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ABSTRACT Radio access network (RAN) technologies continue to evolve, with Open RAN gaining
the most recent momentum. In the O-RAN specifications, the RAN intelligent controllers (RICs) are
software-defined orchestration and automation functions for the intelligent management of RAN. This article
introduces principles for machine learning (ML), in particular, reinforcement learning (RL) applications in
the O-RAN stack. Furthermore, we review the state-of-the-art research in wireless networks and cast it onto
the RAN framework and the hierarchy of the O-RAN architecture. We provide a taxonomy for the challenges
faced by ML/RL models throughout the development life-cycle: from the system specification to production
deployment (data acquisition, model design, testing and management, etc.). To address the challenges,
we integrate a set of existing MLOps principles with unique characteristics when RL agents are considered.
This paper discusses a systematic model development, testing and validation life-cycle, termed: RLOps.
We discuss fundamental parts of RLOps, which include: model specification, development, production
environment serving, operations monitoring and safety/security. Based on these principles, we propose the
best practices for RLOps to achieve an automated and reproducible model development process. At last,
a holistic data analytics platform rooted in the O-RAN deployment is designed and implemented, aiming to
embrace and fulfil the aforementioned principles and best practices of RLOps.

INDEX TERMS O-RAN, machine learning, reinforcement learning, MLOps, RLOps, digital twins, data
engineering.

I. INTRODUCTION
As the forefront of a mobile communication network, the
Radio Access Network (RAN) directly interacts with the
user equipment (UE). Its architecture has undergone pro-
found changes in recent years, transitioning from mono-
lithic to disaggregated architectures and from vendor-based to
open-source solutions [1]. The disaggregation of the RAN is
reflected in two vectors, one is the horizontal disaggregation
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of the network functions with open interfaces, and the
other is the virtualization of hardware and software in ver-
tical. To achieve efficiency dividends, allow for increased
innovation, and also performance gain, O-RAN1 emerged
from years of industry work in groups studying possible
Open RAN trends (including the 3rd Generation Partnership
Project (3GPP)). O-RAN is based on 3GPP new radio (NR)

1In this paper, O-RAN is taken as the reference architecture to demonstrate
the validity of the proposed RLOps, but the principles can be applied to others
RAN architectures.
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specifications, meaning it is 4G and 5G compliant, while the
difference is merely the additional interfaces that are defined
by O-RAN, focusing on a functional split called 7.2x.

The emphasis of O-RAN has been on openness and intel-
ligence from the beginning [2], through which it intends
to actively embrace the technological revolution brought
by machine learning (ML). Within recent years significant
research has been undertaken demonstrating the potential
of ML within telecommunications, including channel esti-
mation in massive multiple-input and multi-output (MIMO)
systems [3], resource and service management in large-scale
mobile ad-hoc networks [4] and mobile edge computation
offloading and edge caching [5], to name but a few. The
introduction of this class of methods is supported through
a number of avenues but perhaps most importantly through
the definition of open interfaces and radio intelligence con-
trollers (RICs). Through their introduction, O-RAN provides
the foundations by which ML models can be introduced into
RAN. Thereby, facilitating the evolution of RANs from being
static and stiff to data-driven, dynamically sensing and self-
optimising. Notably, the exact mechanisms and procedures
required to deploy cutting-edgeML solutions into production
and realise their economic potential still need clarification.

As ML models and systems continue to mature they are
experiencing increased adoption within a range of industrial
settings. The process through which they are developed and
deployed is being formalised under the banner of MLOps [6].
Whereby, this is comparable to DevOps [7] and emphasises
similar best practices whilst considering the unique chal-
lenges which the relevance of data in MLmodel development
introduces. In order to reliably and consistently bring the
potential of ML to O-RAN, an operational platform imple-
menting MLOps principles whilst considering the unique
challenges of RANs is required. These challenges pertain to
its prominence as the critical national infrastructure and the
highly dynamic nature of the platform. We place particular
emphasis on the challenges of Reinforcement Learning (RL)
within O-RAN due to the numerous applications that exist
for it and its relative immaturity in terms of industrial appli-
cations.Where we discuss key elements throughout the appli-
cations lifecycle including design considerations, challenges
pertaining to training within the simulation and effectively
monitoring live deployments, to name but a few. This pipeline
and associated set of principles is coined RLOps.
In this paper, we introduce the principles and best practices

of RLOps in the context of an O-RAN deployment [2]. To the
best of our knowledge, this is the first work to systematically
discuss the life-cycle development pipeline of ML, especially
RL models in O-RAN and put forward a network analytics
platform in accordance with RLOps. We explain the fun-
damental principles and highlight critical factors involved
in RLOps. In Section II, we briefly introduce ML and RL,
and the evolution of RAN and O-RAN architectures are
given in detail. Next, we discuss some related applications of
ML/RL in intelligent O-RAN, and correspondingly a series of
challenges encountered in the development and deployment

stages of ML/RL models. In Section III, we elaborate on the
principles of RLOps from the perspective of design, deploy-
ment and operations. We highlight the safety and security
concerns in RLOps. In Section IV, we put forward the effec-
tive routines and best practices of operating the aforemen-
tioned principles from the view of digital twins, automation
and reproducibility. Section V illustrates the O-RAN related
data analytics platform designed for achieving the principles
and best practices of RLOps. Finally, Section VI concludes
this paper. Table 1 gives the list of used acronyms.

II. RELEVANT BACKGROUND
A. MACHINE LEARNING IN GENERAL
Machine Learning (ML) is a branch of Artificial Intelligence
(AI) concernedwith learning from data, e.g. supervised learn-
ing (SL) and unsupervised learning (UL), or interaction, e.g.
RL [8]. In general, ML considers the utilization of an adaptive
model parameterized by θ with the intention of minimizing
some objective function J (θ ). The exact objective function
and form of the adaptive model depend on the exact formula-
tion of the task (or set of tasks) we are interested in.

Within SL tasks, we are typically presented with a dataset
D = {xi : yi}{i∈|D|} comprising of feature vectors xi, which
are labelled yi which may refer to a discrete categories (cat or
dog, for example) in a classification task or a real number
if it is a regression task. Within this class of problem the
objective is to learn a mapping Fθ : X → Y . A typical
formulation of our objective function is the minimizing of
Negative log-likelihood in the case of classification or the
Mean Squared Error in the case of regression tasks.

Like SL, in UL we are typically presented with a dataset
D = {xi}{i∈|D|}, but in this case there are no labels. When
presented with a task of this nature, we may be interested in
clustering [9], density estimation [10] or in dimensionality
reduction for visualization [11].

RLs interaction with data is fundamentally different from
other forms of ML. Typically, the problem is formalised as
a Markov Decision Process (MDP), where this is defined
by the tuple < S,A,P,R, γ >. Where S is the set of
environment states, A is the set of actions that an agent
performs, P represents the transition probability from any
state s ∈ S to any state s′ ∈ S for any given action a ∈ A.
R is the reward function that indicates the immediate reward
received from the transition from s to s′, and γ is the discount
factor that trades off the instantaneous and future rewards.
The intention is to find a policy π : S → Awhich maximises
the expected cumulative discounted reward G [12] as defined
in Equation 1.

G = E[
∑
t≥0

γ tR(st , at , st+1|at ∼ π (·|st ), s0)] (1)

The process of finding this π requires exploratory behaviours
such that the agent can evaluate policies and learn about the
MDP. The parameterization of the adaptive model may vary;
for example, in model-free algorithms, we may parameterise
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TABLE 1. List of acronyms.

our π directly or the state-action value Q, or in model-based
algorithms, we may learn a model of the MDP directly.2

B. EVOLUTION OF THE RAN AND O-RAN ARCHITECTURE
A typical mobile communication network mainly comprises
a RAN, a transport network and a core network. The RAN
gives the UE access to the core network, this subsequently
provides the services to the user. The transport network
implements the IP routing and IPSec functionality that
securely connect the different network elements and network
domains of the mobile network, thus allowing for full end-to-
end functionality.

From 1G to 5G, the evolutionary trends of communica-
tion systems are the modularity and virtualization of decou-
pled network functionalities. For instance, the core network
embraces x86 platform universal servers and performs net-
work function virtualization (NFV), where the slicing of the
core network embodies this feature. However, due to the
complexity of antennas, the Remote Radio Heads (RRHs),
and the Baseband Units (BBUs) in RAN, the functionality
decoupling of RAN is slower than the decoupling of the

2Can be combined with model-free approaches.

transport network and core network. Three distinct structural
improvements have been proposed in the evolution of RAN,
namely the distributed RAN (D-RAN), the centralized (or
cloud) RAN (C-RAN), and vRAN. The RRHs and BBUs are
co-located in D-RAN at every distributed cell site. The RRHs
and BBUs communication are provided by the proprietary
interfaces. Cells are connected back to the core network
through the backhaul interface. In C-RAN, all BBUs are
further concentrated into the centralized BBU pool for cloud-
ification, and every site merely keeps antennas and RRH.
RRHs and the centralized BBU are connected with fronthaul.
Centralized BBUs bring the convenience of cell deployment
and maintenance and significantly reduce the CAPEX and
OPEX. vRAN decouples the software and hardware by NFV,
where the BBU is virtualized on x86 servers [13]. In 3GPP
5G NR related specifications, the above Base Station (BS)
components are reorganised into the centralized unit (CU),
distributed unit (DU) and radio unit (RU) entities, with their
deployment following a flexible topology. CU and DU play
the role of BBU, and the RU functions the converting between
the signals and radio frequency (RF). A more comprehensive
review regarding the details of interfaces and radio evolution
is presented in [14]. In the meantime, all the hardware design,
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specialized software development and intellectual properties
of the RAN-related components are still proprietary.

Network operators expect to obtain decoupled, standard-
ized RAN hardware and open-source operating software to
relieve current vendor restrictions. Consequently, the O-RAN
alliance was founded in February 2018. Its ambitious mis-
sion is to reshape the RAN industry, building future RANs
on a foundation of virtualized network elements, white-box
hardware, and standardized interfaces. The core principles of
O-RAN are intelligence and openness, which will lead the
direction beyond 5G and 6G.

Fig. 1 demonstrates one example architecture of O-RAN.
O-RAN architecture follows 3GPP architecture and interface
specifications, while its NFV is as consistent as possible with
European Telecommunications Standards Institute (ETSI).
The service management and orchestration (SMO) function
in O-RAN has been designed to provide network manage-
ment functionalities for the RAN and may also be extended
to perform core management, transport management, and
end-to-end slice management. Meanwhile, the SMO con-
nects with O-Cloud through the O2 interface. O-Cloud is a
cloud computing platform comprising a collection of phys-
ical infrastructure nodes that meet O-RAN requirements to
host the relevant O-RAN functions, the supporting software
components and the appropriate management and orches-
tration functions [2]. One important functionality provided
by SMO is the Non-RT RIC designed to implement auto-
mated policy-based optimization activities by running ML
models. The Non-RT RIC links towards Near-RT RIC via
A1. The Near-RT RIC controls and optimizes the functions
of CU and DU through the E2 interface. Meanwhile, third-
party, microservice architecture-based applications can also
be loaded into the Non-RT RIC and Near-RT RIC through
rApps and xApps, respectively, to perform data-driven opti-
mization behaviours. In this process, E2 can be leveraged
to access the radio node data, and these data can be fed
into RICs for ML model training. The CU connects to or
controls one or more DUs via the F1 interface. Similarly, one
DU connects to at least one RU through the open fronthaul
plane. The CU/DU stack hierarchically handles operations
of different timescales, while the RU manages and controls
the most fundamental RF components and the physical layer
in every RU deployment site. All functions of the O-RAN,
including the Near-RT RIC, CU, DU and RU, are connected
to the SMO through the O1 interface for FCAPS support.

It is noticeable that three control loops involving system
parameters and resource allocations are defined in O-RAN.
ML solutions can be adopted in any loop based on the
time-sensitivity of tasks, in which loop1 handles operators
at the time scale of TTI level (<10 ms) for those scenarios
that emphasize real-time like the radio resource control and
allocation happened in between DU and RU; loop 2 operates
in the Near-RT RIC which deals with tasks operating within
10-500 ms. It mainly aims to the O-RAN internal resource
control, which RICs perform; loop 3 operates in the Non-RT
RIC to process tasks greater than 500 ms.

C. ML/RL APPLICATIONS IN O-RAN
ML is undoubtedly the most remarkable technological
progress in recent years. From CV [15], NLP [16] to
robotics [17], gaming [18], e-commercial [19] and biol-
ogy [20] etc. ML applications in almost every technical field
have made marvellous achievements. Also, the upcoming
O-RAN through the introduction of intelligent programmable
RIC enables the RAN to have a mechanism to use emerging
learning-based technologies to automate network functions,
improve network efficiency, and reduce operating costs. In O-
RAN, the initially closed internal radio resources are opened
and controlled by unified RICs. That brought some profound
changes to communications studies.

1) With higher mobile edge computing (MEC) capability,
O-RAN enables interaction with end-users, such as
directly perceiving end-users behaviours and respond-
ing to them so that the optimization of the network can
be completed from amore fine-grained and more direct
user model analysis way, without the need to perform
it in the core network or the centralized cloud.

2) O-RAN can significantly help the further promo-
tion of 5G. As often mentioned, the main goals of
5G are enhanced mobile broadband (eMBB), ultra-
reliable low-latency communications (URLLC) and
massive machine-type communications (mMTC) [21].
Due to the complex and diverse environmental con-
ditions faced by 5G networks, it is necessary to allo-
cate resource blocks with network slicing to meet task
requirements for different application scenarios. The
introduction of O-RAN makes a dynamic, learning-
based slicing mechanism possible. Therefore, deep
learning-based adaptive slicing, the collaboration of
SDN and NFV, is becoming a research hotspot.

3) RICs provide a platform for third-party applications
deployment, including ML models, enabling the rapid
development and deployment of innovative ideas and
algorithms.

The O-RAN use case whitepaper [2] described some of the
AI-based deployment targets, such as service level agreement
(SLA) assured 5G RAN slice, context-based dynamic han-
dover management for vehicle-to-everything (V2X), traffic
steering, and flight path based dynamic unmanned aerial
vehicle (UAV) resource allocation etc., while we believe the
potential of AI-enabled O-RAN is far more than that. The
state-of-the-art communication system embodies a feature of
hierarchical and self-contained functions. All functions are
interconnected with standardized interfaces. For instance, the
signal undergoes a series of units from the transmitter to
the receiver, such as modulation, coding, demodulation, de-
noising, and corresponding channel measurement. Each unit
has a well-defined mathematical model that can approach the
Shannon limit, and it can be considered that a single unit has
achieved its local optimum. However, there are significant
challenges in the analysis and optimization of cross-units.
If the whole of the above units is regarded as the optimization
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FIGURE 1. One example architecture of O-RAN.

TABLE 2. Survey of the SOTA works regarding DRL applications under the O-RAN context. According to the attributes of these tasks, we divide them into
four categories: network slicing, scheduling, and splitting; connection management; resource allocation and xApps related.

object, then this kind of global or multi-objective optimiza-
tion is currently challenging to achieve [37]. The combination
with ML/RL various learning paradigms makes O-RAN have
the potential for this overall or multi-objective optimization
revealed in some advanced research. For instance, in the phys-
ical layer, the DL-based OFDM receiver can achieve accurate
channel estimation using fewer pilot signals [38]; the end-to-
end learning of communication systems has been realized in
an autoencoder way which shows advantages in synchroniza-
tion, equalization and dealing with hardware impairments
such as non-linearities [39]; the BS downlink channel state
information (CSI) in frequency division duplexing (FDD)
massive MIMO system can be inferred by DL with feeding
the downlink CSI under certain conditions [40]; under the

premise of imperfect CSI, the design of hybrid massive mimo
digital precoder and analog combiner based on RL [41];
and a variety of DL-based LDPC decoding solutions under
harsh noise [42]. In the network layer, the learning-based
algorithms shape the SON with dynamic resource alloca-
tion properties like automated networking, slicing, dynamic
spectrum sensing, random access channel, 5G cooperative
communication and resource allocation [43], [44], and load
balancing optimization in the network layer. It is to be noted
that with theO-RAN stepping into themarket gradually, some
DRL-based optimization cases targeting O-RAN’s features
are beginning to appear. A survey of state-of-the-art (SOTA)
works regarding DRL applications embracing the O-RAN
is shown in Table 2. According to the attributes of these
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tasks, we divide them into four categories: network slicing,
scheduling, and splitting; connection management; resource
allocation and xApps development related. The correspond-
ing algorithms and gains are also detailed in this table.

D. CHALLENGES OF ML/RL DEVELOPING IN O-RAN
Although the hierarchical structure and decoupling character-
istics of O-RAN have brought the benefits of supplier diver-
sification, this also brings in higher complexity in O-RAN
deployment. On the other hand, developing and deploying a
suitable intelligent model in O-RAN may lead to practical
engineering technology problems. Considering the most vig-
orous ML domains in CV and NLP, some standard data sets
are generally used to evaluate the performance of the devel-
oped ML algorithms. These algorithms are designed to target
the features of the given training sample. For example, for
the image sample, the initial features of the image space are
extracted from adjacent pixels through various convolution
operations, and then through various sophisticated network
structures such as AlexNet, VGG, and ResNet, the features
are further refined. The mapping from the training space to
the target space is accurately constructed. In the booming RL
field, whether it is gaming or robot control, the development
of related algorithms is basically carried out under a standard
toolkit like OpenAI gym [65]. A noteworthy phenomenon
is that the fields mentioned above benefit from the sup-
port of solid mathematical models and complete underlying
software. The development of involved ML has been sys-
tematically transformed into a near-standard industry. These
models corresponding to different application scenarios are
well defined, making the goal of algorithm development
precise and the whole process controllable.

Turn our attention to the application of ML in O-RAN.
The state-of-the-art progress made by the current O-RAN
alliance is summarised as follows. (1) The programmable
and expandable RIC modules are introduced into the O-RAN
architecture, and an interface for data collection within the
network is defined. (2) With the clarification of the structure
definition, a series of ambitious optimization or control goals
for resource, traffic flow, and power consumption have been
proposed. (3) The workflow of using SL and RL has been
standardized. However, the above progress only reflects the
possibility of O-RAN embedded ML in a broad and macro
sense. Specific to the realistic implementation of the ML
models, we will encounter a rather complicated situation.
We further consider issues of ML in O-RAN from algorithms
development and deployment angels, respectively. From the
view of algorithms development, we summarised the poten-
tial issues below:

1) In O-RAN, data related to model training is difficult
to obtain and process. Even the standard interfaces
defined in the O-RAN architecture, such as E2, can
access DU, CU and other components to collect infor-
mation inside the network. This data comes, by default,
in raw format and without a schema that is not suitable
to be directly consumed by ML/RL algorithms. If we

intend to use this field information to train the model,
the cost of data collection will be very high.

2) For different optimization goals, the required data
for neural network training is heterogeneous. The
attributes or patterns of various types of data hiding
are elusive. For example, for radio traffic, the data
flow as a whole is usually non-Euclidean. In some
RU-distributed sites, the data does not meet the char-
acteristics of independent and identically distributed
(IID), and some data sets have very strong temporal
correlations, while the correlation of other data sets is
more reflected in the spatial domain. That will pose
challenges to the subsequent data processing methods
and feature extraction schemes, affecting the overall
neural network structure design.

3) Some global optimization problems demonstrate the
applicability of RL. That poses other challenges for
establishing the connection between O-RAN and RL.
These challenges are often not about the RL algorithm
itself but how to abstract the problem to be solved into
the RL framework and define the RL-related environ-
ment, action, state, and reward. For instance, the train-
ing issue comes along with high-dimensional state and
action spaces; the availability of offline models trained
from historical logs; the feasibility of online model
training but with limited samples or partial observa-
tions; the large reward delay or vanishing in RANs; the
complexity of multi-agent RL scheme for optimization
problems across multiple RANs [66].

4) The RAN is the entrance to the entire wireless net-
work and is closest to UEs. Therefore, the data flow
in O-RAN is inevitably directly related to UEs. If we
want to use these data streams to train neural network
models, new requirements will be put forward for the
privacy protection of the UEs and the desensitization of
related data.

5) O-RAN supports multi-vendor third-party ML/RL
applications and increases the complexity of the
processes and activities related to the network manage-
ment plane, which may result in action conflicts in exe-
cution, especially when resource allocation is involved.
The action coordination ought to be considered in the
process of model training [33].

We have introduced that xApps are connected to Near-RT
RIC in O-RAN as the host of trained ML models. These
trained models are pre-stored in O-cloud and managed by
the SMO. However, from the view of model deployment, the
above system is not enough to overcome the problems that
may arise after the model is deployed in the field. On the
one hand, the models obtained by SL were trained by spe-
cific data sets. After deploying these mature models, one
possible consequence is that the sample data characteristics
in the model deployment area are inconsistent with the char-
acteristics of the original training set, which will result in
model failure; that is, the expected results cannot be correctly
received, as the model can not respond to the input features.
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FIGURE 2. This figure lists the critical elements involved in the principle of RLOps. That is the design, development, operations and
safety/security, and then we further break down each element into the high-level taxonomy of considerations and methodologies.

On the other hand, as time changes, the external environment
changes continuously for the RL model, which will make the
initially trained policy no longer suitable. That puts forward
new requirements for model management, update and main-
tenance, andwemust look at O-RAN and itsMLmodels from
a more holistic perspective.

III. PRINCIPLES OF RLOps
A. BRIEF INTRODUCTION OF MLOps
MLOps is defined as a set of practices that combines ML,
DevOps and data engineering, aiming to deploy and maintain
ML models in production reliably and efficiently. It can
be seen as delivering ML applications through DevOps,
with additional attention to data and models. MLOps per-
forms the idea of automation and acceleration. Automation
means automating the ML pipeline from data to model for
continuous training, as well as automated CI/CD for ML
applications. Acceleration means to increase the speed of
delivery while maintaining the quality of service for ML
applications [67].

An MLOps pipeline usually consists of the following
elements:

1) Data preparation and model design.
2) Model testing and validation.
3) Model integration, delivery and monitoring.
4) Continuous training and CI/CD.
Similar to DevOps, MLOps is an iterative approach. The

change in developing requirements, the evolution of the
deployment environment, and the alerts raised by monitor-
ing the deployed model would trigger the execution of the
pipeline to guarantee the quality of ML applications.

B. MOTIVATION FOR RLOps
MLOps is the general principles and practices of continuous
delivery and automation pipelines in ML. Considering the
increasing applications of RL in communication networks,

FIGURE 3. Example of RL.

we study the ‘‘RLOps’’ principles to deliver the value of RL
to the industry.

RL differs from other ML approaches in several ways,
which brings the need for more targeted principal sets.
As shown in Fig. 3, Data & Environment, Agent and Reward
are the key distinctions considered in the design and delivery
of RL applications.
• Data & Environment. Data is considered the backbone
of ML practices. In RL, data is from agents interacting
with environments (online RL) or pre-collected datasets
(offline RL) [68]. For online RL, the interaction and
learning from live environments (in our case, live com-
munication networks) brings additional risks (as we
discussed in Section II-D), which is infeasible in some
cases. Hence, the idea of digital twins (DT) has been
brought up as a promising solution to the environment
and data issue of RL practices [51], providing a con-
trollable, reliable and easily accessible simulation envi-
ronment. We elaborate it in Section IV-A. Furthermore,
considering other real-data hungry cases, commu-
nication networks bring challenges to environment
access, training data acquisition and model validation.
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A network analytics platform with automated data col-
lection, pre-processing, model validation and manage-
ment abilities are proposed and discussed in Section V.

• Agent. Agents are the core of RL problems, interacting
with the environment and following their policies. The
policy that agents perform is the brain ofMDP solutions,
as counterparts for ‘‘models’’ in SL and UL. The general
principles for developing and deployingMLmodels also
apply to RL models, including model analysis, testing
and monitoring.

• Reward. The reward is unique to MDPs. It repre-
sents the goal of RL, which is essential information to
have in model design and deployment. Unlike ‘‘labels’’
as intrinsic features of data in SL, rewards reflect
the expected behaviour of agents. In RL applications,
reward design is always part of the problem formulation,
which requires special attention in RLOps.

As illustrated in Table 2, a large amount of work has
been demonstrated for the specific approaches of developing
RL-based model in O-RAN recently. However, we believe
that on top of these use cases, some common considerations
and issues need to be solved, at least, to be realised. By doing
that, we expect some general principles of developing and
deploying RL models can be summarised to realise true
life-cycle management and continuous integration and deliv-
ery of such models. Hopefully, a more realistic and affordable
RL developing pipeline can be put forward to fulfil the above
objective rather than developing case by case. That is the
essential intention of this paper.

To effectively deploy RL applications requires careful nav-
igation through a wide range of decisions, from problem for-
mulation to algorithmic choices to the selection of monitoring
metrics, to name a few. In an attempt to demystify these
decisions, we introduce a non-exhaustive list of ’’RLOps’’
principles and observations, which we consider helpful in
realizing the potential RL promises. We hope to provide
distinct but complementary ideas for RLOps to what may
be expected in MLOps and DevOps. For an overview of key
considerations and principles for MLOps please refer to [69].

We introduce principles of RLOps under the application
development cycle introduced in Fig. 4.3 Belowwe talk about
the three parts: design, development and operation. We will
also elaborate on the safety and security concerns related
to these three parts. A summary of the high-level taxonomy
of considerations and methodologies involved in the RLOps
principles is shown in Fig. 2.

C. DESIGN IN RLOps
∗ The challenges of design in RLOps lie in the appropri-
ate task formulation and algorithm selection specific to the
dynamic environments.

3Inspired and adapted from https://ml-ops.org/img/mlops-loop-en.jpg

FIGURE 4. RLOps diagram. This diagram demonstrates the development
cycle of applications.

1) TASK FORMULATION
Consider the arrival of a new task that takes the form of
sequential decision-making, as such RL is likely to be a
good solution. Examples of these tasks are given in Section I
including handover and interference management, to name
but a few [70].

An integral step to build a solution based on RL is to
formulate the given problem as an MDP. The formulation of
MDP affords many degrees of freedom. Each design decision
should be considered carefully, as the form of the MDP will
dictate a number of algorithmic decisions. Basic elements to
consider include the number of agents, the representation of
actions the degree of stochasticity of the environment. For
example, if the problem requires distributed decision-making,
a stochastic game [71] may be an appropriate formulation; If
the hierarchical representation of the action space is possible,
and options framework [72] may be possible.

As part of the task formulation phase, it is useful to con-
sider evaluation metrics and baselines that are suitable for the
task, where these baselines may be existing solutions. This
will smooth out the test, validation and monitoring phases in
RLOps, and potentially provide a fail-safe if the RL applica-
tion begins to behave erratically.

2) ALGORITHM
As discussed in the above section, decisions on the formation
of MDP directly impact the form of the solution. Some of the
design practices are listed below, but many other general rules
exist. Reference [73] provides a good analysis of the impact
of some design choices on specific RL algorithms.

• If the action space is continuous, policy gradient-based
approaches are likely to be a good option. Some dis-
cretisation could also be applicable, such as Q-Learning
variants.

• If the state is non-markovian, recurrency can be intro-
duced through stacking previous states [74] or RNN
structures like LSTM [75].
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• Particularly, small state-action spaces may be amenable
to tabular approaches [76], which provides a higher
degree of interpretability over methods that use function
approximation.

In the design phase, the training strategies and tricks
are also worth considering to tackle problems like model
generalisation and training difficulty. Considering potential
varying environments for deploying RL solutions, we are
interested in how the model generalizes and as such our
training methodologies should reflect this. It has become a
consensus in RL research that models trained within limited
instantiation of environments do not generalize well [52].
The utilization of methods like ‘‘Domain Randomisation’’
is essential for model generalisation. As for the training
difficulty, the utilization of a training curriculum, where a
series of increasingly complex tasks are presented to the agent
with the intention of easing learning on difficult tasks [77].
Imitation Learning is another approach to ease the learning
process, [78] where an agent is pre-trained with the pre-
collected dataset containing expert behaviours [68]. In [79],
a binary neural network using neuroevolution is presented to
simplify the inference model.

In addition to these design choices, we may wish for
our algorithm to possess other characteristics. For example,
we may want its decisions to be explainable or for it to be
aware of its uncertainty with regard to its state. That moves
us to other sub-areas of RL researches likeExplainability [49]
and Bayesian RL [80], [81] which deals with these concepts
that are important from business, legislative or even safety
perspectives.

D. DEVELOPMENT IN RLOps
∗ The reliable platform and consistent data stream for model
training and testing are critical challenges of development in
RLOps.

Once elements of the design have reached sufficient matu-
rity levels, steps can be taken towards formally developing
the application’s capabilities. This process involves creating
the experimental environment (which will likely be based on
a DT), model training, and performance optimization.

1) MODEL
The algorithmic approach defined in the Section III-C2 pro-
vides the general structure and algorithm for the model. The
next step is to develop the necessary code for the agent.
To code everything from ‘‘scratch’’ may seem reasonable but
may lead to significant engineering expense for limited gain,
especially when a wide array of readily available open-source
libraries provide high-quality implementations of a range of
SOTA algorithms exist.4

Training RL applications in a time-efficient and com-
prehensive manner requires accessibility to a high fidelity

4Ray and OpenAI Baselines, to name but a few.

simulator - where a DT will likely be a good fit for this.5

If we take a pessimistic viewpoint, the DT or any simulator
is an approximation to the real world, and as such, there will
be inconsistencies in behaviour that may, in the worst case,
lead to testing values being inconsequential as the differences
are so profound that the policies are not transferable. This
is a Sim2Real challenge and is considered in more detail in
Section IV-A.

Once an effective algorithmic and simulation approach has
been developed to address this challenge, the next major
obstacle in the model development process is hyperparameter
optimization, which is an arduous and time-consuming pro-
cess. In the interest of efficient allocation of resources, this
process will benefit from automation.

2) TESTING
In the life circle of DevOps, testing is essential to ensure the
performance of software systems. Code sanity testing, unit
testing and integration testing are commonly used to validate
the software iteration. In MLOps [82], the scope of testing
extends to data and models. Here we re-consider testing in
the context of deep reinforcement learning (DRL) in future
O-RAN.

Once a DRL model has been trained, we require function-
ality within our pipeline to evaluate the model’s capabilities.
For trained DRL models, testing should consider multiple
model attributes to give a comprehensive evaluation of the
models’ performance. Some dimensions are also considered
in MLOps, such as the model relevance and accuracy, the
robustness to noise, the generalization ability, and ethical con-
siderations [6]. Other challenges are unique to DRL models,
for example, the ability of a DRL model to prioritize useful
experiences during learning, to choose long-term beneficial
actions, to respond to uncertainty, stochasticity, and environ-
mental changes, and avoid unintended behaviour, etc. The
testing and validation of DRL models regarding the dimen-
sions mentioned above remain an open question, leaving
space for future work. DT might play an important role in
the testing procedure since it is an environment in which
we have complete control. Manual testing might be required
in some use cases. In addition, model interpretability and
explainability are of great importance from the perspective of
both developer and network service providers, which should
be considered during testing. Considering possible network
attacks and security challenges, an adversarial attack should
also be integrated into the model testing workflow.

E. OPERATIONS IN RLOps
∗ The challenges of operations in RLOps lie in the agile and
effective monitoring and identification of errors of RL models
among different deployment sites.

Assuming that a model has passed all required testing
and validation steps and has been containerized according to

5The general structure of which should follow that mandates by OpenAI
Gym for consistency with other open-source platforms.
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system requirements, the obvious next consideration should
be for model deployment and the associated systems required
to support and maintain it. This process will include con-
sideration of the deployment location and monitoring with
the intention of providing functionalities for continuous
improvement.

1) DEPLOYMENT
A fundamental issue (which is discussed at more length in
Section III-E2) is that of discrepancies that exist between
development and production environments. This problem is
likely to be ever-present and difficult to quantify. As such,
other safeguards are likely required tomitigate this risk before
wide-scale deployment. An example of this could be using
software development practices like alpha-beta type deploy-
ments to limit the potential impact on end-users whilst getting
an empirical measure of application performance.

The environment in which the agents are deployed tends to
be highly dynamic, where changes are likely to alter network
behaviours. These changes may include internal factors like
device configurations and the deployment of other applica-
tions or external factors like changes in user behaviour or
seasonal phenomena that may affect wireless propagation
characteristics. The manifestation of this dynamic environ-
ment is a modification to the underlying MDP, and the per-
formance of RL agents will likely degrade accordingly. This
issue is one of the concept drifts [57]. The implication of the
dynamic nature of the deployment environment is that the
performance of deployed models may reduce over time. This
general phenomenon is known as Model Decay and will be
observable through the agent’s reception of the reward. This
impact can be mediated through periodic re-training if the
reward drops below some pre-defined threshold. An alterna-
tive approach is to enable online training, but this does come
with risks, most notably the requirement for exploration.
An additional risk that may arise is non-stationarity [83],
which is a consequence of a deployment consisting of mul-
tiple RL agents constituting a Multi-Agent system. Non-
stationarity arises when multiple agents are learning policies
simultaneously, resulting in uncertainty regarding environ-
ment behaviours as state transitions are implicitly dependent
on other agents.

To enable interoperability on differing base computational
platforms all applications will need to be containerised with
their associated internal dependencies for deployment with a
platform like Kubernetes [58]. A well-defined REST appli-
cation programming interface (API) will allow for communi-
cation of information between entities such that applications
can obtain external information that they require for oper-
ation and so that monitoring can be performed and deci-
sions can bemade pertaining to applications. Communication
between disparate systems within the O-RAN architecture
naturally raises considerations for model deployment loca-
tion. By selecting an appropriate location (be that topological
or cloud vs edge) and control loops described in Section II-B,
application performance and the wider performance of the

network may be improved, where benefits are related to
reduced inference time and a reduction in network traffic due
to co-location of applications with their dependencies. These
decisions may be particularly important for applications that
require very low latency for effective operation.

2) MONITORING
Through a collection of Key Performance Indicators (KPIs),
the efficacy of an RL agent can be monitored. This informa-
tion enables decisions pertaining to the application to bemade
in an informed manner. For example, if an agent is underper-
forming, it may be desirable to re-train or even replace the
agent with an alternative solution.

Monitoring and evaluating RL application performance
in the real world is critical to determining whether or not
the application is providing benefit, but this is likely to be
challenging. Simple measures like cumulative reward can
be utilized but are susceptible to issues like reward hack-
ing [84] and do not provide relative measures compared to
other methods. The most thorough approach from a network
operator’s perspective may be to have human oversight of the
decisions that agents are making, but this is not scalable and
is likely to be problematic as RL agents are often difficult to
interpret. Consideration of concepts like Explainability [85]
is likely to be essential in providing the necessary adminis-
trative oversight, which may be necessary from both a risk
and governance perspective. The most appropriate strategy is
likely to involve an ensemble of methods, including collating
a range of metrics that attest to the application’s performance
characteristics. These measures may include application-
specific measures, like throughput and latency for a resource
allocation application and include periodic utilization of AB
testing to provide a relative measure against well-understood
baselines.

In addition to the impact on reward acquisition, changes
within the environment in which the RL agents exist may
impact the computational performance of the model [69].
Metrics pertaining to model performance, like inference time,
throughput, and RAM usage, will be important in identifying
transient behaviours.

F. VERSIONING IN RLOps
∗ The challenges of versioning in RLOps lie in the synchro-
nization management among the code, model, hyperparame-
ters and developing tools.

Versioning, or source control, is the practice of tracking
and managing changes during development. O-RAN brings
the opportunity to use software-based RICs with open inter-
faces widely. Flexible and fast iteration software development
requires careful versioning, and this also applies to RLOps in
O-RAN.

1) DATA
The data preparation in RL is different from SL or UL, as it
comes from interacting with the environment. For commu-
nication network applications, data could come from either

VOLUME 10, 2022 113817



P. Li et al.: RLOps: Development Life-Cycle of Reinforcement Learning Aided Open RAN

a running network or a DT. Live network data can be stored
and versioned by data management tools like DVC ,6 Pachy-
derm 7 or other built-in tools inML development frameworks.
These tools attach version information to datasets. For arti-
ficial data generated by a DT, it is more efficient to give
snapshots of the DT, including the simulation scenario, the
configuration, the random seeds, etc. Given the versioning
information of the DT, we should be able to reproduce the
same dataset if needed.

2) MODEL
Versioning of the model is vital for controlling the model
deployment, especially when facing environment changes
or unexpected failures. Since the training pipeline of RL
models for O-RAN takes both live network data and DT, it is
important to version the training environment and pipeline
as well as the model itself to trace back this self-learning
approach. This includes the versioning of training configu-
rations, the production environment, and the versioning of
DT and network data mentioned in the previous section. The
hyperparameters that correspond to each model should also
be versioned.

3) CODE
All the production code during development and deployment
should be put into versioning. This includes the code to train
the RLmodel, the code for testing and validation, the code for
successfully deploying the trained model, and the application
code. In addition, as the training of RL inO-RANusesDT, the
code for the DT development and deployment should also be
versioned. The DT itself can be seen as a standalone project
which requires proper source control [51].

G. SAFETY AND SECURITY IN RLOps
∗ The challenges of safety and security in RLOps lie in the
robustness assurance of the developed RL models.

Model safety and operation security are critical for ML/RL
applications in O-RAN. The former can be dealt with by
introducing safety constraints into the Design and Develop-
ment process. We discuss some principles to follow for the
operation security, inspired by the DevSecOps [61], which
integrates security measures into the DevOps cycle.

For RL models running on wireless networks, Safety is
important for service assurance as well as avoiding catas-
trophic performance decay. In the exploratory learning phase,
a common approach is to consider potential safety restrictions
that exist in the environments, agents, and actions in advance
and formalize them into a Constrained MDP (CMDP), which
defines a constrained optimization problem as shown in equa-
tion 2. A safety policy is expected to achieve by training on
the CMDP [66].

max
π∈5

G(π ) s.t. Ck (π ) ≤ Vk , k = 1, · · · ,K (2)

6https://dvc.org/
7https://www.pachyderm.com/

where G is the cumulative discounted reward of a policy
π , Ck (π ) reflects the cumulative cost incurred by constraint
k on a given policy π . Specifically, Ck can be defined as
ck (s, a) which represents the possible constraint in terms of
state s and action s. Reference [66] presents one solution to
the CMDP, which is called Constrained Policy Optimization
(CPO). It searches for the policy that maximizes the reward
and satisfies the given constraints, i.e., safety requirements.
In [86], the sample efficiency in CMDP is further studied in a
model-based manner. Robust MDP has also been considered
in the scope of CMDP, leading to a robust soft-constrained
solution to the Robust-CMDP problems [87].
Security in communication networks protects the integrity

of the system, including but not limited to data, applica-
tions and user privacy. The open interfaces in O-RAN bring
democratised applications but also increase the chance for
deployed applications to be attacked. Considering the poten-
tial fast and frequent developing circle enabled by the RLOps,
security practices should be considered throughout the pro-
cess. This is the emerging paradigm of DevSecOps, in which
some of the security responsibility is downloaded to develop-
ers. In RLOps, we make several suggestions in addition to the
standard DevSecOps.

Since RL is running in an interactive way to provide
intelligent decisions to the system, it is essential to con-
sider the feedback from the environment at the beginning,
including the feedback on security. For example, a special
state can be designed for the MDP to indicate the sudden
change of agent behaviour, which could be a sign of attack.
The adversarial agent can be introduced in the RL training
to test the robustness against malicious agents [62], [63].
Inspired by [88],Monitoring could also play an essential role
in integrated security measures. Attack detection techniques
like anomaly detection could be applied to enable security
practices through monitoring.

IV. BEST PRACTICES OF RLOps
In this section, we discuss some best practices and effective
routines for successfully delivering RL applications as the
reflections of general principles presented in Section III.
We will elaborate on DT’s functionalities and critical fea-
tures, and then discuss the automation and reproducibility
engineering in RLOps, respectively.

A. DIGITAL TWINS
A wide range of working definitions of DT exists [50],
where we consider the definition by [89] which is that ‘‘A
digital twin is a digital representation of a physical item or
assembly using integrated simulations and service data’’. The
standardization of wireless network DT is still in progress,
but it should be able to provide high-fidelity representations
of all components of the current live network. This includes
the RAN, core network, and characteristics of users and
service behaviours among others. Where each component
will be modelled through the use of ML models or emu-
lated elements, for example [51]. As discussed in [51], DTs
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offer a wide range of benefits for communications networks,
including reducing the deployment costs for new services and
supporting network automation and optimization.

Within the context of RLOps, DTs are likely to be an
integral part of the development pipeline. Enabling training,
testing and validation of RL agents in an environment that
provides a good approximation to the real world without the
associated risks. The key benefits it provides from an RL
perspective are enumerated in the list below.

1) Exploration: RL algorithms require exploration in
order to learn about the environment in which they
are operating. Exploration, by definition, is risky, as it
requires the execution of actions that have potentially
unknown outcomes and could, in principle, be unrecov-
erable [84]. A DT provides a high-fidelity approxima-
tion to the real network where a failure is an option,
as any damage is inconsequential as it is reversible.

2) Parallelization: Sample efficiency is a crucial problem
within RL, where agents typically take considerable
time to train. The utilization of several environments
in parallel can reduce the real clock time that an agent
takes to converge [90], [91]. Deployment on the real
network does not support this functionality.

3) Validation:When any new component is added(be that
physical hardware, an RL agent or some new software
function), there is potential for unforeseen negative
behaviours to occur. Mitigating these deployment risks
is essential from a business perspective. A DT easily
accommodates this desired functionality as it allows
for simulation and investigation of network response
in a wide variety of scenarios. From an RL-specific
perspective, it allows for confirmation of the agent’s
capacity for reward acquisition and provides function-
ality to support the interpretability of RL policies more
readily.

In addition to the number of compelling arguments for their
utilization, certain risks must be realized, especially when the
DT modelling can’t reflect the networks’ reality. Within the
remainder of this section, we introduce a well-known chal-
lenge considered by the RL robotics community, commonly
referred to as Sim-to-Real [52]. The associated literature is
concerned with training within simulation and deployment
within the real world and attempts to mitigate risks associated
with approximation error between the two systems. Funda-
mentally, this same desire and challenge will persist within
our pipeline and more widely within telecommunications
applications. For a comprehensive survey of the area please
refer to [52].

B. AUTOMATION
The realization of an automated development process is
undoubtedly the critical factor in any type of DevOps. The
training procedure needs to be automated in order to save
time and labour, expediting the transition from development
to production.

FIGURE 5. Digital twins functionalities. The core, which is a digital copy
of the RAN, interacts with additional modules to simulate the change of
network environments.

1) DATA
Data cleaning and preparation are often necessary for any
new task or environment. This facilitates pattern detection for
models as features are well scaled and ordered. As data gen-
erated for a task is often consistent, once the transformation
procedure is done once, it can be repeated every other time
without any need for manual interference. Following data
preparation, appropriate feature/state representations must
be created to be provided to the agent. This can include
concatenating data frames from multiple time-steps together,
skipping every n frame, obtaining a certain embedding of the
transformed data, etc. This process is often specific to the
algorithm/task at hand and is done during training. Since it
is a highly repeated step and requires no manual input past
creation, it can be automated. The Data transformation and
feature extraction process can be finished in the DML and
PL layers of our network analytics platform, respectively.

Reward functions can be either extrinsically created for a
problem or intrinsically generated from available data. The
former case warrants no further automation; however, intrin-
sic reward signals are obtained from engineering pipelines
that extract the signal out of the transformed data. This pro-
cess will most likely be repeated on every training/evaluation
step and must be automated. The data visualisation layer
provides such information but needs to establish the auto-
mated reward engineering mechanism according to the
specific cases.

2) MODEL
Given a certain environment or task, the data preparation
pipeline, i.e., the network analytics platform can be trig-
gered and completed automatically. This reduces the amount
of time spent on data preparation and guarantees consis-
tency as development evolves. Each RL model follows a
specific training methodology. Following data preparation,
the training process can also be automated. Training can
terminate or resume given performance metrics attached to
the agent. At last, for hyperparameter/parameter selection,
a common process for DL can also be automated. A hyper-
parameter sweep can commence once the training pipeline is
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formulated. The best set of parameters can be chosen based
on performance metrics.

3) CODE
An evaluation/testing step can be automatically triggered
once a model has completed training. If passed, the agent
can then be deployed to production. This process requires
creating rigorous testing scripts, bypassing the agent’s man-
ual testing/evaluation, thereby automating the transition from
development to production. A model is usually a small
sub-part of a larger application infrastructure providing a
specific service. Once a new agent is ready for production
deployment, it is necessary to automate the new application
build process to ensure each new version is well documented
and tracked.

C. REPRODUCIBILITY
In O-RAN, well-trained RL models may need to be widely
deployed in a large geographic area. Therefore, in the face
of different deployment environments and carriers, it is very
important to ensure that the performance of the model does
not deteriorate, that is the reproducibility.

1) DATA
The development cycle is often about the model, but in many
cases can be about changing the environment or handling new
data. Changes in data can break a model’s performance, and
retraining is usually necessary. Dealing with data changes
without performance loss is of paramount importance in RL.
An agent that can generalize is a flexible and robust one.
To tackle the issue of generalization, research challenges
have appeared in recent years, such as the Procgen chal-
lenge [92] in which agents are tested on multiple versions
of the same environment. Keeping track of older versions
of data/environments is vital for maintaining stable versions,
debugging drops in performance, and developing more robust
models.

2) MODEL
Model performance can change drastically with minor
changes in the training algorithm. Reproducing results in RL
is very difficult given its dynamic nature [93]. In RL both
the data source and the agent dynamically change. Moreover,
they each influence one another. The environment affects
how the agent trains, and the agent’s policy impacts the envi-
ronment’s evolution. The ability to revert to stable versions
of a model is vital for maintaining stability in the event of
performance degradation. In terms of development, minor
changes to the model can be researched on their own prior
to compounding improvements. Maintaining a careful log
of which models possess which mutations are important for
ease of integration. Each model version should also contain
its own pseudo-code, clearly elaborating the differences in
the algorithm. Furthermore, the method of feature creation
must be consistent and well logged as it affects how models
interpret the provided data. Such strategies massively aid with
the development and debugging of new models.

3) CODE
There will be specific dependencies upon which the model
relies. Maintaining correct versioning between development
and production is necessary for the replication of behaviour.
The same goes for the software stack used to create the
product in development. It makes no sense to rely on a
different, untested stack in production. Therefore, it is often
best to containerize development and production iterations.
This means all versioning data is well documented within
their own containers, allowing for ease of reproducibility.

V. PROPOSED DATA ANALYTICS PLATFORM FOR RLOps
The above sections illustrate the theoretical considerations of
RLOps principles and best practices. In order to satisfy the
above considerations and to effectively implementML/RL on
top of O-RAN interfaces, a holistic data analytical platform
rooting from RAN is necessary, which is helpful for DT
continuous refinement, delivers the automation and repro-
ducibility of RL models, and also fulfils the security and
confidentiality of multi-tenancy public or private networks.
Hence, we design and implement the network analytics plat-
form presented in Fig. 6. We explain the compositions of this
platform below.

A. FEATURES OF THE DATA ANALYTICS PLATFORM
• In this platform, the multiple raw data sources need to
be collected, validated, enriched, transformed and stored
in an integrated data pool. That needs to be processed
by data engineering processes, such as application of
business rules, creation of KPIs, feature engineering,
linkage of data tables according to network topology
mapping, etc., which ultimately enables the application
of the algorithms according to the targeted use cases.

• Besides, an O-RAN network is built on top of other
system components such as IP networks and IT/Cloud
infrastructures. The operation and maintenance of these
systems are crucial for the overall network performance.
It should be integrated into a holistic network manage-
ment process that addresses all the components.

• Since O-RAN is compliant and allows new architectural
models based on multi-tenancy cloudified systems, the
data pipeline must guarantee coherence and consistency
in the treatment of the different data sources across the
whole analytical cycle whilst maintaining strict compli-
ance to the network segmentation and data confidential-
ity principles guaranteed by the interworking of the data
storage, data processing and data governance and policy
layers.

B. HIERARCHICAL DEFINITION OF THE DATA ANALYTICS
PLATFORM
1) DATA COLLECTION AGENTS
The data collection agents (DCA) are software applications
deployed across the network layer, that interact with existing
APIs and the network elements (NE). These agents use the
standard APIs to collect the standard FCAPS dataset directly
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FIGURE 6. This figure illustrates the hierarchical definition and application scenarios of the proposed network analytics platform.

from NEs according to the use case. In a RAN, there are
network domains that are implemented using equipment and
technology that do not offer open and/or standard APIs.
For that reason, it is necessary to develop a specific DCA
designed to interact with the specific NE API or protocol,
etc. The DCA also has a function of data preparation right
from the source, to allow for an efficient and effective data
integration coming from multiple and diverse data sources,
by normalising the data by applying the conventions that have
been defined in the system. The DCA is also responsible for
logging all its actions and performing initial data validation
procedures. This function is important to trace end-to-end the
data pipeline and assist the upper layer of the data mediation
stack. These applications are deployed directly on the NE’s
management plane or on adjacent servers. These have been
designed to listen and track the data generated on these
sources and can pull the logs and send them instantly to the
data mediation layer (DML).

2) DATA MEDIATION LAYER
The DML is responsible for collecting the data by coordinat-
ing the DCAs in the southbound interface, data processing
and implementing the northbound interface to the upper lay-
ers. This layer is a cluster-based system designed according
to big data requirements and best practices [94], allowing

the system to scale and support ultra-dense networks. After
data is collected from the DCAs, the DML receives it in its
raw format, requiring it to be prepared before going through
validation and cleansing processes. The DML needs to add
the schema information to the data stream and link it with
the network topology. This preparation process increases the
efficiency of the system by reducing the complexity of the
data validation and data cleansing.

The DML is responsible for the data validation and data
cleansing processes that consist in validating the data against
the expected schema, identifying duplicate records, or miss-
ing records, and coping with latency on the data source in
making the data records available. It also prepares the dataset
for an optimal application of the data enrichment processes
that would fail if applied directly to the raw data due to
missing network topology information. The data enrichment
and transformation functions are tightly coupled with the
data storage and processing layers because it prepares the
data stream to match the schemas of the data lake and other
consuming applications. At the end of the DML cycle, the
data offered to the upper layers are fully integrated, nor-
malised, enriched and transformed according to the system
conventions, thus simplifying the development of the data
lake and of any processing applications. The DML layers can
be continuously improved and extended to consume more

VOLUME 10, 2022 113821



P. Li et al.: RLOps: Development Life-Cycle of Reinforcement Learning Aided Open RAN

– in quantity and diversity – data sources and to offer the
data on the northbound interface in any format, type and
frequency that is optimal to the layers consuming the data
stream. The DML coordinates with the DCAs to securely
collect the data by implementing an encrypted data pipe.
It creates one uniform data flow between each DCA and the
upper layers.

3) DATA STORAGE LAYER
The data storage layer (DSL) contains one of the main com-
ponents of the entire architecture which is the data lake. The
data lake is the place where the data is stored to be made
available to the upper layers, most importantly the processing
and application layers. It is designed upon a scalable private
cloud object storage; it provides the means to manage and
store big datasets that come in diverse formats and structures
and enables high throughput and fast access to the data. The
policies, business rules, network topology and other meta-
data required by the policies, control and management layer
are stored in a dedicated relational database that is man-
aged by the DSL. Business Intelligence techniques and the
development of ML/RL applications rely heavily upon wide
and diverse historical datasets, for trend analysis, statistical
analysis and for ML/RL in specific for model training, testing
and validation. This demands many computational resources
and requires DSL to be designed and implemented using
big-data best practices [95], to deliver optimal access to large-
scale datasets. On the other hand, feature engineering and
RL-related tasks often require high-speed access to many
disparate data sources to build and optimise the ML models;
this requires high availability of some of the data in great
quantities and diversity. For this, we have designed the data
lake following the ‘‘Cold, Warm and Hot’’ approach [96].

The data lake is directly accessible by the other layers such
as DM, processing and AI layer through a high throughput
network. The design behind this storage system allows us to
easily store petabytes of data and serve applications regard-
less of the data access requirements.

4) PROCESSING LAYER
The processing layer (PL) is composed of multiple applica-
tions deployed over a containerised environment that scales
up with the increased demand from the services of the upper
layers, such as the application and visualisation layers. The
PL handles mainly three types of jobs, distributed real-time
computation, distributed batch processing and jobs related
to AI models such as environment states, reward calcula-
tion, AI model training/testing, etc. AI and ML applications
are complex and hard to develop, maintain, optimise, and
deploy because of their iterative and multi-staged life-cycle.
Complexity arises mostly from the stages that involve fea-
ture engineering, model training, model testing/validation
and production deployment. On the other hand, the RL has
more components to consider which are the environment,
reward calculation, and the agents which make deploying
these applications more challenging. As emerged in MLOps

practices, the main enhancement to solve the challenges of
the AI lifecycle is to containerize all stages. The PL has
been designed and implemented to follow this principle and
overcome this challenge. The PL allows the deployment and
execution of services that underpin AI applications through-
out its life cycle. In addition, to this, it also implements
all the services that involve data processing, such as KPI
calculation, real-time processing, alarm processing, online
monitoring notifications, rule enforcement and data prepara-
tion for visualisation. This layer works in tandem with the
lower layers, such as DSL and DML, to provide a container-
ised environment that simplifies the deployment and man-
agement of resource-intensive applications and guarantees
high-throughput access to the data pool through dedicated
and purpose-built data streams. This layer will help to encap-
sulate the works in subphases where the task could be updated
separately without affecting other phases. We illustrate some
of the main jobs in this layer as follows:
• KPI calculation: To measure the performance of the
whole network, 3gpp produced a technical specification
document for KPIs [94]. These KPIs need an elevated
level of domain expertise to develop and deploy across
the data pool. The purpose of these KPIs includes but
is not limited to the monitoring and troubleshooting of
the network performance and long-term trend analysis
of its performance. However, they are valuable features
to build ML/RL models and reflect environment status.
By abstracting this layer, we intend to save time and
reduce complexity. The KPIs are calculated periodically.
The results are eventually stored with the AI engineers’
collected performance metrics for usage.

• Feature engineering and real-time data processing: Con-
sidering the requirements of the RLOps, the processing
layer will also run applications that process streams
and batches of data, so this layer is where the feature
engineering process is done.

• ML/RL related components: The components needed to
train, test, and validate the ML/RL application. These
containers and the related applications are integrated
into the whole platform so that they are able to cooperate
with other containers and services offered in the process-
ing layer. Additionally, the processing layer is able to
run environment simulators or DT images and integrate
them into the data pipeline.

5) POLICIES AND CONTROL LAYER
The policies and control Layer is composed of a set of config-
urationmethods, services andmetadata that define and imple-
ment the business rules, object hierarchy and relationships
that are relevant for the functionality implemented across
the data mediation, data storage and processing layers. The
O-RAN FCAPS data, produced across the multiple virtual
network functions (VNFs) and interfaces, is the most repre-
sentative and important data type in this platform. This data is
being structured and is not generated in its raw format, with
the whole information that is required for its representation
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and integrated with other data sources. This layer contains
the rules, metadata, and methodologies necessary for the effi-
cient and effective implementation of the cycles of the DML
and DSL, allowing the creation of the structures to validate,
cleanse, enrich and store the data in an optimal format. The
network topology metadata and methods are fundamental
for the linkage of the different managed objects and data
structures, thus enabling the cross-layer analysis between
network performance events and external events described
by data sources - that are external to the O-RAN network
and relevant to the analytical process, e.g. UE-based data that
describes QoS and QoE events through detailed metrics and
logs. On the other hand, this layer also stores the policies
and rules that control some aspects of the system’s cognitive
capabilities, such as the identification of abnormal behaviour
and respecting self-healing actions/decisions. These policies
and rules can be defined by: subject matter experts (SMEs)
through processes of data engineering, feature engineering
and/or analytical engineering; and by automated analytic pro-
cesses, possibly based on ML/RL applications that identify
rules/decisions that after being validated and accepted by
SMEs are later deployed on to production.

6) AI LAYER (AI APPLICATION MANAGEMENT LAYER)
The AI layer is where the development, initial training and
validation of the AI model happens. It allows the implemen-
tation of online training through real-time data consumption
and offlinemodel validation, generating results/decisions that
are not implemented but rather validated by the developers
and the subject matter experts. It also allows for monitoring
logs and tracking the AI jobs’ performance and related appli-
cation images, mostly for testing and debugging purposes.

7) DATA VISUALIZATION LAYER
This layer is mostly dedicated to implementing business
intelligence functions that allow SMEs to access the data in
the format of graphical reports and dashboards, thus provid-
ing a visual interface to monitor the overall system perfor-
mance. Through this layer, it is possible to access reports and
dashboards that inform about the performance of the differ-
ent system components through the monitoring of dedicated
measurements. The components that are monitored are:

• O-RAN network equipment, VNFs, protocols,
interfaces, and functions: this allows for the network
management SMEs to evaluate network performance,
identify opportunities for optimisation, trends of sys-
temic behaviour and evaluate the impact that AI algo-
rithms might have on the overall system performance.

• AI application decision-making logging: this allows for
the DevOps, MLOps and RLOps engineers to evaluate
the performance of these applications during the entire
life cycle from training to operations. It also allowed to
report of the results of correlation and causation analysis
visually and emphasised the evaluation of the decision of
the application on the system performance.

VI. CONCLUSION
O-RAN embraces the intelligent models in specifications
and treats ML/RL as a promising solution for achieving
truly intelligent future network infrastructure. Considering
the current lack of principles and practices for developing
data-derived optimal decision-making strategies in O-RAN,
we proposed the RLOps, which takes the life-cycle of RL
model development as the main consideration, adopting the
design, development, operations and safety/security as prin-
ciples. We detail all main considerations and methodolo-
gies under these principles and integrate the above functions
with the digital twins and the network analytics platform,
which is geared to achieve automatic and reproducible model
operations.
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