
Received 14 September 2022, accepted 23 October 2022, date of publication 26 October 2022, date of current version 4 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3217534

Blockchain-Powered Bandwidth Trading
on SDN-Enabled Edge Network
YUSTUS EKO OKTIAN 1, THI-THU-HUONG LE 2, UK JO 3, (Graduate Student Member, IEEE),
AND HOWON KIM 3, (Member, IEEE)
1Blockchain Platform Research Center, Pusan National University, Busan 609735, South Korea
2IoT Research Center, Pusan National University, Busan 609735, South Korea
3School of Computer Science and Engineering, Pusan National University, Busan 609735, South Korea

Corresponding author: Howon Kim (howonkim@pusan.ac.kr)

This work was supported in part by the Ministry of Science and ICT (MSIT), South Korea, under the Information Technology Research
Center (ITRC) Support Program supervised by the Institute for Information and Communications Technology Planning and Evaluation
(IITP), under Grant IITP-2022-2020-0-01797; and in part by IITP Grant through the Korea Government (MSIT)
Research on Blockchain Security Technology for the Internet of Things (IoT) Services (50%) under Grant 2018-0-00264.

ABSTRACT Bandwidth trading procedures can be made to incentivize users to sell their needless traffic
and indirectly reduce the probability of traffic congestion. However, implementation of bandwidth trading
is opex-heavy from Internet Service Provider (ISP) perspective, while on the other hand, users also do
not trust network executions from the ISP due to its heavily centralized control. These issues hinder the
applicability of bandwidth trading and become our motivation to propose this paper. Our bandwidth-trading
framework utilize software-defined networking (SDN) and blockchain. SDN automates the bandwidth
trading executions from the ISP side and reduces the opex. Meanwhile, the smart contract is a trusted
platform for building a trading marketplace where buyers, sellers, and SDN controllers can negotiate the
trading terms. Once the trading is executed, SDN controllers generate proof of trading that must be submitted
to the smart contract as proof of provisioning. We implement our works using Ethereum and POX SDN
controllers, and the results prove that it can provide a seamless bandwidth trading experience with reasonable
overhead. Furthermore, by committing to our framework, bandwidth trading can be executed fairly and
securely because all previous provisioning can be cross-checked through the provided proof-of-trading.

INDEX TERMS Bandwidth trading, marketplace, SDN, blockchain.

I. INTRODUCTION
The Internet Service Provider (ISP) is most likely to control
the Internet bandwidth statically according to the consumers’
subscription plan, and sometimes the Internet deliveries from
ISP do not match the numbers that the ISP previously adver-
tised because ISP often aggregates multiple connections from
consumers into a single channel. Traffic congestion may
occur if many consumers consume bandwidth simultane-
ously, resulting in performance degradation happening to all
consumers sharing the same channel. The ISP may eliminate
this issue by upgrading the channel capacity with maximum
bandwidth to satisfy all subscribed plans from consumers.
However, that solution is expensive and inefficient since

The associate editor coordinating the review of this manuscript and

approving it for publication was Thanh Ngoc Dinh .

cases where all consumers use their bandwidth simultane-
ously can be considered (in most cases) rare and ephemeral
events.

A bandwidth trading scheme can motivate users to shift
their traffics during peak hours and indirectly solve the previ-
ously mentioned congestion problems. Instead of consuming
bandwidth, consumers now have an opportunity to sell parts
or all of their bandwidth to nearby consumers. When selling
bandwidth, consumers commit that they will not use their
bandwidth for a given duration. The ISP can then use this
unused bandwidth to serve other consumers sharing the same
channel. Later, the consumers will be compensated for their
sold bandwidth and earn profits. This trading scheme can
potentially satisfy the bandwidth needs of each user without
necessarily upgrading the link to all users. Thus, a win-win
solution for both consumers and ISPs.

114024 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-3574-7820
https://orcid.org/0000-0002-8366-9396
https://orcid.org/0000-0002-2332-8573
https://orcid.org/0000-0001-8475-7294
https://orcid.org/0000-0001-6698-8419

Y. E. Oktian et al.: Blockchain-Powered Bandwidth Trading on SDN-Enabled Edge Network

Despite the previously mentioned benefits, performing
such bandwidth trading comes with several challenges. From
the ISP perspective, the trading procedures must be easy-
to-implement and automated to reduce opex [1]. On the
other hand, it is well known that ISP governs the network
in a centralized way [2]. As a result, ISP has complete
control to manipulate customers’ data, and the approvals of
bandwidth selling/buying become subject to ISP decisions.
When performed maliciously, the trading can be unfair to
consumers (e.g., ISP performs censorships on consumers or
does not follow the previously agreed rules). Those condi-
tions may impose untrusted relationships from consumers
towards ISP [3]. The software-defined networking (SDN) [4]
can help ISP to automate day-to-day network processes and
indirectly reduce opex. Meanwhile, the blockchain [5] can
potentially solve the trust issues between consumers and ISP
by facilitating a verifiable and trusted collaborative platform.
Therefore, we envision that the combination of SDN and
blockchain technology can be used to solve the previously
mentioned issues of bandwidth trading.

This paper proposes a novel bandwidth trading mechanism
that leverages SDN and blockchain. First, we develop a mar-
ketplace, on top of smart contract [6], for buyers and sellers
to negotiate on bandwidth trading. Second, we use OpenFlow
messages [7] to send Flow Rules to SDN switches that will
enforce the bandwidth trading by increasing/decreasing the
traffics for buyers/sellers. Third, we design proof of trading
mechanism as a cross-checking tool. The SDN controller
can create proofs of trading provisioning from OpenFlow
messages. Meanwhile, buyers and sellers use their transac-
tions in the blockchain as proofs of bandwidth requests and
proofs of selling offers. Fourth, we present a proof of concept
implementation of our proposals and further discuss their
feasibility through system fairness, security, and performance
overhead analysis.

Technically, our research exhibits seamless integration of
off-chain and on-chain dataflow from both the SDN and
blockchain sides to realize bandwidth trading. We demon-
strate an illustrative implementation of the collaboration pro-
cess among sellers and SDN controllers to fulfill available
bandwidth demands from buyers.We also show how the proof
of trading can be used to cross-check the trading provisioning
from ISP. To our knowledge, research works in realizing
bandwidth trading schemes are almost nonexistent. There-
fore, our research can also be seen as a preliminary effort to
assess the possibility of fair and secure bandwidth trading for
both ISP and consumers.

The remainder of this paper is organized as follows.
Section II reviews the literature and introduces previous
related studies. Section III discuss the problem statement and
bandwidth trading scenarios in our paper. Section IV presents
our proposed blockchain-based bandwidth trading schemes,
while their feasibility, fairness, and security assessments are
analyzed in Section V. We then discuss several limitations
and possible improvements of our approach in Section VI.
Finally, we conclude in Section VII.

II. LITERATURE REVIEW
A. BLOCKCHAIN AND SMART CONTRACTS
Blockchain has gained traction lately because of the pop-
ularity of Bitcoin [5] as a truly decentralized peer-to-
peer cryptocurrency platform. Generally, a blockchain is an
append-only data ledger whose integrity is satisfied with
the chain of hashes in the block, and the consensus algo-
rithm guarantees its decentralization. Depending on that
consensus algorithm, we can tweak the blockchain net-
work into a public or private setting. For example, Proof-
of-work (PoW) [5] allows anyone to join the network,
while Practical Byzantine Fault Tolerance (PBFT) [8] only
allows a limited number of authenticated nodes to join the
network.

The concept of a smart contract was first introduced by
Nick Szabo [9], and it is popularized with the integration into
the blockchain by Ethereum [6]. Smart contracts allow devel-
opers to put distributed and deterministic codes in blockchain
networks, creating new concepts of decentralized applica-
tions (dapps) [10].With these smart contracts, researchers can
employ blockchain to many use cases aside from cryptocur-
rency such as decentralized identity [11], non-fungible tokens
(NFT) [12], marketplace [13], and crowdsourcing [14].

Our proposal contributes to blockchain integration into
bandwidth management in the SDN domain. To our knowl-
edge, only a limited study has been proposed in this area.
Our paper represents a preliminary attempt in this direc-
tion and widens the use case area for blockchain and smart
contracts.

B. TRADING OF NETWORK RESOURCES
There are several examples of network resource management
that are achievable via trading.

Customers can request or reserve a given amount of band-
width to be used in the future, also known as bandwidth-on-
demand services. In this case, the available bandwidth reserve
are being traded to satisfy customers’ demand such as in [15],
[16], and [17]. Besides bandwidth reserve, Chase et al. [18]
solve the resource distribution problem in cloud computing
by trading the amount required for the ISP bandwidth and the
number of virtual machines (VM) required.

Yakubu et al. [19] allow consumers to sell parts of their
bandwidth to their neighbors, those within the same radio
range. In this case, the download capacity is being traded
to serve Internet services for others. In [20], network peers
are allowed to help the streaming server in case the server
is overloaded. Unlike previous studies, the helpers’ upload
capacity is traded in this scenario.

Ding et al. [21] propose a spectrum trading to eliminate
the mismatch between the assigned capacity and the actual
traffic in Virtual Optical Network (VON). Different VONs
are allowed to trade their spectrum resource at a given period.
Similarly, Farshbafan et al. [22] also propose a spectrum trad-
ing for device-to-device communication in which spectrums
are traded as bandwidth for data transmission.

VOLUME 10, 2022 114025

Y. E. Oktian et al.: Blockchain-Powered Bandwidth Trading on SDN-Enabled Edge Network

TABLE 1. Comparisons of our proposal and previous studies in terms of
domain, what resources are traded, whether they employ blockchain and
smart contract (BC), software-defined networking (SDN), and provide
proof of trading (Proof).

Our proposal contributes to the trading of bandwidth
reserve and download capacity in the edge network, which
overlaps the works in [15] and [19].

C. BLOCKCHAIN AND SDN INTEGRATION FOR SECURE
AND RELIABLE TRADING
SDN opens programmability on the SDN controllers so that
developers can build their customized applications on top
of the network, much like how we can create dapps on the
blockchain. Due to open APIs, blockchain and SDN can be
integrated to make seamless, secure, and reliable trading by
following three fundamental principles:

1) Customers negotiate the traded resources in the smart
contract; all trading parameters are then recorded in the
blockchain.

2) SDN controllers enforce the trading policy to the
switches following the agreement previously made in
the smart contract.

3) Proof of trading will be generated from the SDN and
blockchain sides as validation proofs.

Regardless of domain area, Table 1 shows that existing
studies have not fully integrated those three principles when
trading network resources. Many of them lack one or more
items, while our framework represents a preliminary attempt
to satisfy those requirements. In a more detailed comparison,
our works overlap the works of Chen et al. [15], which
propose PayFlow, and theworks of Yakubu et al. [19]. Despite
sharing the same research problems, we argue that our pro-
posal is far superior to both studies. Table 2 summarizes our
differences.

First, PayFlow only allows SDN controllers to sell band-
width. Meanwhile, we allow not only SDN controllers but
also consumers to sell bandwidth to satisfy the demands.
Second, PayFlow does not discuss concurrencies and assumes
that only one demand request exists. It is then unclear how
their system will react when receiving multiple bandwidth
demand requests. Meanwhile, our proposal supports multi-
ple buyers/sellers/controllers to trade their bandwidth. Third,
PayFlow does not include smart contract developments. The
blockchain is only used as token transfers, while the band-
width trading provisioning is performed entirely off-chain.

FIGURE 1. An example of SDN-enabled edge networks throughout
n regions. The SDN controllers (Cn) provision inward/outward traffics in
the region, which goes through edge SDN switches (Sn) as gateways to
the core switch. The ISP allocates some finite bandwidth to each region,
depicted as red lines in the figure.

Therefore, the integrity guarantee of trading cannot be sat-
isfied in PayFlow. In contrast, we process the trading nego-
tiation on-chain via smart contracts. Fourth, Yakubu et al.
do not have any implementation on the bandwidth trading
side and only assess the feasibility from the blockchain side.
Therefore, their feasibility analysis is incomplete. Mean-
while, we leverage SDN to implement bandwidth trading
and integrate them into the blockchain to create a seam-
less bandwidth trading experience. Finally, we provide a
proof-of-trading mechanism that can be used to audit the
traded bandwidth resources. Neither works provide this
feature.

III. PRELIMINARIES
A. PROBLEM STATEMENT
We envision SDN-enabled edge networks spread out across
geographical locations in the form of ‘‘regions’’, as shown in
Figure 1. Those regional networks can be in many forms such
as residential [23], enterprise [24], or cellular [25]. Regional
administrators, through SDN controllers, allocate a finite
amount of bandwidth reserve to a region, which will then
be shared with all in-region consumers. In this case, a fixed
amount of bandwidth from the reserve will be allocated to
each consumer.

During day-to-day operations, if needed, a consumer can
buy additional bandwidth to the ISP through the SDN con-
troller. This is usually known as a ‘‘bandwidth on demand’’
service. However, because of only a limited bandwidth
reserve available, the SDN controller may not be able to
accept and provision all of the demand requests.

To alleviate this issue, our proposal allows consumers in
the same region to ‘‘sell’’ parts of their bandwidth to fulfill the
demand requests. By selling the bandwidth, we do not mean
that the consumers provide an off-channel link for buyers to
connect to the Internet and become a ‘‘re-seller’’ ISP. Instead,
by ‘‘selling’’, we mean that the consumers commit to ‘‘not
using’’ parts of their bandwidth temporarily so that the unused
bandwidth can be provisioned to fulfill the demand requests.
Sellers will then be compensated accordingly for their band-
width loss. This way, we allow consumers to trade each
others’ bandwidth so that the bandwidth demand requests
may have a higher chance of being accepted.

114026 VOLUME 10, 2022

Y. E. Oktian et al.: Blockchain-Powered Bandwidth Trading on SDN-Enabled Edge Network

TABLE 2. The detailed comparison between the proposed framework and the recent progress of trading bandwidth resources in Edge Network from
Table 1. Buy, Sell, Close, and Cancel refer to the provided bandwidth trading stages.

FIGURE 2. The bandwidth trading scenario depicting the states of current
bandwidth (left) and demand/offer requests (right) from consumers and
the SDN controller over a given period of timeslots. Pluses indicate
bandwidth demands, while minuses refer to selling offers. A, B, and C
indicate three cases of bandwidth trading.

B. TIMESLOT ALLOCATION
We design the bandwidth trading in a pre-order fashion
in which all bandwidth demands and selling offers must
be made before the actual trading time. For this reason,
we introduce a timeslot T mechanism, which denoted as
T = {T1,T2,T3, . . . ,Tn, . . . ,TN }with N is the total number
of available timeslots. One timeslot refers to one period of
time (e.g., one hour, half-hour, or 15 minutes). We present the
following simulation scenario to describe bandwidth alloca-
tion per timeslot as illustrated in Figure 2.

We assume that the total shared bandwidth in the region
is 100 Mbps. Four consumers (u1, u2, u3, u4) are in the
region; each is assigned a default 10 Mbps bandwidth to
access the Internet. Hence, the SDN controller has 60 Mbps
bandwidth available in the reserve pool by default. Through-
out this scenario, three bandwidth trading happens.
Case A on T2 (One Buyer, One Seller): u1 wants to

buy 5 Mbps of additional bandwidth, so before T2 ends, u1
makes a bandwidth demand request. Unfortunately, no other
consumers are willing to sell their bandwidth, so the SDN
controller provides 5 Mpbs of bandwidth for u1 from the
reserve. During T2, the SDN controller will temporarily
increase the bandwidth capacity of u1 from 10 to 15 Mbps,
while the reserve is reduced from 60 to 55 Mbps.
Case B on T4 (Two Buyers, Two Sellers): In this sec-

ond case, two concurrent demands exist, u1 and u2 previ-
ously requested a 5 Mbps bandwidth in T4. Then, u3 and
u4 are willing to sell parts of their bandwidth to fulfill
each demand. During T4, the SDN controller will increase
the bandwidth capacity of u1 and u2 from 10 to 15 Mbps
temporarily, while reducing the bandwidth of u3 and u4
from 10 to 5 Mbps.

Case C on T6 (One Buyer, Two Sellers): In this final sce-
nario, we show two sellers collaborating to fulfill a demand
request. Prior to T6, u3 requested a 10 Mbps bandwidth
demand. Then, u1 offered a 5Mbps bandwidth to u3’s request.
On the other hand, u2 wants to sell all bandwidth to fulfill
u3 demand. However, because a 5 Mbps offer already exists
from u1, this 10 Mbps offer cannot be processed. Instead,
u2 must give a 5 Mbps offer to fulfill the demand. During
T6, the SDN controller will increase u3’s bandwidth capacity
to 20 Mbps, while reducing the bandwidth of u1 and u2
to 5 Mbps each.
No trading: When there is no bandwidth trading, the

default values are applied in each timeslot as shown in T1, T3,
T5, and T7. Similarly, the bandwidth capacities are restored to
their default values after each trading completed as shown in
T3, T5, and T7.

C. TRADING TABLE
Based on the previously mentioned scenario, we need to
provide two items to facilitate reliable bandwidth trading.
First, the controllers must know how much bandwidth they
should provide to each consumer at each given timeslot.
Second, we must record trading information on-chain to
reap the integrity guarantee from the blockchain. However,
because we expect N ≈ ∞, maintaining T on-chain become
costly. Instead of storing the amount of bandwidth that each
consumer has at each timeslot (left side of Figure 2), we store
the demand/offer requests at each timeslot (right side of
Figure 2). This way, when there is no demand/offer, we do
not store any value on the blockchain, resulting in zero values
and saving many costs (Ethereum initiates integers as zeros
by default). The amount of bandwidth the controller must
provide to each consumer can still be calculated by adding or
subtracting the current consumer bandwidth with the demand
or offer at each timeslot.

IV. SYSTEM MODEL
Our proposed framework is shown in Figure 3, and Table 3
presents the description of important notations and variables
in this paper.

A. REGISTRATION
We describe all preparations that must be made before per-
forming the bandwidth trading.

1) HEADQUARTER SETUP
During network startup, headquarter administrators h first
run the web server and the blockchain network. They then

VOLUME 10, 2022 114027

Y. E. Oktian et al.: Blockchain-Powered Bandwidth Trading on SDN-Enabled Edge Network

FIGURE 3. The architecture of BLOCKBAND, which includes three main smart contracts. Headquarter Smart Contract (HSC) handles the registration of
consumers and network devices, Regional Smart Contract (RSC) performs day-to-day operations such as bandwidth reserve allocation and bandwidth
trading, and Token Smart Contract (TSC) manages the token distributions and payment-related services.

TABLE 3. List of notations used in the paper.

create a new private SKh and public key pair PKh along with
a blockchain address αh. Once created, they can deploy the
Headquarter Smart Contract HSC . This action will mark αh
as the owner of HSC and indirectly register h’s identity in the
blockchain.

The headquarter admins then begin adding SDN con-
trollers c and SDN switches s that they have to HSC . Similar
to h’s registration, h first creates SKc, PKc, αc, SKs, PKs,

and αs. They then only upload αc and αs to HSC , while
keeping the rest in the secure storage of each entity.

Users u interested in the Internet service that h provide can
subscribe to an Internet access plan to h’s web server. They
must first creates SKu, PKu and αu. After that, they send αu
to the web server, which will be relayed to HSC .

2) REGIONAL SETUP
When creating a new region, regional administrators r first
create SKr ,PKr , andαr . They then deploy the Regional Smart
Contract RSC in the blockchain network. This deployment
will indirectly assign αr as the owner of RSC . After that,
r report this newly created RSC to the headquarter by upload-
ing αRSC to HSC . Thus, we have a map between HSC and all
deployed RSC .
Regional admins can set the SDN controller αc and switch

αs that will be responsible to manage the region in RSC . Once
configured, they also need to update the operational location
of the controller and switch in HSC . This way, anyone can
know where the controller and switch are currently provi-
sioned. For simplicity, we assume that only one controller and
switch can be assigned to one region at any time.

During the network startup, r configure u’s network device
to be workable in their region by allowing their MAC address
µu to use the Internet. For residential and enterprise cases,
r record µu of the modem placed in the users’ domains.
Meanwhile, r log the µu of the users’ smartphones for the
cellular case. Those µu are stored in c’s local database,
and tied to their corresponding αu. After that, r officially
assign αu to the region by saving their information in RSC .

114028 VOLUME 10, 2022

Y. E. Oktian et al.: Blockchain-Powered Bandwidth Trading on SDN-Enabled Edge Network

Algorithm 1 Accepting Demand Procedure in RSC

Input: ωbuyb , Tn, αb, tnow
Output: d
1: if tnow > Tn then abort end if
2: if ωbuyb + ωb > ω

cap
b then abort end if

3: if Fb→RSC (ω
buy
b × ρ

buy) then
4: set g = AcceptingOffer
5: d = ωbuyb ‖ Tn ‖ g ‖ αb
6: save d in D if and only if d /∈ D, where D is a list of

demands, D = {1, 2, 3, . . . , d, . . . ,D} with D as the
total number of demands.

7: end if

Then, r also update the location of consumer to HSC . One
consumer can only be assigned to one region at any given
time.

3) BANDWIDTH RESERVE ALLOCATION
Regional admins initially set the bandwidth reserve ωr cur-
rently available in RSC . This ωr value will be updated over
time as consumers enter or exit the region.

When r add new user αu in RSC , r also assign the con-
sumable bandwidth for that user ωu. Some amount of band-
width then must be extracted from the bandwidth reserve
pool to provision this user. In particular, RSC update ωr as
ωr ← ωr − ωu. If the resulting ωr < 0, we should reject
u’s assignment to this region because we cannot facilitate
enough bandwidth for u. Furthermore, the assigned consumer
bandwidth ωu should not exceed the capacity of the physical
link ωcapu that the consumer has.
In contrast, if r removes existing user αu in RSC , the

bandwidth reserve previously assigned to that user is restored
to the pool. Specifically, RSC update ωr as ωr ← ωr + ωu.

B. BANDWIDTH TRADING
We describe the bandwidth trading protocol that is performed
in each region. The parameters and algorithms presented here
are given as basic procedures. It can be further modified to
match the use cases in each region when necessary.

1) STAGES OF TRADING
The overall trading is divided into five stages. First, con-
sumers (acting as buyers) request a bandwidth demand. Other
in-region consumers (willing to sell parts of their band-
width) compete to fulfill the demand. The demand is con-
sidered valid when it finds enough selling offers to match
the requested bandwidth. Otherwise, the demand will be can-
celed. Finally, the controller starts provisioning the trading
of valid demands and then submits proof of trading when it
ends.

Stage 1: Accepting Demand Stage
Buyers b initiate bandwidth demand requests to RSC

by specifying how much bandwidth to buy ωbuyb and the
timeslot Tn, indicating what time they need the demand. The
rest of the procedures is summarized in Algorithm 1.

Algorithm 2 Accepting Offer Procedure in RSC

Input: ωselll , ωsellr , d , αl , αc, tnow
Output: o
1: if d /∈ D then abort end if
2: if tnow > Tn − tend then abort end if
3: for l do
4: if ωselll > ωl then abort end if
5: if (

∑
o∈O ω

sell
l +

∑
o∈O ω

sell
r) + ωselll > ω

buy
b then

abort end if
6: o = ωselll ‖ Tn ‖ αb ‖ αl
7: end for
8: for c do
9: if tnow < tstart then abort end if

10: if ωsellr > ωr then abort end if
11: if (

∑
o∈O ω

sell
l +

∑
o∈O ω

sell
r) + ωsellr > ω

buy
b then

abort end if
12: o = ωsellr ‖ Tn ‖ αb ‖ αc
13: end for
14: save o in O if and only if o /∈ O, where O is a list of

offers, O = {1, 2, 3, . . . , o, . . . ,O} with O as the total
number of offers.

15: if ωbuyb =
∑

o∈O ω
sell
l +

∑
o∈O ω

sell
r then update g =

Provisioning end if

Buyers must order the demand ahead of time, so RSC
makes sure that the request is made before the
scheduled Tn (line 1). tnow is the current timestamp. RSC also
validates if buyers request too much bandwidth; they can-
not request bandwidth that exceeds the bandwidth capac-
ity of their physical link ωcapb (line 2). Otherwise, exceed-
ing bandwidth will be wasted. All invalid requests will be
rejected.

Buyers must first make a deposit before RSC can accept
their request (line 3). This way, we can ensure buyers have
money to pay the sellers. The deposit amount depends on the
buying price ρbuy, which is rated per Kbps. More bandwidth
to buy means more deposit is needed. RSC then create a stage
indicator g and set it to AcceptingOffer stage. After that,
it is saved together with ωbuyb , Tn, and αb to the blockchain
(line 4-7).

Stage 2: Accepting Offer Stage
Sellers l and SDN controllers c can all simultaneously

give selling offers to a given demand d . For sellers, they
can mention how much bandwidth to sell ωselll to RSC . For
controller, c specify bandwidth reserve to sell ωsellr to RSC .
The rest of the procedures is summarized in Algorithm 2.
RSC performs validations on the selling offer. First,

RSC ensures that the demand exists (line 1). Request
to non-existing demand is rejected. Second, RSC checks
whether the offer is made within a valid time offer (line 2
and 9). All offers must be processed before a time limit tend .
Furthermore, our policy prioritizes offers from sellers rather
than the controller. We give more chances (time window)

VOLUME 10, 2022 114029

Y. E. Oktian et al.: Blockchain-Powered Bandwidth Trading on SDN-Enabled Edge Network

Algorithm 3 Provisioning Procedure in c
Input: D, O, tnow, Tn
Output: FLOW-MODmessages
1: Before Tn (at Tn − tend ≤ tnow < Tn):
2: form D′, all d ∈ D that is scheduled at Tn
3: form O′, all o ∈ O that satisfy d ′ ∈ D′
4: On Tn (at Tn ≤ tnow < Tn+1):
5: for d ′ ∈ D′ do
6: α′b, ω

buy′

b ← d ′

7: get µb, ωb from local database using α′b
8: create Mb, FLOW-MOD messages with ENQUEUE

for µb to increase ωb← ωb + ω
buy′

b
9: end for

10: for o′ ∈ O′ do
11: α′l, ω

sell′
l , ωsell

′

r ← o′

12: ωr ← ωr − ω
sell′
r

13: get µl, ωl from local database using α′l
14: createMl ,FLOW-MODmessageswithENQUEUE for

µl to reduce ωl ← ωl − ω
sell′
l

15: end for
16: send Mb andMl to s
17: After Tn (tnow ≥ Tn+1):
18: for d ′ ∈ D′ do
19: α′b, ω

buy′

b ← d ′

20: get µb, ωb from local database using α′b
21: create M ′b, FLOW-MOD messages with ENQUEUE

for µb to decrease ωb← ωb − ω
buy′

b
22: end for
23: for o′ ∈ O′ do
24: α′l, ω

sell′
l , ωsell

′

r ← o′

25: ωr ← ωr + ω
sell′
r

26: get µl, ωl from local database using α′l
27: create M ′l , FLOW-MOD messages with ENQUEUE

for µl to increase ωl ← ωl + ω
sell′
l

28: end for
29: send M ′b andM

′
l to s

for sellers to give an offer at any time as long as it is not
expired, while the controller can only give an offer after some
delay tstart . Third, RSC ensures the bandwidth to sell does not
exceed the sellers or reserve capacity (line 4 and 10). Fourth,
several offers may contribute to a given demand, RSC must
confirm that all offers from ωselll or ωsellr do not exceed the
demand (line 5 and 11).
RSC then saves ωselll or ωsellr together with Tn, αb, and

(αl or αc) to the blockchain (line 6, 12, and 14). Finally, when
all offers fulfil the demand, RSC set g to Provisioning
stage (line 15).

Stage 3: Provisioning Stage
The provisioning stage is performed off-chain and divided

into three parts: before, on, and after Tn as summarized
in Algorithm 3.

Algorithm 4 Closing Procedure in RSC
Input: p, d , tnow
Output: updated d
1: if tnow < Tn+1 then abort end if
2: form O′, all o ∈ O that satisfied d
3: for o′ ∈ O′ do
4: ωsell

′

l , ωsell
′

r ← o′

5: FRSC→l(ωsell
′

l × ρsell)
6: FRSC→c(ωsell

′

r × ρsell)
7: end for
8: g← d
9: update g = Closed

10: update d ← d ‖ p

Algorithm 5 Canceling Procedure in RSC
Input: d , tnow
Output: updated d
1: if tnow < Tn then abort end if
2: ω

buy
b , g← d

3: if g 6= AcceptingOffer then abort end if
4: if FRSC→b(ω

buy
b × ρ

buy) then
5: update g = Canceled
6: end if

Before trading, the controllers get all demands scheduled
at Tn (line 2). They also gather all corresponding offers that
satisfy those demands (line 3).

During the trading period, the controllers retrieve con-
sumers’MAC addressµ by querying the local database based
on given α (line 7, 13, 20, and 26). The controllers then form
FLOW-MODmessages to increase buyers’ bandwidth accord-
ing to howmuch they buy (line 5-9). Similarly, they also form
FLOW-MOD messages to decrease sellers’ bandwidth based
on how much they sell (line 10-15). Those messages are then
delivered to the corresponding switches where the consumers
are located (line 16). If the controllers contribute to selling
demands, controllers must also reduce the bandwidth reserve
based on how much they sell (line 12).

Once the trading duration is over, the controllers form
FLOW-MODmessages to revert the bandwidth state of buyers
and sellers (line 18-29). The controller reset the bandwidth
reserve to the original values (line 25).

Stage 4: Closing Stage
After the trading completes, the controllers must provide

proof p of its provisioning and close the demands. The proofs
are formed off-chain using hashes of FLOW-REMOVED mes-
sages related to the previously transmitted FLOW-MOD mes-
sages in the previous stage. p is then included in the closing
request submitted to RSC . The rest of the procedure is sum-
marized in Algorithm 4.
RSC validates whether the request is made in the valid time

window after the trading ends; premature closing requests
are rejected (line 1). After that, RSC gets all previous offers

114030 VOLUME 10, 2022

Y. E. Oktian et al.: Blockchain-Powered Bandwidth Trading on SDN-Enabled Edge Network

that satisfied the to-be-closed demand and then transfers the
rewards to their submitters (can be consumers or controllers).
The rewards are calculated based on the selling price per
Kbps ρsell . The more bandwidth the sellers sold, the
more rewards they received (line 2-7). After a successful
reward transfer, RSC officially sets the demand stage as
Closed and saves the submitted proofs to the blockchain
(line 8-10).

Stage 5: Canceling Stage
When demands cannot get enough offers during the offer-

ingwindow, the controllers can cancel those demands inRSC ,
as shown in Algorithm 5. The canceling request must bemade
within the valid time window (line 1) and in the right stage
(line 3). At this time, the stage of demand can be in either
Provisioning or AcceptingOffer. The former indi-
cates that offers successfully fulfill a demand, while the latter
indicates otherwise. Only unsatisfied demands can be can-
celed. If the request is valid, RSC returns the buyers’ deposit
(line 4) and sets the stage for this demand to Canceled
(line 5).

2) INCENTIVES
We develop Token Smart Contract TSC in the form of ERC20
smart contract [26] to facilitate the incentives for bandwidth
trading. Only one instance of TSC will be deployed in the
blockchain network, and its usage is shared among RSC in
all regions.

Consumers can mint the token by exchanging liquid
assets such as US dollars or other valuable currencies in
the ISP. The token then can be used to purchase various
ISP-related services, for example, Internet service bills, band-
width demand, public IP, cloud storage, and hosting. Con-
sumers can also burn the token to obtain the liquid assets
back.

During the trading, consumers must pay a deposit based on
the buying price rate ρbuy. Meanwhile, sellers obtain rewards
for their offers based on the selling price rate ρsell . Ideally, the
ISP will configure ρbuy > ρsell to earn profits. The bigger the
gap, the more tokens the ISP will get. Furthermore, the more
bandwidth (per Kbps) is traded, the more profits the ISP will
earn. The total rewards that ISP can get for a given demand
can be calculated as follows.

R =

(
ω
buy
b × ρ

buy
−

∑
o′∈O′

ωselll × ρ
sell

)
+ ωsellr × ρ

sell

(1)

O′ is the list of consumer offers that satisfy the given demand.
Note that ISP can get more profits if ISP also offers to sell
bandwidth reserve ωsellr in the given demand.

C. PROOF OF TRADING
The proofs of bandwidth trading provisioning are collected
off-chain and on-chain in the form of FLOW-REMOVEDmes-
sages for the former case and a list of demands/offers for the
latter case.

TABLE 4. List of metadata stored on-chain.

1) OFF-CHAIN PROOF
Proving that controllers have provisioned trading correctly:
When receivingFLOW-MODmessages from controllers, SDN
switches create new Flow Table entries (Flow Rules) and
begin updating their statistics whenever they route packets
using those rules. Those statistics are later sent back to
the controllers when the rules expire via FLOW-REMOVED
messages. From these reported messages, we can check
whether the controller previously sent FLOW-MOD messages
with valid parameters (e.g., MAC address, Queue value,
timeout duration) correspond to the bandwidth demand/offer
requests.

The switch must include the current timestamp texpire1 to
record the time when the Flow Rule expires and sign it
together with the FLOW-REMOVED messageM1 as follows.

C1 = SIGNSKs (M1 ‖ t
expire
1)

X1 = C1 ‖ M1 ‖ t
expire
1 (2)

The switch then sends X1 to the controllers.
The expiry timestamp can be used to estimate when

the Flow Rule was inserted by subtracting texpire1 with
HARD-TIMEOUT duration

tstart1 ≈ texpire1 − HARD-TIMEOUT (3)

The trading is considered valid if |tstart1 − Tn| ≈ 0 , with
error tolerance level in seconds. A smaller gap indicates that
the FLOW-MOD messages are sent right after the trading
start, which is the ideal case. The difference cannot be zero
because we must consider the network delay for transmitting
FLOW-MOD messages from controllers to switches and the
asynchronous time between the switch’s clock and the con-
trollers’ clock.

The controllers may receive several FLOW-REMOVED
messages for one trading (e.g., if we have multiple sellers for
one demand). Once all expected messages are received, the
controllers hash them together.

p = H (X1 ‖ X2 ‖ X3 ‖ . . . ‖ XP) (4)

X1,X2,X3 refers to the first three FLOW-REMOVED mes-
sages. P is the total number of received messages. The con-
trollers must save these messages in a secure permanent
storage off-chain. They will be used to prove their behaviors
when challenged by an untrusted party in the future. Mean-
while, the hash p is submitted to RSC during the Closing
stage of bandwidth trading.

VOLUME 10, 2022 114031

Y. E. Oktian et al.: Blockchain-Powered Bandwidth Trading on SDN-Enabled Edge Network

FIGURE 4. The implementation of BLOCKBAND in our testbed.

2) ON-CHAIN PROOF
Proving that trading interactions happen: We can leverage
the on-chain metadata in the smart contracts (c.f., Table 4)
to prove that trading interaction happens between buyers,
sellers, and controllers.

First of all, we make sure that entities are registered.
Second, we verify that they reside in the same region by
querying the location mapping. Third, we can check the
bandwidth information of involved entities to spot abnormal-
ities, for example, buying or selling excessive bandwidth.
Fourth, we can check the trading logs from the lists of
demands and offers to see who initiates the demand request,
who the sellers are, howmuch bandwidth they buy/sell, when
the trading occurs, and what is the hash p to prove the
FLOW-REMOVEDmessages. Finally, we validate whether the
rewards have been distributed correctly.

Because sending data to the smart contracts requires
senders to sign the transactions, once recorded in the
blockchain, each involved party cannot repudiate their con-
tributions to the trading.

3) COMPLEMENTARY PROOFS
Proving that consumers exist in the region: In daily network
operational, u’s Internet access may trigger PACKET-IN
messages from s. Inside those messages, µu will be recorded,
and c can then extract αu from µu (recall that the mapping
between αu and µu is stored in the local database during
the user assignment). After that, c can look up the policy
in RSC , whether to allow or reject Internet access for αu. This
way, only authenticated consumers can use services in the
region.
Proving off-chain communications: All entities can

leverage their registered address in HSC to authenticate
themselves off-chain by signing particular messages M
with the associated secret key. For example, Sowner =
SIGNSKowner (M). The recipient can verify if the sender is truly
owner by making sure that the resulting signature Sowner
is valid, which is VERαowner (M , Sowner) equals True. This
way, the integrity of the off-chain communications can be
preserved, and we also know that the off-chain sender is the
same entity as the one on the on-chain.

TABLE 5. The sizes of all deployed smart contracts in BLOCKBAND.
We assume the smart contract size limit is 24 KB.

V. EXPERIMENTAL RESULTS
Figure 4 shows BLOCKBAND’s software architecture operat-
ing in one region. The SDN switch communicates with the
SDN controller through the OpenFlow protocol. Meanwhile,
the SDN controller accesses the smart contracts by send-
ing transactions (Tx) to the Ethereum blockchain network.
The experiment is performed in hardware with the following
specification: Intel Core i7-10700K CPU @ 3.80 GHz and
Samsung DIMM@ 2667MHz RAM.

A. ON-CHAIN EVALUATION
We first evaluate our smart contract implementations as one
way to analyze blockchain-related performance.
Setup: We build a docker container utilizing 1 core of CPU

and 1 GB of RAM to run Ganache [27], a simulated local
Ethereum testbed. The smart contract is written in Solid-
ity language and is deployed to the Ganache using Truffle
JS [28]. We divide the implementation of HSC and RSC into
multiple child smart contracts for (i) improving code readabil-
ity, (ii) reducing byte size per contract, and (iii) allowing us to
upgrade the contract when necessary. The list of all deployed
contracts is shown in Table 5.

1) CONTRACT SIZE
Ethereum network prohibits developers from deploying smart
contracts beyond 24 KB [29]. Therefore, a feasible contract
must stay below that bound. Table 5 shows that all of our
contracts are within that boundary and, therefore, should be
possible to be deployed in the Ethereum network. Interfaces
cannot have implemented methods, so they do not affect
contract size, resulting in zero values.

2) GAS CONSUMPTION
All Ethereum smart contract executions that modify the
blockchain network state are subject to a unit called ‘‘gas’’.
The more complex the smart contract methods become, the
more gas is required to execute them. Table 6 shows gas
consumptions of all writable methods in our proposal. Read
functions are free and do not require gas; hence, we do not
include them in the list.

114032 VOLUME 10, 2022

Y. E. Oktian et al.: Blockchain-Powered Bandwidth Trading on SDN-Enabled Edge Network

TABLE 6. List of writable smart contract methods and their gas consumption in BLOCKBAND. We assume the block limit of 30 million gas. The estimated
throughput in transactions per second (TPS) is calculated based on the block interval in Mainnet, Kovan, and Klaytn networks.

VOLUME 10, 2022 114033

Y. E. Oktian et al.: Blockchain-Powered Bandwidth Trading on SDN-Enabled Edge Network

As shown in the table, all our implemented methods are
below the Ethereum gas limit standard of 30 million per
block [30]. This indicates that running them in Ethereum
networks is feasible. The rest of the gas consumption can then
be analyzed case by case as follows.
Case I and II: The contract deployment cases are expected

to be the most expensive of all cases. During deploy-
ment, we need to store the bytes of smart contracts in the
blockchain. Storing data in the blockchain is the smart con-
tract’s most expensive operation. From Table 5, we can see
that RSC implementation has more bytes thanHSC and TSC .
Consequently, RSC consumes a lot of gas when deployed.
The Storage and Manager contracts are the child contracts
for HSC and RSC . When deploying child contracts, we must
link them to the main contract using the SetXStorage(·) and
SetXManager(·) methods; replace X with the name of child
contracts. These additional method calls increase the overall
gas usage during the initiation cases.
Case III, IV, and V: The gas consumptions for registering

controllers and switches produce a small gap since they per-
form similar tasks: adding their addresses in the contract and
setting their respective operational locations. On the contrary,
consumer registrations take more gas because we include
additional processing such as minting the tokens (used later
as deposits for requesting bandwidth demands) and storing
the bandwidth information (e.g., bandwidth capacity link and
eligible bandwidth that the consumer can use in the region).
Case VI, VII and VIII: Buying a bandwidth demand gen-

erates a considerable amount of gas because we must save
the request log in the blockchain for auditing. Similarly,
consumers and controllers also store their selling information
in the contract. Those savings require some amount of gas
usage.

Selling scenarios produces a marginally lower gas con-
sumption than buying cases, with an 8% difference in selling
consumer bandwidth cases and a 16% gap in selling band-
width reserve cases. The latter is slightly cheaper than the
former because we only have one controller per region while
having multiple consumers per region. Therefore, we use
arrays to track data formany consumers. Implementing arrays
result in more gas usage.

Finally, it is also worth noting that buyers and sellers
consume a slightly similar amount of total gas usage when
buying and selling bandwidth. This indicates an excellent
balance, where no party should feel at a disadvantage over
the others because they all contribute about the same amount
of work on-chain.
Case IX and X: Closing bandwidth trading includes storing

a 32-byte hash proof of the FlOW-REMOVEDmessages to the
smart contract, which results in more gas usage compared to
the canceling scenario.

3) TRANSACTION THROUGHPUT
The blockchain throughput can be calculated as how many
transactions the network can process per second (TPS). This
metric depends on two factors: (i) how many transactions can

be included in the block, which corresponds to the gas limit
per block glimit (in the Ethereum case), and (ii) how long it
takes to generate one block (a.k.a., block interval binterval).
With the results of the gas usage gusage per method from our
experiments, we can estimate the projected TPS using the
following formula

tps = (glimit/gusage)/binterval (5)

Block intervals vary among different blockchain con-
sensus algorithms. We consider three networks to measure
the throughput: Mainnet (Ethereum main network using
PoW [31]), Kovan Testnet (Ethereum test network using
PoA [32]), and Klaytn (private Ethereum network using
PBFT [8]). Mainnet process one block every 13 seconds [33],
Kovan Testnet can do it in four seconds [34], while Klaytn
can form a block within a second [35]. The lower the block
interval, the higher the throughput becomes. We summarize
the throughput results in Table 6. We assume that one block
only contains transactions from the same methods.

The initiation cases (Case I and II) are very slow due
to the enormous gas required to process those deployment
methods. Fortunately, those initiations only happen once in
a lifetime. Therefore, even the slowest value (i.e., 0.25 TPS
value in Case II) is still acceptable; we can still process it in
about 4 minutes. The registration cases (Case III to V) are
relatively more frequent than initiation cases, but it happens
only once per registered instance. After all required entities
are registered, calls to these methods are reduced drastically.
In contrast, we will frequently execute the bandwidth trading
operations (Case VI to X). Therefore, they need to be exe-
cuted as fast as possible.

We employed some restrictions in the bandwidth trading
protocol to limit the possibility of entities abusing the system
by submitting too many requests. First, one buyer can only
request a demand once per timeslot.With a one-hour timeslot,
we can provision at most 36,000 user requests per timeslot
using Mainnet (assuming all requests are buying requests).
This corresponds to at most 125,000 and 500,000 requests in
Kovan and Klaytn, respectively.

Second, one seller can only offer a sale once per demand.
Furthermore, consumers and controllers can sell only a finite
amount of bandwidth depending on their current bandwidth
capacity. Once they sell all of their bandwidth, they cannot
make more offers; thus, flooding the network with selling
requests is impossible. Assuming that one seller satisfies one
demand request, we can provision at most 42,000 selling
requests in a given timeslot for Mainnet, which corresponds
to 136,000 and 545,000 requests for Kovan and Klaytn.

Third, the closing and canceling of bandwidth only happen
once per demand. Therefore, these scenarios share the same
arguments as in the buying case. We can provision at most
51,000 closing and 75,000 canceling of demand in a given
timeslot for Mainnet, with 165,000 and 243,000 for Kovan,
663,000, and 975,000 for Klaytn.

Moreover, the fact that we process the trading in a ‘‘pre-
order’’ fashion further alleviates the expected throughput

114034 VOLUME 10, 2022

Y. E. Oktian et al.: Blockchain-Powered Bandwidth Trading on SDN-Enabled Edge Network

FIGURE 5. The processing delay of performing bandwidth trading in buy,
sell, close, and cancel scenarios when implemented as a decentralized
application (dapp), centralized application with ECDSA signature
(capp-sig), and centralized application without signature (capp-nosig).

burden during peak hours. For example, many users are
expected to request bandwidth during peak hours. How-
ever, because buyers must pre-order the demand, the buying
request to the desired demand must be performed before the
peak hours. Similarly, the selling offer also must be made
beforehand. Therefore, the trading requests should spread in
non-peak hours instead of being saturated in peak hours.

In production cases, transactions in one block may origi-
nate from multiple methods. Therefore, we should consider
the given throughput from Table 6 as upper bound values.
The lower bound values are zero because the inclusion of the
submitted transactions to the block is subject to the miner’s
decision. If the miner is unwilling to include the transaction
in the block (e.g., censorship), then our method will never be
executed.

4) PROCESSING DELAYS PER STAGE
Setup: We build a docker container using 1 CPU and 1 GB
of RAM to implement our bandwidth trading applications.
Specifically, we develop a decentralized application (dapp)
and centralized applications (capp) for comparisons; they
are all implemented in Node JS. The dapp is connected
to the Ganache network using Web3 JS [36]. Meanwhile,
we use Express JS [37] to implement the conventional REST
API-based server for capp. Because client requests in dapp
are submitted to the blockchain network in the form of signed
transactions, we build a digital signature variant of capp as
a comparison to further analyze the overhead of our dapp.
The signature in capp is implemented using the same Web3
JS library as in dapp. After that, we run procedures for
buyers, sellers, or SDN controllers to request the buy, sell,
close, or cancel operations to our dapp and capp. We run
our simulations for 50 iterations and measure the processing
delay for each scenario as shown in Figure 5.
Results: The processing delays of centralized applications

without any signature (capp-nosig) become our basis for com-
parisons. They represent how we usually build a web-based
application in a centralized environment. Adding a digital
signature to capp increases the delay by up to 2.7× higher

on average, while the dapp implementation slows the process
even more by up to 8× slower on average compared to capp.
While dapp is the slowest among all, it is the most secure

implementation with the highest integrity. Trading requests
in dapp must be made through signed transactions. After-
ward, the blockchain nodes verify the transactions before
submitting blocks to the network. Once submitted, they must
wait for the Ethereum Virtual Machine (EVM) to process the
transactions and wait for the block consensus before sending
responses to clients confirming that the trading has been
accepted. Those procedures contribute to the high integrity
of dapp implementation while also increasing the processing
delay.

It is worth noting that the EVM process and consensus
take about 5× more delays in our experiments. Thus, we can
confirm that they are the main bottleneck in our system.
Furthermore, all of our experiments are performed locally in
a simulated testbed. Hence, they produce the ideal scenarios.
In production cases, the real-world network latency can
further increase the processing delay.

B. OFF-CHAIN EVALUATION
In this second part of our evaluation, we discuss parts of our
proposal that does not relate to the blockchain.

1) PROVISIONING OF BANDWIDTH TRADING IN SDN
TESTBED
Setup:We build a virtual machine (VM)with the specification
of 4 cores of CPU and 4 GB of RAM to run Mininet [38]
as our SDN testbed. The Open vSwitch is used as an SDN
switch, and we leverage ovs-vsctl [39] to configure rate
limiting on the switch to simulate our bandwidth trading.
Furthermore, we create two applications on POX [40] SDN
controller. One is to implement a minimal Layer 2 switching
(L2 Switch), which will reactively install Flow Rules with
ENQUEUE property to limit default traffic. Another appli-
cation (BLOCKBAND) is used to implement bandwidth trad-
ing, which installs Flow Rules proactively according to the
demand/offer lists.

We simulate scenarios from Figure 2 in our testbed by
arranging four hosts (i.e., Consumer 1-4) connected to a
single edge switch (because they should exist in the same
region). We then build a dummy host to run iperf [41]
from outside the region towards all consumers to moni-
tor their bandwidth capacity. We run the experiment for
700 seconds with one timeslot equal to 100 seconds, resulting
in 7 timeslots.
Results: Figure 6 shows the bandwidth measurement from

iperf for each hosts every 10 seconds. We confirm that our
deployed applications can dynamically provision bandwidth
trading. Furthermore, the average bandwidth throughput on
each timeslot (c.f. Table 7) shows that our approach can adjust
the bandwidth capacity for each consumer according to the
demands/offers list. All three bandwidth trading scenarios
fromFigure 2 can be performed correctly.While it is expected
that the iperf bandwidth measurements fluctuates at some

VOLUME 10, 2022 114035

Y. E. Oktian et al.: Blockchain-Powered Bandwidth Trading on SDN-Enabled Edge Network

FIGURE 6. The iperf throughput results based on the trading scenarios
in Figure 2. The timeslot is set to 100 seconds (s).

TABLE 7. The average iperf throughput measurements (in bit per
seconds) per timeslot Tn from Figure 6, following the scenarios in
Figure 2. Bold numbers indicate the results of bandwidth trading.

point, the trends from Figure 6 is close enough to represent
scenarios in Figure 2.

It is also worth noting that we perform the bandwidth
trading seamlessly, and there are no packet drops in the
iperf traffics throughout our testings. We achieve this con-
dition by requiring L2 Switch applications to first install
default 10 Mbps Flow Rules with a lower priority. Mean-
while, BLOCKBAND applications later install higher priority
buying/selling Flow Rules according to the demands/offers
list. This way, we make sure that the switch always has
FlowRules to route iperf traffics and prevent PACKET-IN
generation while testing (except for the first packet of iperf
traffics at the beginning). This feature highlights that our
proposal can be performed without interrupting any running
applications from the consumers’ end.

2) ADDITIONAL OVERHEAD IN SDN SWITCH
Setup: The vanilla Open vSwitch does not have modules
to perform cryptography and timestamp clock. Therefore,
for rapid prototyping, instead of modifying the switch code
base, we develop an internal TCP proxy server that intercepts
the messages coming from Open vSwitch and relays them
to the SDN controller. The proxy must sign PACKET-IN,
FLOW-REMOVED messages, as well as QoS configuration
messages from ovs-vsctl for proofs of trading. The proxy
also adds a timestamp to the original message. We run our
simulation for 100 iterations in three scenarios: (i) no signa-
ture in which we only apply timestamp, (ii) HMAC signa-
ture + timestamp, and (iii) ECDSA signature + timestamp.
Figure 7 summarizes our results.

FIGURE 7. The expected additional overhead in SDN switch when
performing PACKET-IN, FLOW-REMOVED, and ovs-vsctl processes to
generate Proof of Trading. The results are measured in three scenarios:
without signature (no-sig), using HMAC, or ECDSA algorithm.

Results: It is evident that performing cryptographic signa-
tures on transmitted OpenFlow or Open vSwitch messages
improves the messages’ integrity but reduces the overall
performance. From our test, we can measure the perfor-
mance drop of up to 17% if using HMAC and 56% when
using the ECDSA algorithm. ECDSA provides a stronger
non-repudiation guarantee than HMAC with the cost of more
complex processing. The choice of which algorithm to pick
can differ depending on each use case, and our result can give
insights into such trade-offs.

While the performance overhead seems high, it is essen-
tial to point out that PACKET-IN, FLOW-REMOVED, and
ovs-vsctl messages are generated only for short dura-
tions at a given timeslot. The PACKET-IN is generated only
at the beginning of the timeslot for authentication, while
FLOW-REMOVED and ovs-vsctl are used only a few
times at the closing stages. Therefore, we argue that those
overheads should not heavily impact the switch’s day-to-day
operations.

C. SECURITY AND FAIRNESS
In the final part of our evaluation, we assess the security and
fairness of our bandwidth trading.
Assumptions: We assume buyers, sellers, and SDN con-

trollers can lie about their info by providing fake inputs to
the system when performing bandwidth trading. They can
also repudiate their sent messages and deny their involvement
in the trading. Furthermore, we assume that the blockchain
network is always secure such that there is no 51% or eclipse
attack on the network and that the smart contract execution is
always deterministic.

The followings are several design decisions made in the
paper to guarantee the security and fairness of our proposed
bandwidth trading.
Sellers cannot fabricate fake bandwidth information. For

example, sellers cannot create fake selling requests to
sell 10 Mbps if they only own 5 Mbps. This is because all of
the consumers’ available bandwidth is recorded in the smart

114036 VOLUME 10, 2022

Y. E. Oktian et al.: Blockchain-Powered Bandwidth Trading on SDN-Enabled Edge Network

contract, and the contract will accept or reject selling offers
according to recorded data.
Buyers cannot request bandwidth demand without

deposits. We mandate that all buyers deposit their tokens
during the demand requests to prove that they have the
money to reward sellers. This deposit will be locked in the
smart contract and cannot be spent for other uses outside
bandwidth tradings. This way, we can guarantee that we will
have enough funds to compensate the sellers fairly.
Sellers and buyers cannot cancel their requests. We made

our bandwidth trading irrevocable, meaning consumers can-
not cancel their demands/offers once submitted to the
blockchain. This policy ensures that consumers cannot cre-
ate ‘‘fake promises’’ by temporarily committing to buy-
ing/selling bandwidth and canceling their requests near the
trading deadline. Such actions will be unfair to other con-
sumers and may prevent demands and offers from reaching
equilibrium if abused by adversaries.
SDN controllers must submit proof of trading to close the

demands and get incentives. SDN controllers must reveal the
hash of FLOW-REMOVED messages from SDN switches to
prove that they have provisioned the trading correctly. The
controllers can retrieve the trading incentives only after the
proof is submitted. This way, we enforce accountability to the
SDN controllers. If we find SDN controller behavior frauds,
we can use the previously submitted proof of trading to judge
the controllers.
All of the trading interactions must be negotiated on-chain.

Aside from the bandwidth provisioning through OpenFlow
messages, all other trading operations must be performed
on-chain. All demands and offers are made through signed
blockchain transactions. Thus, participants cannot repudiate
their involvement in the tradings. Furthermore, the smart
contract runs the trading settlement through the EVM, which
has a high integrity factor such that no party can cen-
sor/manipulate the trading process.

VI. DISCUSSIONS AND FUTURE WORKS
This section discusses the limitations of our proposal, which
also indicate the area of improvement for future works.

A. DATA LEAKAGE
While blockchain maintains privacy-preserving property by
anonymizing all involved entities, blockchain nodes may still
gain useful insights from the publicly stored data. In our
case, all information from Table 4 will be visible to nodes.
They can then get an approximation of how many con-
sumers are in a region, how much bandwidth is reserved for
spotting rich/poor neighborhoods, and even deduce whether
consumers are currently at home/office by inspecting the
demand requests. Solutions to this problem include applying
a permissioned blockchain that can restrict access to the
blockchain network only to authorized entities. Therefore,
adversaries will not be included as blockchain nodes. Other
solutions include improving the privacy-preserving aspect of

the blockchain network itself, which is considered an ongoing
research agenda.

B. LOG CAN BE MISSING WHEN SDN SWITCHES FAIL
If the switches fail during the provisioning, they may lose
Flow Table states. Therefore, FLOW-REMOVED messages
will not be generated, and the controllers cannot generate
proof-of-tradings. To reduce the impact of this issue, the
controllers can divide the schedule into smaller timeslot dura-
tions (e.g., in order of minutes instead of hours). Therefore,
minimizing the impact of information loss. Additionally,
controllers should also include the proof-of-switch-failures
as complementary proof-of-trading when such failures hap-
pen during the provisioning of bandwidth trading. This way,
validators can be notified that the proof for this demand is
unavailable because of a legitimate switch failure.

C. REQUIRE MODIFICATIONS ON SDN SWITCHES AND
SDN CONTROLLERS HARDWARE
The signatures and expiry timestamp on FLOW-REMOVED
messages allow customers to judge whether ISP performs
bandwidth trading correctly. For this reason, we need alter-
ations on the SDN switch hardware to add custom mod-
ules to sign OpenFlow messages before sending them to the
controller. Furthermore, reliable timestamp generators should
also be present in the switch, for example, using Trusted
Execution Environment (TEE). On the other hand, the SDN
controller needs to provide additional storages to store those
signatures and messages for proof of trading. The longer
the controller stores those messages, the greater the required
storage.

D. EXTERNAL FACTORS
Our proposal depends heavily on bandwidth limitation and
other economic or phycological factors to drive the usability
of bandwidth trading. When the bandwidth is unlimited, all
customers in a given region will become satisfied with the
bandwidth provided, and there is no reason for customers to
do the trading. Furthermore, sellers must sacrifice their Inter-
net usage for the sake of others having more bandwidths with
given incentives. Those actions are trivial to achieve when
the sellers are away (e.g., currently not using the Internet
because of sleeping or out of the house/office). However,
it becomes subjective when consumers experience terrible
Internet service due to their sellings. Some consumers may
think that selling the bandwidth is not worth the degradation
of the Internet service. Therefore, while our study proves the
applicability to performing reliable bandwidth trading from a
technical perspective, further study is required to analyze the
economic and phycological aspects.

VII. CONCLUSION
This paper proposed a blockchain-based framework to pro-
vide trading of bandwidth resources in SDN-enabled edge
networks. Buyers can request bandwidth demands in given
timeslots. Other consumers and SDN controllers can then

VOLUME 10, 2022 114037

Y. E. Oktian et al.: Blockchain-Powered Bandwidth Trading on SDN-Enabled Edge Network

compete to fulfill those demands by offering sellings of their
bandwidth. SDN controllers provisioned the trading by send-
ing FLOW-MOD messages to increase/decrease buyer/seller
traffic. The corresponding FLOW-REMOVED messages will
be saved as proof-of-tradings. We implemented and compre-
hensively analyzed our framework based on the POX SDN
controller and Ethereum platforms. The results proved that
the system could provide seamless off-chain and on-chain
bandwidth trading provisioning with reasonable overhead.

While our study showed the applicability of performing
reliable bandwidth trading from a technical perspective, fur-
ther work is required to improve the blockchain privacy
issues, provide proof of switch failures, and analyze the will-
ingness of consumers to perform trading. The use of clusters
of SDN controllers can also be investigated in the future to
further enhance the system scalability from the SDN side.

ACKNOWLEDGMENT
The authors would like to thank the anonymous reviewers for
their valuable comments.

REFERENCES
[1] K. Casier, S. Verbrugge, R. Meersman, J. Van Ooteghem, D. Colle,

M. Pickavet, P. and Demeester, ‘‘A fair cost allocation scheme for capex
and opex for a network service provider,’’ in Proc. 5th Conf. Telecommun.
Techno-Economics, 2006, pp. 1–13.

[2] J. Arkko, ‘‘The influence of internet architecture on centralised versus
distributed internet services,’’ J. Cyber Policy, vol. 5, no. 1, pp. 30–45,
Jan. 2020.

[3] P. Thaichon and T. N. Quach, ‘‘The relationship between service qual-
ity, satisfaction, trust, value, commitment and loyalty of internet service
providers’ customers,’’ J. Global Scholars Marketing Sci., vol. 25, no. 4,
pp. 295–313, Oct. 2015.

[4] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, ‘‘Openflow: Enabling innovation
in campus networks,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69–74, 2008.

[5] S. Nakamoto, ‘‘Bitcoin: A peer-to-peer electronic cash system,’’
Decentralized Bus. Rev., White Paper, 2008, p. 21260. [Online]. Available:
https://www.debr.io/article/21260-bitcoin-a-peer-to-peer-electronic-cash-
system

[6] V. Buterin, ‘‘A next-generation smart contract and decentralized applica-
tion platform,’’ White Paper, 2014, vol. 3, no. 37. [Online]. Available:
https://nft2x.com/wp-content/uploads/2021/03/EthereumWP.pdf

[7] (2022). Open Networking Foundation. Openflow Switch Specifica-
tion. Accessed: Jun. 6, 2022. [Online]. Available: https://opennetw
orking.org/wp-content/uploads/2013/04/openflow-spec-v1.0.0.pdf

[8] M. Castro and B. Liskov, ‘‘Practical Byzantine fault tolerance,’’ in Proc.
OSDI, vol. 99, 1999, pp. 173–186.

[9] N. Szabo, ‘‘Formalizing and securing relationships on public net-
works,’’ 1st Monday, vol. 2, no. 9, Sep. 1997. [Online]. Available:
https://firstmonday.org/ojs/index.php/fm/article/view/548

[10] W. Cai, Z. Wang, J. B. Ernst, Z. Hong, C. Feng, and V. C. Leung, ‘‘Decen-
tralized applications: The blockchain-empowered software system,’’ IEEE
Access, vol. 6, pp. 53019–53033, 2018.

[11] Y. Chen, C. Liu, Y. Wang, and Y. Wang, ‘‘A self-sovereign decentralized
identity platform based on blockchain,’’ in Proc. IEEE Symp. Comput.
Commun. (ISCC), Sep. 2021, pp. 1–7.

[12] U. W. Chohan, ‘‘Non-fungible tokens: Blockchains, scarcity, and
value,’’ Crit. Blockchain Res. Initiative (CBRI) Work. Papers,
Tech. Rep., 2021. [Online]. Available: https://papers.ssrn.com/sol3/papers.
cfm?abstract_id=3822743

[13] M. Koscina, M. Lombard-Platet, and C. Negri-Ribalta, ‘‘A blockchain-
based marketplace platform for circular economy,’’ in Proc. 36th Annu.
ACM Symp. Appl. Comput., Mar. 2021, pp. 1746–1749.

[14] L. Sun, Q. Yang, X. Chen, and Z. Chen, ‘‘RC-chain: Reputation-based
crowdsourcing blockchain for vehicular networks,’’ J. Netw. Comput.
Appl., vol. 176, Feb. 2021, Art. no. 102956.

[15] D. Chen, Z. Zhang, A. Krishnan, and B. Krishnamachari, ‘‘PayFlow:
Micropayments for bandwidth reservations in software defined net-
works,’’ in Proc. IEEE Conf. Comput. Commun. Workshops (INFOCOM
WKSHPS), Apr. 2019, pp. 26–31.

[16] W. Li, D. Guo, K. Li, H. Qi, and J. Zhang, ‘‘IDaaS: Inter-datacenter
network as a service,’’ IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 7,
pp. 1515–1529, Jul. 2018.

[17] T. H. T. Le, N. H. Tran, T. LeAnh, T. Z. Oo, K. Kim, S. Ren, and
C. S. Hong, ‘‘Auction mechanism for dynamic bandwidth allocation in
multi-tenant edge computing,’’ IEEE Trans. Veh. Technol., vol. 69, no. 12,
pp. 15162–15176, Dec. 2020.

[18] J. Chase, R. Kaewpuang, W. Yonggang, and D. Niyato, ‘‘Joint virtual
machine and bandwidth allocation in software defined network (SDN) and
cloud computing environments,’’ in Proc. IEEE Int. Conf. Commun. (ICC),
Jun. 2014, pp. 2969–2974.

[19] B. M. Yakubu, M. M. Ahmad, A. B. Sulaiman, A. S. Kazaure, M. I. Khan,
and N. Javaid, ‘‘Blockchain based smart marketplace for secure internet
bandwidth trading,’’ in Proc. 1st Int. Conf. Multidisciplinary Eng. Appl.
Sci. (ICMEAS), Jul. 2021, pp. 1–6.

[20] S. Mostafavi, ‘‘Design space of online bandwidth trading markets for P2P
streaming systems,’’ J. Commun. Technol., Electron. Comput. Sci., vol. 26,
pp. 1–9, Dec. 2019.

[21] S. Ding, G. Shen, K. X. Pan, S. K. Bose, Q. Zhang, and B. Mukherjee,
‘‘Blockchain-assisted spectrum trading between elastic virtual optical net-
works,’’ IEEE Netw., vol. 34, no. 6, pp. 205–211, Nov. 2020.

[22] M. K. Farshbafan, M. H. Bahonar, and F. Khaiehraveni, ‘‘Spectrum trading
for device-to-device communication in cellular networks using incomplete
information bandwidth-auction game,’’ in Proc. 27th Iranian Conf. Electr.
Eng. (ICEE), Apr. 2019, pp. 1441–1447.

[23] N. Merayo, D. de Pintos, J. C. Aguado, I. de Miguel, R. J. Durán,
P. Fernández, R. M. Lorenzo, and E. J. Abril, ‘‘Experimental validation of
an SDN residential network management proposal over a GPON testbed,’’
Opt. Switching Netw., vol. 42, Nov. 2021, Art. no. 100631.

[24] M. Zaher, A. H. Alawadi, and S.Molnár, ‘‘Sieve: A flow scheduling frame-
work in SDN based data center networks,’’ Comput. Commun., vol. 171,
pp. 99–111, Apr. 2021.

[25] N. Xia, P. Tsai, T. C. Ling, and C. Yang, ‘‘A service-aware transport
layer framework for SDN-enabled cellular core networks,’’ IET Commun.,
vol. 16, no. 11, pp. 1279–1289, Jul. 2021.

[26] F. Vogelsteller and V. Buterin. (2015). EIP-20: Token Standard. Accessed:
Jun. 6, 2022. [Online]. Available: https://eips.ethereum.org/EIPS/
eip-20

[27] (2022). Truffle Suite. Ganache: One Click Blockchain. Accessed:
Jun. 13, 2022. [Online]. Available: https://trufflesuite.com/ganache/

[28] (2022). Truffle Suite. Truffle: Smart Contracts Made Sweeter. Accessed:
Jun. 13, 2022. [Online]. Available: https://trufflesuite.com/truffle/

[29] N. Mudge. (2020). Ethereum’s Maximum Contract Size Limit is Solved
With the Diamond Standard. Accessed: Apr. 22, 2022. [Online]. Avail-
able: https://dev.to/mudgen/ethereum-s-maximum-contract-size-limit-is-
solved-with-the-diamond-standard-2189

[30] (2022). Gas and Fees. Accessed: Jun. 6, 2022. [Online]. Available:
https://ethereum.org/en/developers/docs/gas/

[31] Y. Sompolinsky and A. Zohar, ‘‘Secure high-rate transaction process-
ing in Bitcoin,’’ in Financial Cryptography and Data Security (Lecture
Notes in Computer Science), vol. 8975, R. Böhme and T. Okamoto,
Eds. Berlin, Germany: Springer, 2015. [Online]. Available: https://
link.springer.com/chapter/10.1007/978-3-662-47854-7_32, doi: 10.1007/
978-3-662-47854-7_32.

[32] (2021). OpenEthereum. Aura—Authority Round—Wiki. Accessed:
Jun. 6, 2022. [Online]. Available: https://openethereum.github.io/Aura

[33] (2022). Etherscan. Ethereum Average Block Time Chart. Accessed:
Jun. 6, 2022. [Online]. Available: https://etherscan.io/chart/blocktime

[34] (2022). Etherscan. Kovan Testnet Explorer. Accessed: Jun. 6, 2022.
[Online]. Available: https://kovan.etherscan.io/

[35] (2022). Klaytn. Klaytn Overview. Accessed: Jun. 6, 2022. [Online]. Avail-
able: https://docs.klaytn.foundation/klaytn

[36] (2022). ChainSafe. Web3.js—Ethereum Javascript API. Accessed:
Jun. 6, 2022. [Online]. Available: https://github.com/ChainSafe/web3.js

[37] (2022). OpenJS Foundation. Fast, Unopinionated, Minimalist Web
Framework for Node.js. Accessed: Jun. 6, 2022. [Online]. Available:
https://expressjs.com/

[38] R. L. S. de Oliveira, C. M. Schweitzer, A. A. Shinoda, and
L. R. Prete, ‘‘Using mininet for emulation and prototyping software-
defined networks,’’ in Proc. IEEE Colombian Conf. Commun. Comput.
(COLCOM), Jun. 2014, pp. 1–6.

114038 VOLUME 10, 2022

http://dx.doi.org/10.1007/978-3-662-47854-7_32
http://dx.doi.org/10.1007/978-3-662-47854-7_32

Y. E. Oktian et al.: Blockchain-Powered Bandwidth Trading on SDN-Enabled Edge Network

[39] (2022). Open vSwitch. Open Vswitch Manual. Accessed: May 24, 2022.
[Online]. Available: http://www.openvswitch.org/support/dist-docs/ovs-
vsctl.8.txt

[40] (2022). McCauley. Pox Manual Current Documentation. Accessed:
Jun. 6, 2022. [Online]. Available: https://noxrepo.github.io/pox-doc/html/

[41] J. Dugan, S. Elliott, B. A. Mah, J. Poskanzer, and K. Prabhu. (2022).
IPerf—The Ultimate Speed Test Tool for TCP, UDP and SCTP. Accessed:
Jun. 6, 2022. [Online]. Available: https://iperf.fr/iperf-doc.php

YUSTUS EKO OKTIAN received the bache-
lor’s degree in electrical engineering from Petra
Christian University, Indonesia, in 2013, and the
master’s and doctoral degrees in computer engi-
neering from Dongseo University, South Korea,
in 2016 and 2021, respectively. He is currently
a Postdoctoral Researcher with Pusan National
University, South Korea. His research interests
include network security, distributed comput-
ing, blockchain, Internet of Things (IoT), and
software-defined networking (SDN).

THI-THU-HUONG LE received the bachelor’s
degree from the Hung Yen University of Technol-
ogy and Education (HYUTE), Vietnam, in 2007,
the master’s degree from the Hanoi University of
Science and Technology (HUST), in 2013, and
the Ph.D. degree from Pusan National Univer-
sity (PNU), South Korea, in 2020. She has three
years of experience as a Postdoctoral Researcher
at PNU, since 2020. She had seven years of experi-
ence as a Lecturer at HYUTE. She has participated

in machine learning projects, such as NILM, IDS, AI Industry4.0, AI secu-
rity, and deep learning-based CFD. She is a Research Professor with the IoT
Research Center, PNU.Her research interests includemachine learning, deep
learning, data analysis, XAI, and signal processing.

UK JO (Graduate Student Member, IEEE)
received the bachelor’s degree from the Kwang-
woon University, South Korea. He is currently
pursing the Ph.D. degree with Pusan National Uni-
versity. He has conducted various projects, such
as blockchain platform, smart city platform devel-
opment, and crypto implementation. His current
research interests include blockchain and security.

HOWON KIM (Member, IEEE) received the
Ph.D. degree from the Pohang University of
Science and Technology (POSTECH), in 1999.
He has been at the Electronics and Telecommu-
nications Research Institute (ETRI), since 1998.
He visited the Chair for the Communication Secu-
rity Group (COSY) in Ruhr-University Bochum,
Germany, as a Postdoctoral Researcher, from July
2003 to June 2004. He is currently a Professor
at the Department of Computer Engineering, the

Chief of the Energy IoT Research Center, and the Chief of the Blockchain
Platform Research Center. His research interests include blockchain plat-
form, cryptography, deep learning, and security chip design.

VOLUME 10, 2022 114039

