMSE) and the R2 or R-squared score.
RMSE of an estimator is mathematically represented as:

RMSE =

√√√√∑n
i=1

(
yi − f (xi)

)2
n

(12)

R2, usually expressed in percentage (%), indicates the
goodness-of-fit of the prediction models. Mathematically, the
score is defined as:

R2 = 1−

∑n
i=1

(
yi − f (xi)

)2
∑n

i=1(yi − ȳ)2
(13)

where ȳ is the observed mean.

V. SIMULATION RESULTS
A. RESULT SUMMARY
Prediction models based on the ML algorithms are trained
and cross-validated using 75% of the dataset (19,950 data
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TABLE 3. Summary of ML algorithm results.

points) and tested using the remaining 25% (6,650 data
points). The hyper-parameters associated with eachML algo-
rithm are tuned using the grid search method to obtain the
best performance. Open-source scikit-learn libraries are used
to implement the ML models.

Table 3 shows the summary of prediction results for differ-
entMLmodels and the tuned parameter values for eachmodel
(other parameters are set to their default value according to
the scikit-learn libraries).

RFR, GBR, and XGBR perform better than the other meth-
ods, since they provide more accurate predictions for TPL
based on the RMSE and R2 values. The predicted versus
actual TPL values for the RFR and XGBR are displayed in
Fig. 4. Both models tend to underestimate large TPL values.
This is because large scale disruptions are underrepresented
in the training dataset, as it occurs in real world datasets,
resulting in lower accuracy in predicting these scenarios.

B. FEATURE IMPORTANCE STUDY
Fig. 5 shows the relative importance of the input features for
RFR and XGBR. Importance scores are computed assuming
equal weights of the power and water systems (i.e., predicted
TPL is the average of the TPL of the power and water net-
works). The number of failed water mains (water_mains) and
the number of crews assigned to repair them (water_crew)
have the highest influence on system resilience. This is due
to the fact that, unless a particular section of a failed pipe is
automatically isolated (e.g., by closing remotely-controlled
isolating valves on both sides of the affected pipe section),
the leak through the pipe continues until the repair crew
reaches the pipe and performs the isolation manually. On the
other hand, switches in the power grid automatically open
to isolate failed power lines, thus limiting cascading failures
within the network. We expect that the relative importance
of water-related features to system resilience will diminish if
adequate leak detection and automatic isolation mechanisms
are implemented. However, such mechanisms require high
investments [42] and are seldom deployed in real-world dis-
tribution water systems.

While other features are negligible according to the RFR,
GBR and XGBR could capture the influence of other

FIGURE 4. Plots for predicted versus measured TPL values for RFR and
XGBR.

features, as shown by their relative importance in Fig. 5.
Low meshedness levels (meshedness_low) and transporta-
tion related features (i.e., number of transportation link fail-
ures transpo_links and the crew assigned to repair them
transpo_crew) are the next most important attributes for
resilience prediction. In fact, a functional transportation net-
work enables faster repair of all component of the inte-
grated network. Power-related features (i.e., degree centrality
power_sum_deg_cent and the number of failed power lines
power_lines) are relatively less important in predicting sys-
tem resilience. This is due to the fact that power grids embed
methods for fault isolation and are usually designed in order
to limit power disruptions. This is especially true for the
Micropolis power grid.

In order to identify the most important features in predict-
ing the resilience of the power grid and water distribution
system individually, the study is repeated by training the ML
models on the same set of input features, but considering two
distinct TPL values for the power and water systems (instead
of one aggregated value combining TPL values of the two
systems). The feature importance study for this second sets
of results are plotted in Fig. 6 for the XGBR algorithm.

When the power system is considered individually
(Fig. 6(a)), power related features as well as the number of
failed transportation links (transpo_links) determine system
resilience. This is due to the dependency of power compo-
nents repair on road accessibility.
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FIGURE 5. Feature importance plots for RFR and XGBR.

FIGURE 6. Feature importance plots for XGBR to study water and power system TPL individually.

When the water system is considered individually
(Fig. 6(b)), water-, transportation- and power-related fea-
tures determine system resilience. This indicates the
high dependency of the water system on the other two
systems.

C. SENSITIVITY ANALYSIS
In order to analyze how system resilience varies under various
system designs and recovery scenarios, a sensitivity analysis
is conducted and the TPL values estimated under different
level of recovery- and infrastructure-related features using the
trainedMLmodels. For the sake of simplicity, only the results
returned by the RFR are presented.

Fig. 7 shows the plots for the TPL values by RFR for
20 disruption scenarios (each line represents one disruption
event), which were selected in order to represent the widest
range in TPL. For each infrastructure system and disruption
scenario, the maximum number of repair crews deployed
is limited to the number of components failed plus two in
order to limit the number of idle crews. TPL decreases (i.e.,
resilience increases) as the number of crews increases up to a

certain point, after which some repair crews remain idle (e.g.,
when the number of crews is greater than the number of failed
components). This decreasing trend is especially marked for
a small number of crews (below 5), since the repair time
of water mains is high. The plots representing TPL versus
number of power/transportation crews exhibit similar trends
to those of the water system, but with a greater number of
outliers. These can be attributed to the ML model prediction
error and imbalance in training data for some disruption and
recovery scenarios.

When TPL values for different repair strategies and
meshedness levels are computed, a trend is not clearly iden-
tified, as seen in Fig. 8(a) and (b), respectively. This suggests
that the best recovery strategy needs to be identified for
each disruption scenario and that one strategy does not work
best for all disruptions. Moreover, while high meshedness
levels enhance system redundancy, and therefore resilience,
they also increase the probability of cascading failures within
a network. This is even more prominent in water systems,
where failed pipes remain connected to the system until the
repair crew isolates them manually.
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FIGURE 7. Plots for RFR-predicted TPL versus number of crews for different infrastructure systems.

VI. DESIGN RECOMMENDATIONS
In view of the results discussed, some resilient system designs
are suggested for the integrated power-water-transportation
network:

1) Implementation of isolation valves in the water net-
work. As observed in our experimental results, failure
of water lines severely affects infrastructure resilience.
Therefore, detection and isolation of leaking pipes
through the use of isolation valves need to be imple-
mented in order to avoid cascading failures within the
water network. The optimal location of such valves can
be determined using InfraRisk by maximizing system
resilience subject to cost constraints.

2) Decoupling between the power/water systems and the
transportation system. When isolation and repair of
failed components is performed manually by repair
crews, road accessibility to these components is essen-
tial for system recovery. As an alternative, remotely
controlled isolation and recovery mechanisms could
be implemented (e.g., remotely controlled shut-off
valves in the water system and automatic power grid
reconfiguration).

3) Decoupling between the power and the water systems.
Water supplymay be interrupted due to a power outage,
if the power supplied to water pumps is disrupted.
In order to avoid cascading failures from the power to
the water system, backup power generators or alterna-
tive power sources can be installed to supply power to
water pumps. The optimal location of such generators
can be determined using InfraRisk by maximizing sys-
tem resilience subject to cost constraints.

4) Efficient use of repair crews. While additional repair
crews can speed up system recovery in the event of
major disruptions, the benefit-cost ratio decreases for
small disruption scenarios since some crews remain
idle. This has been observed in our study results dis-
cussed in section V. Therefore, for ensuring the effi-
cient use of repair crews, cross-functional repair crews
can be deployed between systems after appropriate
training (e.g., crews can be assembled with mixed com-
petencies to repair both power lines and road links).

FIGURE 8. Plots for RFR-predicted TPL versus repair strategy and
meshedness level.

VII. CONCLUSION
This paper proposes a combined methodology to predict
the resilience of interdependent infrastructure systems.
Specifically, we deploy the InfraRisk simulation model to
simulate the performance on the interdependent power-
water-transportation network subject to various disrup-
tion and recovery scenarios. We use the resulting
simulation-generated dataset to train four ML models
for resilience prediction and for identifying contributing
resilience factors. The proposed methodology goes beyond
state-of-the-art resilience assessments by offering a trade-off
between computational complexity and model accuracy and
can, therefore, be used for rapid decision-making for optimal
pre- and post-disaster resource allocation.

In future research, the design improvement solutions pro-
posed in section VI will be implemented in the simulation
platform and several disruption scenarios will be tested. Fur-
thermore, these solutions will be tested on a real-world infras-
tructure network using realistic recovery strategies against.
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