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ABSTRACT Delivering a reliable and high-quality software system to client is a big challenge in software
development and evolution process. One of the software measures that confirm the quality of the system is
the defect density. Practitioners usually need this measure during software development process or during a
period of operation to indicate the reliability of software system. However, since predicting defect density
before testing the modules is time consuming, managers need to build a prediction model that can help
in detecting the defective modules. This process can reduce the testing cost and improve testing resources
utilizations. The most intrinsic feature of software defect datasets is the data sparsity in the defect density
which might bias the final prediction. Therefore, we use deep learning to build defect density prediction
models and handle the inherit challenge of data sparsity in defect density. Deep learning has shown to be
effective with sparse data. The constructed model has been evaluated against well-known machine learning
methods over 28 public datasets. The obtained results confirmed that the deep learning model is generally
more adequate than other machine models over the datasets with high and very high sparsity ratios, and
competitive choice when the sparsity ratio is either medium or low.

INDEX TERMS Defect density prediction, deep learning, data sparsity, machine learning.

I. INTRODUCTION

Quality and reliability of software products are important
indicators for the success of software development pro-
cess [1], [2]. Software engineers always apply different test-
ing and quality assurance activities to ensure that the software
product meets the quality standard before delivering it to
the customers [3], [4], [5], [6]. Defect Density is a popular
software metric that is used to confirm the quality of software
product, especially during software evolution [7]. It is defined
as number of defects per software module' size during a
period of operation or during software development, as show
in equation (1). Predicting Defect Density early can afford
several advantages to the quality assurance team [8], [9].
First, it can optimize resources utilization for the limited
budget projects [7], [10]. Software engineers often use the
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predicted defected density to rank and priorities software
modules to pay more attention to the software modules that
are defects prone [11]. Second, it measures the effectiveness
of testing process and third, it is useful in pointing towards
high-risk components [8], [12], [13].

DD — bugcount
LOoC

The prediction of defect density is conducted by extract-
ing static code metrics from bug log files of prior software
versions. These static metrics are used to construct models
that predict the potential defect density in other modules or
future releases of the same module [12], [13]. This approach
assists in locating the areas of the software that are prone
to cause errors. Defect density prediction can be applied in
two ways: within the project and across the projects. The first
method entails utilizing the same data for both testing and
training during the empirical validation procedure [6], [14].
In the second method, one release of project data serves as
training, while the subsequent release serves as testing [15].

x 1000 (1
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Predicting Defect density is different than defect predic-
tion even though both approaches can use the same dataset
features. The major task of defect prediction is to identify
whether the module in hand is defected or not (i.e., classi-
fication task), whereas in defect density prediction, we are
interested in predicting the density of defects per module
size (i.e., regression task). Defect density prediction has not
received substantially enough attention from researchers in
comparison to defect prediction, because not all datasets con-
tain bug counts that facilitates computing defect density in the
training datasets. However, the majority of studies on defect
density applied statistical regression and machine learning
techniques, and a few of them focus on analyzing statistical
properties between defect density and static code metrics [5].

The main challenge that affects the success of defect den-
sity prediction is the presence of sparsity in the defect den-
sity variable. Software defect datasets are frequently dense,
but the target variable (i.e., defect density) is often sparse.
Sparsity means that the majority of the observations have zero
value in the defect density variable due to the absence of bugs
in the majority of training modules. Naturally, most of the
employed defect datasets share the same sparsity problem,
and the traditional machine learning problem cannot deal
effectively with this challenge. Existing machine learning
models struggle to capture complex relationships between
input dense data and sparse defect density variable. There-
fore, we use Deep Neural Networks (DNN) as potential
solution for this problem. Unlike other learning algorithms,
the deep learning has shown to be effective to learn from a
large and dense data. In addition to that, it finds a complex
patterns in the data as in our case when defect density variable
is sparse. Deep learning has been widely used in a variety of
research areas such as natural language processing, speech
recognition, and image processing [16].

Mainly, we have enhanced a well-known artificial neu-
ral network called Generalized Regression Neural Networks
(GRNN) with multiple dense layers to fit with the defect
density predictions as explained in section 4. GRNN is a
single-pass neural network which uses a Gaussian activation
function in the hidden layer and often used for function
approximation. GRNN consists of input, hidden, summation,
and division layers. Since the defect density variable is sparse,
learning the relationship between input variables and target
variables will be affected by the bias in the target variable.
Therefore, using GRNN model can alleviate this problem by
involving the distribution of the data in the learning process.
The GRNN was employed in this study for three reasons: 1)
the GRNN does not require backpropagation for training the
network, thus reducing computational time and the storage
required. 2) the GRNN shows high accuracy in the estimation
since it uses Gaussian functions. 3) the GRNN can handle
noises in the data.

In this study we propose a deep learning model to dis-
cover complex patterns in the defect datasets and improve the
accuracy of defect density prediction. Also, it can learn and
capture the discriminative features from data automatically,
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thus resulting in a more accurate defect density prediction
model [17]. To accomplish that, We extended the tradi-
tional GRNN by additional three hidden deep layers. The
proposed model is an extension of the conventional GRNN to
solve the sparsity problem in the defect density predictions.
Interestingly, deep learning has not used before to predict
defect density, it was used intensively for defect prediction
as classification algorithm.

To examine the effectiveness of deep learning with data
sparsity in defect density prediction, we divided datasets
into four homogeneous groups based on the level of spar-
sity. The contributions of this paper are threefold: 1) extend
GRNN with multiple hidden layers to improve accuracy of
the defect density prediction, and 2) alleviate the problem
of sparsity in defect density, and 3) we predict defect den-
sity at the module level, not the project level which help
quality assurance to better monitor the project progress The
proposed work has been driven by the following research
questions:

RQ1: Does Deep learning outperform the traditional
machine learning algorithms for defect density?

To address this question, we built an enhanced version of
traditional GRNN with multiple dense layers. Then, we com-
pare it with other common machine learning algorithms such
as k-Nearest Neighbors (kNN), Support Vector Regression
(SVR), Random Forest (RF), Naive Bayes (NB), and Mul-
tiple Linear Regression (MLR) based on 28 public datasets.
We used the repeated 10-Folds cross-validation to validate
the constructed model and other machine learning models.
The results are statistically compared using Wilcoxon signed-
rank test, which offer evidence that the proposed deep GRNN
model is significantly better than other comparative machine
learning models.

RQ2: What is the role of data sparsity in defect density
prediction based deep learning?

This question addresses the role of data sparsity in defect
density predictions. The sparsity ratio, as defined in equation
(2), measures the percentage of non-zero defected modules
(minority) to the zero defected modules (majority). Based on
the SR, we divided the datasets into four groups, then we
examined the performance of deep GRNN model and other
machine learning algorithms over each group of datasets. The
overall results showed that the proposed model outperforms
most machine learning models, especially over very high and
high sparsity datasets.

SR =1 - PO @)
majority

The rest of the present paper is structured as fol-
lows: Section two presents background about deep learn-
ing and data sparsity. Section 3 presents the related work.
Section four presents the proposed model. Section five
describes the employed datasets. Section six presents the
used evaluation measures. Section seven shows the experi-
mental setup and section eight shows the obtained results.
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Section nine introduces threats to the validity of the study
and finally, the paper ends with a section presenting the
conclusion.

Il. BACKGROUND

A. DATA SPARSITY

Variables with sparse data are those that have mostly zero val-
ues, which is different from variables with missing data [18].
Examples of sparse variables include vectors of one-hot-
encoded words or counts of categorical data. On the other
hand, variables with dense data have predominantly non-
zero values. The problem of software defect density predic-
tion is not considered as a complete data sparse problem
because the input matrix is frequently dense, but the out-
put variable is sparse. Sparse matrices can cause problems
with regards to space and time complexity. It is time con-
suming to perform operations against input matrices with
a high ratio of zero values. This is because such matrices
inherently induce arithmetic computations involving multi-
plying or adding these zero values; the time complexity of
this problem increases with larger input matrix sizes [18].
A reasonable solution to this problem is rather than han-
dling the sparse output vector (i.e. defect density variable),
we recommend to use deep neural networks to implicitly treat
this issue.

B. AN OVERVIEW OF DEEP LEARNING

Deep learning is state of the art artificial intelligence
algorithm, which consists of a family of algorithms includ-
ing Recurrent Neural Network (RNN), Deep Neural Net-
work (DNN), Convolutional Neural Networks (CNN), and
Long-Short Term Memory (LSTM) [16], [17]. Deep learning
has been intensively used in a variety of domains such as,
natural language processing [19] and image processing. Deep
learning is becoming increasingly prevalent in the field of
software engineering [17], [20]. In this paper we focus on
building a deep neural network model for predicting defect
density. The DNN is an improved version of traditional arti-
ficial neural network with multiple dense layers. The DNN
models are recently becoming very popular due to their excel-
lent performance to learn not only the nonlinear input—output
mapping but also the underlying structure of the input data
vectors [20].

The DNN training process contains two learning passes
(forward and backward passes) based on the backpropagation
algorithm. In the forward pass, the input data is transformed
to a specific form of output through layer by layer using
nonlinear activation functions [21]. In the backward pass, the
derivatives of the error function with respect to individual
weights are updated in a reverse order, that is, from the output
layer to the input layer. The Stochastic Gradient Descent is
extensively employed throughout the training procedure for
the sake of weights optimization. The DNN, on the other
hand, necessitates tuning of various hyperparameters such
as the number of neurons, hidden layers, and iterations,
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which might make solving a complex model computationally
costly [11], [20], [21].

IIl. RELATED WORK

A. DEFECT DENSITY

Defect density is an important metric for measuring the effi-
cacy of software development process. Various approaches
have been used in recent years to estimate the defect density
in software projects. Multiple studies employed statistical
approaches to quantify and evaluate the link between defect
density and available metrics. Correlation coefficients and
determination, linear regression models, and multiple linear
regression models are examples of statistical approaches used
to assess the strength of that link.

The first research direction focuses on analyzing the rela-
tionship between defects and multiple of software metrics.
In this regard, Rahmani and Khazanchi [9] developed four
assumptions to examine the relationship between defect den-
sity and three source code metrics (number of downloads,
number of developers, and size of the software). These met-
rics have been mined from 44 software projects. The statis-
tical analysis on these assumptions showed that two out four
assumptions were only accepted. The relationship between
design metrics and defect density was also investigated by
Mandhan et al. [22]. They applied seven design and code
metrics and found that predicting defect density using the
seven design and code metrics is statistically significant.
On the other hand, Nagappan and Ball [23] used a group
of code churn measures to predict defect density at early
stages based on statistical regression models. The code churn
is a measure or an indication of the change over time in the
bulk of code within a software component. The results of
Person and Spearman correlations confirmed that code churn
measures are adequate for defect density prediction. They
applied variety of machine learning methods to build defect
density prediction model based on code churn. Verma and
Kumar [24] extracted five metrics from multiple open source
software projects. They proposed six hypotheses to examine
the relationship between the defect density and the metrics.
The statistical significance test revealed that four of the pro-
posed hypotheses have been accepted. Sherriff et al. [25] built
a prediction model for defect density prediction using five
metrics. The constructed model was trained on 14 projects
and tested on 6 projects. The results confirmed the relevancy
of those five metrics for defect density predictions. They
also introduced a method for predicting defect density in
the source code for seven releases of the Glasgow Haskell
Compiler. They used three types of metrics: 1) test met-
rics, 2) structural metrics, and 3) compiler warnings [26].
Marchenko [27] analyzed the relationship between code met-
rics and defect density in the field of embedded software
development. They used CodeScanner and PC Lint to extract
code metrics. They concluded that static code analysis tools
can help agile teams to perform testing activities in a better
way.
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The second approach focuses on developing defect den-
sity prediction models from existing defect datasets. In this
regard, Kutlubay et al. [28] used Naive Bayes, and Decision
Tree to predict the defect density from NASA projects. They
demonstrated that the Decision Tree surpasses the regres-
sion models over nine datasets. On the other hand, Kumar
etal. [13] and Khalsa [29] applied Fuzzy logic and neural net-
works based on three metrics extracted from 4000 log files.
These metrics are: (1) defects in file pre-releases aggregated
for a module, (2) total number of lines of code aggregated
for a module, and (3) McCabe cyclamate complexity of a file
aggregated for a module. They found that the results of neural
networks are much better than results of the fuzzy inference
model. Knab et al. [30] applied Decision Tree model over data
collected from seven releases of the Mozilla open source.

They found that the number of modification reports is use-
ful for defect density prediction, and the number of functions
and lines of code have little predictive impact on defect den-
sity. Lopez Martin et al. [10] applied support vector regres-
sion to predict defect density of software projects, where two
support vector regression approaches were used based on
21 new projects. The accuracy of the two regression models
was marginally good. They also developed advanced tech-
nique to predict defect density called Transformed K-nearest
neighborhood output Distance Minimization (TKDM). The
accuracy of the constructed model was compared to the pre-
vious support regression models and other machine learn-
ing models. The reported statistical results confirmed that
the proposed model outperform other models. Yadav and
Yadav [31] used fuzzy inference system to predict defect
density using nine metrics. The predictive accuracy of the
proposed model was validated using twenty projects. They
found that the predictions generated by the fuzzy inference
system are very close to the actual values.

B. DEEP LEARNING IN DEFECT PREDICTION
In the field of defect prediction, we found multiple studies
that use deep learning (especially convolutional neural net-
work) to predict bugs from log files. Most of these studies
were designed to learn just-in-time defect predictions from
log files such as DeepJIT model [32] and DeepCPDP [33].
Hoang al. [32] proposed a deep learning model to automat-
ically discover embedding features from commit messages
and code changes and use them to identify defects. Chen
et al. [33] proposed a deep learning to predict defect predic-
tion for cross projects. They represented the source code of
each program module via a simplified abstract syntax. Qiao
et al. [11] proposed a deep learning model to predict number
of defects in the software module. Yang et al. [34] proposed
a deep learning model for just -in-time defect prediction,
the model was evaluated over six open source projects such
Bugzilla, Platform, Columba, PostgreSQL and Mozilla.
Zhao et al. [35] proposed a deep learning technique called
DeepSim to measure the functional similarities of code.
They created code semantic representation from the encoded
control flow and data flow to allow a deep neural network
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classification model to learn the embedded features from the
representation matrix. Ma et al. [36] proposed an automated
debugging technique based on deep learning called MODE.
Their model mimics conventional debugging and regression
testing and can perform model-state analysis to detect defects.

Guo et al. [37] applied RNN and word embedding to pro-
duce code trace links. The extracted word embedding vectors
are used by the RNN to learn the sentence semantics. On the
other hand, Gu et al. [38] developed a deep learning model
to perform code searches. A high-dimensional vector space
is used to represent the code snippets and natural language
descriptions. Furthermore, they were the first to use RNN to
generate API sequence suggestions.

White et al. [39] proposed a code suggestion model based
on feed forward network and RNN. They reported that the
deep learning can create high-quality models from a corpus
of Java projects. In a different study, they proposed another
model to detect code clone. The constructed mode has ability
to automatically find discriminating features in the source
code. They reported that all the parts of the source code can
be represented and used for clone detection.

Huo et al. [40] used a CNN to discover the most likely
defected code based on a bug report based on semantic
features. They applied both lexical and program structural
information to discover the semantic features from source
code and natural language to make bug localization. Jana
et al. [41] used a deep neural network to generate test cases
automatically that will be used for automated testing of erro-
neous behaviors of DNN-controlled vehicles. Lam et al. [42]
developed a new combination approach between revised vec-
tor space model and deep neural networks to perform bug
localization. The DNN is used mainly to learn the terms in
the bug reports and source files.

Above all, we can find that no prior studies used module
defect density. All of them used complete defect density of the
project. Therefore, those studies did not consider the problem
of data sparsity in their approaches because it was not exist.
Furthermore, no studies used deep learning in predicting
defect density where the existing deep learning studies were
designed for the problem of defect prediction that aims to
classify the software modules as defective or not. Machine
learning and statistical learning methods were the dominant
for predicting the defect density. These reasons form the main
motivation for carrying out this research study.

IV. THE PROPOSED DEEP NEURAL NETWORK MODEL

This section describes the proposed deep neural networks
for predicting defect density at module level. The proposed
model is an enhanced form of a popular type of artificial
neural network that is called General Regression Neural Net-
work (GRNN). The GRNN would be formed instantly with
just a 1-pass training with the training data. It is a four layers
network used mainly for regression tasks as shown in Fig. 1.
This kind of network consists of input and output layers which
are responsible for receiving input and producing regression
output, in addition to two hidden layers. The first hidden layer
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FIGURE 1. General regression neural network.

XlO
XZO
hy ) by
X3© h m b
" 2 2 2
A .
XtO W]'nxk y Wzkxk y ?<: .
W2kxk
- hy my by
XnO

FIGURE 2. The enhanced deep GRNN (DGRNN).

is known as pattern layer and responsible for pattern discov-
ery, and the second hidden layer is known as summation layer
which consists of two neurons (numerator and denominator
summation). The denominator summation calculates the sum
of the weights coming from each neuron in the second layer.
The numerator summation calculates the sum of the weights
multiplied by the actual output of each pattern neurons. The
activation function in the neurons of the of the first hidden
layer is usually RBF function that use Euclidean distance
between input vector and the neuron’s center to discover
the hidden pattern in the training data. However, the GRNN
does not need iterative training algorithm, but in contrast it
approximates any arbitrary function between input and output
data.

In order to enhance GRNN to become Deep GRNN
(DGRNN) model, we added extra three dense hidden layers
before pattern hidden layer in order to extract hidden features
in the training data as shown in Fig. 2. The newly designed
deep neural network (i.e., DGRNN) composed of seven lay-
ers: input layer, 5 hidden layers and output layer. The first and
third hidden layers (denoted as h and b in Figure 2) are built
using 10 neurons each, with Radial Basis activation function
(RBF). Whilst, the second hidden layer (denoted as m) is a
drop out layer to prevent over fitting. The pattern layer is
constructed using 5 neurons to discover the complex patterns
in the data, in this layer we use Radial Basis Function as
activation function. The summation hidden layer is composed
of two neurons as in the original GRNN in order to facilitate
producing the final regression output. (i.e., defect density).
As shown in the figure, there are multiple weight matrices (5
matrices between layers) that will be updated during training
process. The complete network will be trained using gradient
descent algorithms.
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TABLE 1. Summary of 28 datasets description.

Dataset # Instances # metrics Average of MAE of SD of
defect density | random random
per IKLOC guessing | guessing
Yosparsity All

jedit-3.2 66.90% 272 20 1.40 11.9 81.7
jedit-4.2 86.90% 367 20 0.29 1.3 6.8
log4j-1.1 66.06% 109 20 0.79 30.1 13.8
JDT_R2_0 54.03% 2397 48 1.57 724 87.5
JDT_R2_1 68.06% 2743 48 0.78 5.7 9.0
JDT_R3_0 61.40% 3420 48 1.31 85 14.6
JDT_R3_1 67.24% 3883 48 1.08 7.1 11.9
JDT_R3_2 63.46% 2233 48 1.04 79 12.7
PDE_R2_0 80.73% 576 48 0.42 3.9 9.7
PDE_R2_1 83.71% 761 48 0.30 3.6 8.7
PDE_R3_0 68.79% 881 48 0.66 7.0 10.6
PDE_R3_1 67.78% 1108 48 0.70 6.9 10.7
PDE_R3_2 53.81% 1351 48 0.83 10.7 12.8
arc 88.46% 234 20 0.13 8.6 358
ant-1.7 84.00% 125 20 0.45 29 104
redaktor 84.66% 176 20 0.15 1.5 32
xalan-2.4 84.79% 723 20 0.22 2.8 19.7
xerces-1.2 83.86% 440 20 0.26 74.4 27.0
camel-1.0 96.16% 339 20 0.04 7.2 74.7
camel-1.6 80.52% 965 20 0.52 31.1 14.3
ivy-2.0 93.36% 241 20 0.11 32 213
prop-6 90.00% 660 20 0.09 43 277
poi-2.0 88.22% 314 20 0.12 22 11.6
lucene-2.0 53.34% 195 20 1.37 50.1 29.5
synapse-1.0 72.98% 222 20 0.13 3.1 215
synapse-1.2 66.41% 256 20 0.57 10.4 45.1
velocity-1.6 65.94% 229 20 0.83 23.6 61.7
xerces-1.3 84.77% 453 20 0.43 22.1 15.5

V. DATASET

Fortunately, there are dozens of benchmark datasets available
in different software repositories which facilitates evaluating
prediction models and generalize our conclusions. However,
since we are interested only in defect density, the datasets
that do not have bug counts variables are excluded because
we cannot calculate defect density in this case. This has
resulted in 28 public datasets collected from three main
sources: AEEEM repository [43], [44], SOFTLAB [14] and
MORPH [45]. Most of the datasets share the same feature
descriptions. Mainly, they use McCabe metrics, Halsted met-
rics to describe software modules (see the Appendix for more
details about these metrics). But, since these datasets do not
have defect density, we derived this variable by applying
equation 1 on each dataset. The complete list of the employed
datasets and their characteristics are described in Table 1,
in which we can observe that most datasets have defected
ratio less than 30% which means that the target defect density
variable will often be sparse due to the size of non-defective
modules. This is also confirmed by histogram of defected
ratio in Fig. 3. Therefore, as part of our investigation is to
examine the role of sparsity on the performance of defect
density prediction models.

To get insight into the relationship between the average of
defect density and the number of instances in the datasets,
we draw a scatter plot between two variables as shown in
Fig. 4. We can observe that small datasets with less than
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FIGURE 3. Histogram of defected ratio.
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FIGURE 4. Relationship between the average of DD and number of
instances in the dataset.
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1000 instances have frequently a small average of defect den-
sity (i.e., less than 1 defect/KLOC), while large modules have
more than 1 defect/KLOC. This confirm that the relationship
between size of the module and its defect density is generally
positive.

As a part of our investigation is to analyze the role of SR
(see equation (1)) with deep learning, the 28 datasets are
divided into four groups based on inter-quartile range of the
SR as shown in Table 2. The labels are chosen to align with
the broader context of data sparsity. Interestingly the number
of datasets in each bin is different and most of them belong to
medium group. Fig. 5 shows the SR histogram for all datasets.
As we can note, the majority of the data sets were gathered
around the median in the SR range 0.49 to 0.84. The sparsity
is usually categorized in terms of SR orders of magnitude.
We find that only 14 out of 28 data sets have SR greater than
the median (SR=0.73). In other words, the data sparsity level
of 73.0% software defect density is not as extreme as in some
other domains. This is also an indication of our study that very
high and high levels of SR are most common.

VI. EVALUATION MEASURES

Evaluation measures are used to measure the success of pre-
diction models. In the literature, there are multiple evaluation
measures, we only limited our choice to three popular mea-
sures that exhibit unbiased nature and present systematic error
distribution. These measures are Normalized Mean Absolute
Error (MAE), Standardized Accuracy (SA), and Effect Size
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TABLE 2. Datasets groups based on sparsity ratio.

SR Range Bin # Datasets
Name datasets
(0.84, 0.96] Very 7 jedit-4.2, arc, camel-1.0, ivy-
High 2.0, prop-6, poi-2.0, synapse-
(VH) 1.0
(0.73, 0.84] High (H) 7 PDE_R2_0,
PDE_R2_1, redaktor, xalan-
2.4, xerces-1.2, camel-
1.6., xerces-1.3
(0.49, 0.73] Medium 9 jedit-3.2, log4j-1.1,
M) JDT_R2_1, JDT_R3_1,
PDE_R3_0, PDE_R3_1,ant-
1.7, synapse-1.2, velocity-1.
(0.13, 0.49] Low (L) 5 JDT_R2_0, JDT_R3_0,
JDT_R3_2, PDE_R3_2,
lucene-2.0
12
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8
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FIGURE 5. Distribution of data Sparsity Ratio (SR).

(ES) [46], [47]. The MAE is calculated by computing the
average of the absolute errors dived by the summation of
actual defect density to facilitate comparison across different
datasets as shown in equation (3). The SA measure is used
to investigate whether the prediction model can surpass a
baseline model as shown in equation (4). Usually, the base-
line model is given as random guesses, therefore the results
obtained by SA can also be interpreted as a measure of
improvement. We also support SA with the effect size (ES)
to see whether these improvements are made by chance as
shown equation (5). To interpret the result of ES, one can use
the default scale given by Shepperd et al. [46] which report
that if ES is around 0.2 then the effect is small, medium if
ES around 0.5 and large of ES about or greater than 0.8. The
MAE and SD of random guessing for each dataset is reported
in the last two columns of Table 1. These values will be used
to evaluate the performance of each model over each dataset.

MAE — 2= 1PDi — DDil 3)
> 7 DD;
MAE
SA=1— (4)
MAE,
MAE — MAE,
ES = —— " (5)
r
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where: DD; is the actual defect density of the i module, and
D/B,- is the predicted defect density. MAE, and SD, are the
mean absolute error and standard deviation of the random
generated errors at » = 1000 run.

VIl. EXPERIMENT SETUP

A. DATA PRE-PROCESSING

Pre-processing the data is an essential step before building the
prediction model to ensure its reliability and avoid possible
bias in the predictions. Mainly, we transformed all numerical
variables by applying min-max scaling to every variable of
the data to bring each feature’s values in the interval [0, 1]. All
categorical variables are transformed to numerical variables
by applying one-hot encoder method. Concerning outliers,
we used box plots to determine the observation with extreme
values. In this case we remove the observations that have
extreme value in at least two variables. Finally, all observa-
tions with missing values are imputed using average impu-
tation for numerical variables and frequent value imputation
for the categorical variables.

B. CHOICE OF MACHINE LEARNING MODELS

The proposed DGRNN model has been compared against a
set of popular baseline machine learning regression meth-
ods. These methods are Support vector regression, k-nearest
neighbor, Multi-layer perceptron, Extreme Gradient Boost
(XGB) and AdaBoost, Random Forest, Multi-linear regres-
sion, and GRNN. Finally, we used the default configuration
parameter for each machine learning algorithm.

C. VALIDATION PROCEDURE
A 10 x 10 folds cross-validation was used to evaluate
and compare between the different prediction models. The
main reason for this choice is to reduce the bias in selec-
tion of training and test data [48]. According to Kocaguneli
et al. [49], unlike leave one cross validation using 10-Folds
cross-validation generates estimates of test error with higher
bias, and lower variance. Therefore, using the repeated 10-
Folds cross validation would generally reduce such bias and
keep variance very small. However, the prediction model is
developed on the training data while the testing data is used
to evaluate the model. The error measures are calculated for
each test dataset then aggregated overall sets. This procedure
continues until all examples within the dataset run as test.
To better train and tune the DGRNN model for each
dataset, we adjust the different configuration parameters such
as the optimizer, number of epochs and the dropout value. The
best choice for these parameters is a difficult process. thus,
we tried specific values for each parameters and the values
that improve the accuracy of the model are then chosen. Here
are the parameter values we used:

o Optimizer: different optimizers (SGD, ADAM and
ADAMW) have been tried as a part of the training pro-
cess.Each combination of dataset and model can select
different optimizer.
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FIGURE 6. Training and validation loss curves of DGRNN on JDT_R2_1
dataset.

o Number of epochs: many numbers of epochs from 1 to
50 have been applied. In addition, the stop accuracy
method that allowed us to stop the training when we
reached the highest accuracy has been applied, so as not
to waste time and storage.

o Spread or Sigma: The spread is hypermeter of GRNN,
it is required careful selection. we have tried three rec-
ommended values, 0.1, 0.2 and 0.3

« Dropout value: we tried 0.1, 0.25 and 0.5, with each
value producing a slightly different result.

During the training procedure, we divided our training data
randomly into 70% training and 30% validation for the sake
of finding out the best value of spread (sigma). The sigma
value is used within RBF to governing the smoothness of a
GRNN. The best practice is to find the value of sigma when
the MAE is minimum. Figure 6 shows the training and valida-
tion loss curves of DGRNN on JDT_R2_1 dataset. We could
not add all figures because simply we have around 100 loss
figure for each dataset. This figure can give us insight on
how DGRNN model is trained and validated. We can see that
there is overfitting after epoch 40, this was very common for
all training models therefore we reduce number of epochs to
40 instead of 50. However, the training and validation time of
DGRNN was considered adequate and minimal for all dataset
in comparison to conventional GRNN and other machine
learning algorithms. The reason for that is the spread (Sigma)
coefficient is the only parameter that need to identified by the
train and validation procedure.

VIil. RESULTS AND DISCUSSION
This section comments of the findings and results obtained
after conducting empirical validation for the sake of address-
ing the research questions.
RQ1: Does Deep learning outperform the traditional
machine learning algorithms for defect density?
To address this question, we compared our constructed
DGRNN to the benchmark algorithms mentioned in the sub-
section VII-B. The evaluation results are presented in terms of
the normalized MAE in addition to the standardized accuracy
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TABLE 3. Summary of overall accuracy results for within and cross
projects datasets.

MAE SA ES

ADA 0.67 (0.52-0.82) 0.64 0.24
DGRNN 0.41 (0.28 - 0.58) 0.78 0.39
GRNN 1.01 (0.77 - 1.48) 0.61 0.27
KNN 0.95 (0.81 - 1.10) 0.47 0.15
MLP 1.29 (1.13 - 1.44) 0.3 0.13
MLR 2.01 (1.65 - 2.38) -0.09 0.04
RF 0.57 (0.38 - 0.76) 0.7 0.27
SVM 0.90 (0.86 - 0.95) 0.5 0.16
XGB 0.56 (0.37 - 0.76) 0.7 0.27
ZIFR 0.92 (0.83 - 1.00) 0.5 0.17

and effect size (ES). However, in addition to the point esti-
mate of MAE, we reported the confidence interval of MAE
distribution as shown in Table 3.

The results in Table 3 are analyzed from two aspects:
accuracy and reliability. The three evaluation measures are
used mainly to differentiate between models, whereas the SA
and ES are used to examine the reliability of the proposed
model against random guessing. These results are obtained
after running each model over 28 datasets. Therefore, these
results represent the average of each accuracy measure across
all datasets. From Table 3, we can see that all models, except
MLR, produce predictions better than random guessing as
confirmed by SA and ES. We can observe that six out of nine
models obtained SA greater or equal 0.5, which means they
produce meaningful predictions, better than random guess-
ing. However, the effect size show that most of the improve-
ments have small effect with ES about 0.25 or less. A large
value of SA (i.e., 0.78) means that our model can produce
reliable predictions that are better than random guessing and
confirm that there is a significant improvement. On the other
hand, the effect size of DGRNN (ES = 0.39) indicates that the
obtained improvement is rather significant (not by chance).
It is interesting to note that the DGRNN produced better
accuracy than conventional GRNN. Other accuracy results
revealed that RF and XGB are competitors for DGRNN,
MLR and MLP were two of the worst models with very poor
average MAE values. These finding raises concerns about the
adequacy of these model for such complex structure datasets.
Also, it shows that traditional machine learning usually suffer
from sparse output variable and yield bias predictions.

The accuracy results in terms of the normalized MAE
demonstrate that our proposed DGRNN model has capabil-
ity to produce much better accuracy than other employed
machine learning models, especially conventional GRNN.
Since we only report the average of MAE in Table 3,
we need to understand the distribution of MAE across all used
datasets. Therefore, we plotted the interval plot for MAEs
at 95% Confidence Interval (CI) as shown in Fig. 7. The
interval plot has been adopted for two reasons: 1) It is a
graphical data interpretation tool that allows us to visually
examine the differences between several groups and make
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FIGURE 7. Interval Plot of MAE at 95% CI for within project.

preliminary conclusions. 2) Because we’re looking for sub-
stantial differences between the means of different MAE
populations, the point mean estimate in Table 3 is not enough
to determine whether the multiple MAE distributions are
significantly different. This means that for each sample, the
average, standard deviation, and sample size are combined
to create a confidence interval that represents a given level
of confidence, such as 95%. Under these circumstances, it is
predicted that the population mean will be included in 95% of
the sample’s confidence intervals. From Fig. 7, we can simply
observe that the MAE distribution of DGRNN is significantly
better than all eight prediction models, except three (ADA,
RF and XGB). Remarkably, the MLR model is not useful for
the defect density predictions due to the large variability in
MAE distribution. Both KNN and GRNN are relatively have
same MAE distributions. We can also notice that the defect
density prediction performance is negatively impacted when
using SVM and ZIFR even though they have the smallest
confidence intervals.

In addition to the above analysis, we reported the average
improvement in DGRNN model against other defect density
prediction models. Practically, we compute the SA and effect
size for DGRNN considering that the comparative model
as a baseline model. Referring to equations (4) and (5),
we consider DGRNN as the model under evaluation, and the
comparative model is the baseline model (MAE,). Table 4
presents the results of the models’ evaluation in addition to
the Wilcoxon signed-rank significance test results obtained
by comparing MAE distributions of DGRNN with each com-
parative model. From Table 4, we can observe that DGRNN
model has a large significant improvement of 0.53 against
GRNN, 0.55 against KNN, 0.79 against the MLR and as low
as 0.25 against RF and XGB. These improvements are gener-
ally supported by a medium and very large effect size. These
results show the significant improvements in defect density
prediction when using the DGRNN model. The significance
test also confirms that the DGRNN modules produced better
predictions than most models except for RF and XGB. How-
ever, we can still see a good improvement of DGRNN over
RF, XGB w.r.t SA and ES.
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TABLE 4. Improvement of DGRNN over each one of the base models.

Baseline model p-value SA ES

ADA 0.02 0.36 0.62
GRNN <0.001 0.53 1.29
KNN <0.001 0.55 1.44
MLP <0.001 0.67 2.19
MLR <0.001 0.79 1.67

RF 0.24 0.25 0.29

SVM <0.001 0.53 4.23
XGB 0.25 0.25 0.27
ZIFR <0.001 0.54 2.19

In summary, the answer to this question is yes. As reported
in Table 4 and Fig. 7, the proposed DGRNN model signifi-
cantly surpasses the seven machine learning models (KNN,
GRNN, MLP, MLR, ADA, SVM, and ZIFR) based on the
Wilcoxon signed-rank test. However, we have concerns about
DGRNN’s performance against RF and XGB which shows
there is no significant difference. But it is still competitive
with these ensemble learning models, and even better with
average MAE as shown in Fig. 7.

RQ2: What is the role of data sparsity in defect density
prediction based deep learning?

To answer this question, we study the role of data sparsity
levels for the defect density variable in the performance of
DGRNN and other prediction models. Since the used datasets
contain few numbers of defected modules, the majority of
records have zero-defect density. Therefore, we investigate
the impact of this challenge on the performance of the pro-
posed model. Conventionally, the modules with zero defect
density are known as majority and the remaining modules are
known as minority. The sparsity ratio is usually computed in
equation (2), a higher value indicates a large sparsity level.

Figures 8 and 9 show the MAE values under various values
of SR. The shadow region indicates the confidence range
of 0.95 for the line created by a non-parameter smoother
(loess smoothing). We can see a lot of diversity in predictive
performance for any given amount of sparsity in this revised
scatter plot, but we can also see that SR has a detrimen-
tal influence on predictive performance. The smoothed line
begins at almost MAE = 1.2, drops to 0.9 at the median,
and then increases to 1.7 MAE when the SR surpasses 80%.
In other words, classifiers outperform random guessing at
this level of SR (see effect size of VH category in Table 5).
In general, the negative impact is seen on the right side of
the dotted line for extremely high SR data sets, as well as on
the left side of the dotted line for low SR data sets, where
sparsity can cause a large decline in predictive performance.
On the other hand, we can see the similar tendency if we
simply look at DGRNN’s accuracy with different levels of
data sparsity, however the degree of unpredictability for lower
SR levels is fairly considerable. This implies a negative rela-
tionship between performance and SR, which is considered
a substantial influence in most cases. In conclusion, the very
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high levels of data sparsity in software defect data threatens
the accuracy of prediction models. Therefore, any method of
manipulating sparsity in the data is likely to be useful for
predicting software defect.

Table 5 summarizes the accuracy results of the nine models
under different levels of data sparsity. The values in boldface
represent the most accurate results. We can observe that the
proposed model beats the others under all datasets and other
dataset categories. This provides evidence that the proposed
DGRNN model can work perfectly under different levels of
data sparsity with good accuracy. Also, the average improve-
ment and the size of its effect for DGRNN on random guess-
ing are remarkable and a good indication of the superiority of
the proposed model.

We also examined the average improvements of DGRNN
against other prediction models across different levels of data
sparsity. In this evaluation, the DGRNN is considered the
model under evaluation and each one of the comparative mod-
els is considered as baseline model. Interestingly, we noticed
a significant degree of average improvement against, SVM,
MLR, and MLP across all the different levels of SR. Similar
patterns can be observed across all levels of SR datasets as
our model can significantly surpass five machine learning
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TABLE 5. Summary of accuracy for all prediction models across different categories of datasets.

Model Very High High Medium Low
MAE SA ES MAE SA ES MAE SA ES MAE SA ES
ADA 0.8 0.59 0.1 0.52 0.73 023 0.65 0.63 0.3 0.73 0.59 0.33
DGRNN 0.6 0.59 0.1 0.29 0.78 0.24 0.4 0.72 0.34 0.4 0.72 0.4
GRNN 1.30 1.05 0.18 0.81 0.67 0.15 1.02 0.77 0.41 0.82 0.74 0.25
KNN 0.81 0.58 0.1 0.82 0.57 0.18 1.18 0.32 0.15 0.93 0.44 0.18
MLP 1.68 0.14 0.03 1.32 0.3 0.1 1.07 0.39 0.18 1.07 0.37 0.2
MLR 303 | -056 | -0.08 1.8 0.05 0.04 1.58 0.11 0.1 1.67 0.04 0.13
RF 0.83 0.58 0.1 0.41 0.78 0.25 0.54 0.71 0.35 0.47 0.74 0.41
SVM 0.94 0.52 0.09 0.89 0.53 0.16 0.89 0.49 0.21 0.91 0.45 02
XGB 0.82 0.58 0.1 0.34 0.82 0.26 0.55 0.7 0.34 0.54 0.7 0.4
ZIFR 1.06 0.46 0.08 0.8 0.58 0.18 0.84 0.52 0.22 1.01 0.41 0.22
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FIGURE 10. Boxplots of prediction models across each SR dataset category.

models and produce a relatively acceptable improvement over
ensemble learning models such as RF, ADA, and XGB.
Figure 10 shows a comparative analysis of all defect den-
sity prediction models with boxplot visualizations. SR values
are used as distinguishing factors between various dataset
groups (from Low to Very High); these are depicted using
dashed vertical lines. Although, the consistency between box-
plots indicates little differences across SR levels, nonethe-
less our proposed model fairs well in comparison to other
models especially against XGB and RF models. The smaller
box heights in the SVM and ZIFR models indicate smaller
variability in these models, the prediction accuracy within
these two models is underestimated. For datasets with Very
High SR levels, we can see that KNN and ADA models
are much more competitive and very close to the top three
models (XGB, RF and DGRNN); in this scenario, our model
produced a smaller MAE median; in fact, when it comes to
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the median of MAE metric, our model is consistently better
than the others and KNN is the least stable model dues to very
high MAE variability and fluctuation.

In summary, we conclude that the DGRNN model is stable
and less sensitive to changes in SR levels as seen in Figure 10
and Table 6. However, the DGRNN and ensemble learning
models are comparative but not significant even though the
DGRNN model produces good average improvements in SA
and the effect size on these models.

IX. THREATS TO VALIDITY

In this section we describe the main threats to our study
validity. There are two main types of threats to validity:
1) Internal validity and 2) External validity. Internal threats to
validity mainly deal with validation approach and choices of
prediction models. It is well known that the use of validation
technique techniques to empirically validate the prediction
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TABLE 6. Average improvement of DGRNN over each one of the base models.

Baseline Very High High Medium Low
Model
p-value SA ES p-value SA ES p-value SA ES p-value SA ES
ADA 04 0.24 0.45 0.13 0.43 0.81 0.15 0.39 0.69 0.43 0.45 0.58
GRNN 0.09 0.23 0.47 0.02 0.71 1.1 <0.001 0.61 1.8 0.04 0.52 2.1
KNN 0.33 0.26 0.56 0.04 0.64 1.3 <0.001 0.66 2.18 0.02 0.57 4.23
MLP <0.001 0.64 4.01 <0.001 0.78 3.37 <0.001 0.63 221 0.03 0.62 1.61
MLR <0.001 0.8 2.69 <0.001 0.84 2.52 <0.001 0.75 1.74 0.017 0.76 1.32
RF 0.38 0.27 0.44 0.34 0.28 0.42 0.674 0.25 0.25 0.75 0.15 0.12
SVM 0.047 0.35 5.43 0.002 0.67 3.02 0.002 0.55 5.46 0.047 0.56 7.2
XGB 0.41 0.26 0.4 0.41 0.15 0.19 0.589 0.28 0.28 0.87 0.25 0.21
ZIFR 0.02 0.43 3.93 0.015 0.63 1.96 0.004 0.53 3.73 0.049 0.6 1.84

model has significant impact of the final results. Although
there is a debate about each type of validation techniques,
we favor using repeated 10 Folds cross validation. This
approach can reduce potential bias from data sampling. The
second threat is the choice of machine learning algorithms
that will be compared against our proposed model. We chose
a set of popular machine learning prediction methods in order
to compare them with DGRNN.

On the other hand, the external validity deals with two
main threats: choice of datasets and evaluations measures.
In terms of datasets, we decided to use large portion of public
datasets, but unfortunately not all defect datasets can fit for
regression problem as in defect density problem due to the
absence of bug count variable. Therefore, these datasets were
excluded from our empirical investigation, even though they
might affect our derived conclusions. With respect to the
evaluation measures, Shepperd and McDonnell [46] argued
that the relative accuracy measures usually yield bias conclu-
sion and affect the generalizability of the findings. Therefore,
we decided to use only the most trustworthy measures such
as MAE, SA and effect size because they are unbiased and
can tell us the true conclusion when comparing the prediction
models [2], [50], [51].

X. CONCLUSION

Delivering a high-quality software product is an essential
task during software testing and maintenance phases. Defect
density is an important factor of software product quality.
In this paper we proposed an enhanced deep neural network
called DGRNN model based on the traditional GRNN neural
network to predict defect density. The constructed DGRNN
model has been evaluated against other popular machine
learning models using the repeated 10-Folds cross validation,
and 28 public datasets from different repositories. Since
defect density variable in these datasets are usually sparse,
we examined the role of data sparse levels on the performance
of DGRNN and other prediction models. The obtained results
demonstrate that the DGRNN model significantly surpasses
the other prediction models over 28 datasets, and especially
over datasets with high and very high SR levels. Furthermore,
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our model is competitive to other ensemble learning such as
RF, XGB and Ada over medium and low SR levels. However,
we also found that the use of MLP and MLR models harm the
accuracy of defect density prediction. Finally, we concluded
that the performance of the prediction models is severely
threatened by very high levels of data sparsity in the soft-
ware defect dataset. Therefore, any method of manipulating
sparsity in the data is likely to be useful for predicting defect
density.

APPENDIXES
DESCRIPTION OF SOFTWARE METRICS
1) Halsted and McCabi static code metrics

o OP: The number of operators

¢ OD: The number of operands

o UOP: The number of unique operators

o UOD: The number of unique operands

o C_LTH: Halstead Length is the total of all the
lengths in the methods

e C_VOL: Halstead Volume is the total of all the
volumes in the methods

« C_BUG: Halstead Bugs = C_VOL/3000

o« C_EFF: Halstead Effort = is the total of all the
effort in the methods

e v(G): Cyclomatic Complexity Metric

« ac: Actual Complexity Metric

« 1v(G): Module Design Complexity Metric

« ev(QG): Essential Complexity Metric

o pv(G): Pathological Complexity Metric

e SO: Design Complexity Metric

o S1: Integration Complexity Metric

o OS1: Object Integration Complexity Metric

« gdv(G): Global Data Complexity Metric

o DV: Data Complexity Metric

« DR: Data Reference Metric

o TDR: Tested Data Reference Metric

« maint_severity: Maintenance Severity Metric

o DR_severity: Data Reference Severity Metric

o DV_severity: Data Complexity Severity Metric

o gdv_severity: Global Data Severity Metric

¢ MAXV: Maximum v(G)
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o MAXEV: Maximum ev(G)
o QUAL: Hierarchy Quality

2) CK metrics

o« WMC: weighted methods per class

o DIT: depth of Inheritance Tree

o NOC: number of children

o CBO: coupling between object classes

o RFC: response for a class

o LCOM: lack of cohesion in methods

o LCOM3: lack of cohesion in methods, different
from LCOM

o NPM: number of public methods

o DAM: data access metric

o MOA: weighted methods per class

o MFA: measure of functional abstraction

o CAM: cohesion among methods of class

« IC: inheritance coupling

o CBM: coupling between methods

o AMC: average method complexity

o AC: afferent couplings

o EC: efferent couplings

¢ Max(CC): max value of McCabe’s cyclomatic
complexity

o Avg(CC): average value of McCabe’s cyclomatic
complexity

o LOC: lines of code
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