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ABSTRACT The application of beam-hopping technology to low earth orbit satellites can effectively achieve
flexible allocation and efficient utilization of on-board resources. Considering that the power resources on
low earth orbit satellites are limited, the electromagnetic environment is complex and changeable, and the
terminal distribution and service requirements are highly dynamic. We established the service model, service
priority model andmultibeam resource scheduling model under the constraints of beam bandwidth, on-board
power, service priorities, etc. To solve the catastrophic problem of a large solution space in the resource
scheduling model and to improve the convergence of the algorithm, we propose an enhanced artificial
bee colony algorithm. The optimization strategy improves the process of population initialization, solution
updates, and search for the global optimal solution. The simulation results show that under the constraints
of cochannel interference and on-board resource utilization, the algorithm always converges to the objective
function at the fastest speed, which proves that the algorithm has high applicability to the high dynamic
characteristics of LEO satellites. In addition, the algorithm can obtain the global optimal solution, and thus,
it can ensure the fairness of resource allocation and the effectiveness of service completion.

INDEX TERMS Satellite communication, beam hopping, resource scheduling, enhanced artificial bee
colony algorithm.

I. INTRODUCTION
Spectrum resources of terrestrial communication systems are
relatively scarce [1]. As a strong complement to terrestrial
communication, satellite communication plays an important
role in emergency communication, maritime search and res-
cue, disaster warning and in the military. The service types
and needs of satellite terminal users are diverse, and the time
and space distributions are very uneven, which requires the
satellite to have efficient transmission capacity and resource
utilization [2].

Traditional communication satellites mostly use single-
beam communication. This static beam enables the satellite
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system to call allocable resources under the limitation of
a single beam and is unable to adjust or rarely adjust the
beam capacity to adapt to changing service needs. While
using fixed beams in multibeam communication, resources
are allocated with fixed capacities over a wide coverage
area. In addition, the frequency and resources allocated to
each beam are fixed, which causes a lack of flexibility and
can easily lead to limited satellite functions and a waste of
resources [3]. Therefore, studying the on-board resource allo-
cation scheme that adapts to the needs of users and improves
the flexibility of satellite system resource scheduling are
particularly important.

Flexible payload (FP) multibeam and beam hopping (BH)
technology that was developed on the basis of traditional
multibeam has become one of the important technologies in
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satellite communication systems [4], which is the key to the
flexible allocation and satellite resource distribution. Many
studies have shown the superiority of beam-hopping technol-
ogy, which provides a basis for the flexible allocation and
effective utilization of satellite resources [5], [6]. Multibeam
satellites send beam-hopping control commands through the
beam-hopping controller to achieve synchronous beam hop-
ping [7]. Themain idea of beam hopping is to use time slicing,
meaning that at the same time, only part of the beams are
in the working state, and in satellite resource scheduling,
continuous bursts are changed to time-based bursts. Accord-
ing to service requirements, the dynamic allocation of com-
munication resources is achieved by controlling the spatial
orientation, bandwidth, frequency and transmission power of
the spaceborne multibeam antenna.

A survey found that research on satellite beam-hopping
technology mainly focuses on Geostationary Earth Orbit
(GEO) satellites, and there is a lack of research on LEO
satellites [8]. GEO satellites have a fixed relative position
to the ground area, so the beam-hopping technology of GEO
satellites is relatively slow [9]. In contrast, the moving speed
of LEO satellites is much higher than that of GEO satellites,
and the ground area covered by these satellites and the elec-
tromagnetic environment they face rapidly change. At the
same time, the small size of LEO satellites leads to very
limited on-board resources and improves resource utilization,
which need to be more urgent. Moreover, in the face of
uneven terminal distribution in different countries and regions
and great differences in service requirements of the various
terminals, LEO faces more highly dynamic changes in ter-
minal distribution and service requirements than GEO [10],
which aggravates the difficulty of LEO resource adjustment.
Therefore, designing a reasonable resource scheduling policy
to achieve efficient matching between on-board resources and
service requirements has become a difficult problem to be
solved urgently.

The above resource scheduling problems are usually
multiobjective optimization problems. Additionally, heuris-
tic algorithms are widely used in solving multiobjec-
tive optimization problems. Examples include Mechanism
Multi-Objective Particle Swarm Optimization (MCMOPSO)
[11], [12], the multiobjective ant colony optimizer (MOACO)
[13], [14], the multiobjective binary artificial bee colony
algorithm (MOBABC) [15], etc.

In these algorithms, the artificial bee colony (ABC) algo-
rithm has the advantages of few control parameters, strong
robustness and excellent local convergence and optimizabil-
ity. It has certain advantages in solving the problem of
multibeam LEO satellite resource scheduling, but with the
increase in the number of ground partitions, the solution space
increases dramatically, the search speed becomes slower,
and the randomness in the solution update process restricts
the real-time performance of the algorithm. Therefore, the
application of the ABC algorithm to the multibeam LEO
satellite resource scheduling problem still needs to be further
studied.

The rest of this paper is organized as follows. We ana-
lyze the related works on resources and dynamic beam
scheduling of LEO Satellites in Section II. In Section III,
we describe the communication model of the LEO satellite
coverage area system, service model, and service dynamic
priority model in detail and construct two objective func-
tions of satellite resource utilization and resource allocation
fairness. Section IV extends the preprocessing method of
ground partitioning based on the double-loop learning idea,
the process of self-adaptive solution updating and the imple-
mentation of a dynamic neighborhood optimization strategy.
In Section V, the multibeam satellite resource scheduling
algorithm based on the improved ant colony (MB-SRSA-
IACO) algorithm [16], dual-population artificial bee colony
algorithm (DPABC) [17] and ABC algorithm are used as
comparative experiments for simulation, which proves the
superiority of the algorithm proposed in this paper. Finally,
Section VI concludes the paper.

II. RELATED WORK
To effectively utilize on-board resources, many scholars have
conducted research on resource allocation [18].

References [19], [20] studied the forward link of satellites
in detail and provided the quantification results of system
parameters, such as the satellite antenna gain, interbeam
interference, number of beams, service requirements and cov-
erage area on downlink channel capacity. Wang et al. [21]
eliminated the interference between beams by controlling the
space interval between beams and proposed a clustering beam
allocation method based on full frequency reuse, which effec-
tively improves the system’s actual throughput. Lei et al. [22]
employed deep learning (DL), which is widely used in terres-
trial wireless networks, to design the beam pattern of beam
hopping, but the complexity of the algorithm also increases.
A novel multiobjective reinforcement learning framework
has been introduced [23], but this method can only achieve
low-complexity dynamic multiobjective resource manage-
ment. [24] combined wide beam and beam hopping and
obtained signaling information fromwide beams and assisted
spot beams in performing beam hopping on-demand services;
however, this process only has better delay performancewhen
the traffic is light. Tian et al. [25] transformed the dynam-
ically moving LEO satellite communication beam deploy-
ment problem into a static beam deployment problem in the
beam deployment period and proposed a beam scheduling
algorithm based on a greedy algorithm. However, the above
assumptions ignore the high-speedmobility of LEO satellites.
Moreover, researchers [26] regard different sensitivities of
terminals in terms of delay, bandwidth and connection time as
resource allocation factors and improve the algorithm of the
breadth-first-search-based spanning tree (BFST) to realize
the dynamic scheduling of information and resources in emer-
gency situations. Shi et al. [27] used a subgradient algorithm
to update the dual variables and reallocate the power and
bandwidth after power and bandwidth allocation is completed
for the first time; in this way, the optimal allocation result
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is obtained through iterative calculation, and the algorithm
improves the system capacity.

Heuristic algorithms play an important role in the study of
resource allocation and scheduling schemes. [28] proposed
a two-stage annealing algorithm (TPGA) by combining a
genetic algorithm and a simulated annealing algorithm to
solve the satellite resource scheduling problem. Tian et al.
[29] proposed a hierarchical scheduling method for real-time
scheduling problems that combines three scheduling steps:
prescheduling, coarse scheduling and fine scheduling. Thus,
a hierarchical scheduling algorithm based on ant colony opti-
mization is proposed. Song et al. [30] first analyzed the
influence of satellite distance on resource scheduling and
proposed an algorithm that combines an improved genetic
algorithm and a local search method to rapidly improve the
quality of the scheduling scheme. Reference [31] first used
the heuristic-based optimization method to coarsely search
the feasible region space where the optimal solution is most
likely to appear. However, due to the diversity of services
and the high dynamics of satellites, the time slot prealloca-
tion will not be able to meet the real-time and changeable
service requirements well. A traffic-aware dynamic resource
allocation (TADRA) algorithm based on NSGA-II is applied
to solve the resource allocation problem of mobile satellite
communication systems [32], but the complexity of the algo-
rithm is high. Reference [33] proposed amultisatellite control
resource scheduling problem based on ant colony optimiza-
tion (MSCRSP–ACO), with the optimization goal of mini-
mizing the workload, and established a complex independent
set model to solve the problem of satellite resource schedul-
ing. As a result of the joint observation satellite mission plan-
ning problem, Jiang et al. [17] proposed a dual-population
artificial bee colony algorithm (DPABC) and a heuristic
task scheduling algorithm. Zhuang et al. [34] focused on
dynamic relay satellite scheduling and proposed a scheduling
algorithm, ABC-TOPSIS, which combines an artificial bee
colony (ABC) and a technique for order preference by simi-
larity to an ideal solution (TOPSIS). Liu et al. [35] proposed
three swarm optimization algorithms: discrete artificial bee
colony (DABC), discrete artificial fish swarm (DAFS), and
discrete shuffled frog leaping (DSFL) for fair resource allo-
cation in heterogeneous cloud computing systems. Sun et al.
[36] proposed a novel artificial bee colony algorithm with
updated quantities (ABC-UQ) of nectar sources for OFDMA
resource allocation.

Although the above heuristic algorithms can solve the
problem of resource allocation and scheduling in their respec-
tive networks, the power resources on low-orbit satellites
are limited, the electromagnetic environment is complex and
changeable, and the terminal distribution and the service
requirements are highly dynamic, so it is necessary to make
adaptive improvements when using heuristic algorithms.

To solve the problems of low resource utilization, serious
beam interference, high computational complexity, and dis-
crete time slot allocation in existing research, a multibeam
LEO satellite dynamic beam scheduling model based on

dynamic service requests and on-board resources is estab-
lished in this paper. The beam spatial isolation and double-
loop learning idea preprocesses the ground partition to reduce
the population. Moreover, an adaptive solution update strat-
egy to speed up the algorithm convergence is proposed, and a
dynamic optimization strategy to optimize the scout bee stage
to find the global optimal solution is designed.

III. SYSTEM MODELING
A. COMMUNICATION MODEL OF THE SATELLITE
COVERAGE AREA SYSTEM
In multibeam LEO satellite communication systems, the
beam hop period (BHP) is the effective coverage time of the
LEO satellite for the current terrestrial area, starting from ST
and ending at ET . It is only possible for the satellite to serve
when the start time of the service is included in the effective
coverage time window of the satellite. The beam hopping
time slot Ts is also called the beam dwell time, and 128 or
256 components are recommended in theDVB-S2X standard.
The j-th time slot Tsj ∈ {1, 2, 3, · · · ,W } is also the beam
hopping slot sequence number (the hop number for short).
Fig. 1 shows the working mechanism of the beam hopping
period and time slot.

FIGURE 1. Slot model for beam hopping.

FIGURE 2. LEO satellite beam hopping scheduling model.

For the sake of modeling, the satellite coverage area is
simplified to a rectangle, and the rectangular area is divided
into x × y = M ground partitions, as shown in Fig. 2. The
satellite beam scheduling model is based on these ground
partitions. Within the effective coverage of the satellite, the
beamforming antenna generates N (N ≤ M ) spot beams in
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the coverage area. The system can generate beam hopping
according to the service requested capacity and spatial dis-
tribution characteristics of each ground partition, as well as
adjust the beam service location to achieve flexible coverage
of terrestrial user services.

B. SERVICE MODEL
The total bandwidth of the satellite is Btotal , and the total
power is Ptotal . There are Im services in the m-th ground
partition cellm. To consider the service status of the satellite
beam, the service U i

m within the beam coverage is expressed
as follows:

{U i
m = (B̂m, P̂m,C i

m,V
i
m,Ts

i
m, S

i
m)|
∑M

m=1
B̂m

≤ Btotal,∑M

m=1
P̂m ≤ Ptotal,V i

m ∈ {1, 2, 3, 4}, ST ≤ Ts
i
m ≤ ET ,

S im ≤ W , 1 ≤ m ≤ M , 1 ≤ i ≤ Im}

In the ground partition cellm, B̂m and P̂m represent the
bandwidth and power allocated to cellm, respectively; C i

m
is the capacity that the i-th service needed, and V i

m is the
initial priority of the i-th service. We divide services into five
categories: background services, interactive services, stream-
ing media services, voice services, and handover services.
These services are ranked in order of priorities from bottom
to top. Tsim represents the hop number when the i-th service
arrives; S im is the number of time slots theoretically required
to complete the i-th service under the given conditions of B̂m
and P̂m.

C. SERVICE DYNAMIC PRIORITY MODEL
We comprehensively consider the importance and urgency
of different types of services and propose a definition of
dynamic priority. In this paper, the dynamic priority of ser-
vices (DyPr) is determined by the residual value (RV) of the
service and the execution urgency of service (EU) as follows:

DyPr(U i
m) = RV(U i

m)+ EU(U i
m)

= V i
m ×

(
S im − s

i
m

S im
+
S im − s

i
m

W − Tsi

)
(1)

where sim is the number of time slots that the ser-
vice has been served and Tsi represents the current hop
number.

In (1), RV can be used to represent the degree of service
completion, and the EU indicates how urgently the service
needs to be done. It is clear that the greater the amount of
residual service, the greater the residual value of the service.
The greater the ratio of the number of time slots required by
the remaining services to the remaining time slots, the more
urgent the service is.

We define
∑Im

i=1DyPr(U
i
m) as the dynamic priority of the

ground partition cellm.

D. MULTIBEAM RESOURCE SCHEDULING MODEL
According to Shannon’s theorem, the capacity allocated to
the ground partition cellm is as follows:

Ĉm = B̂m × log2(1+ SINRm) (2)

where SINRm is the signal to interference plus the noise ratio
of beam m, and the specific relationship is shown in (3).

SINRm =
AmP̂m

N0B̂m +
∑

n∈M ,n6=m,x
Tsj
n =1

AnP̂n
(3)

where Am is the channel attenuation coefficient in ground
partition cellm; N0 is the power spectral density of additive
white Gaussian noise; and

∑
n∈M ,n6=m,x

Tsj
n =1

AnP̂n is the sum
of the cochannel interference caused by other beams to the
m-th beam. When the beam space interval is greater than or
equal to 4× R, the cochannel interference can be ignored. R
is the radius of the spot beam.

Based on the above analysis of the systemmodel, we estab-
lish the following satellite beam resource scheduling model
under the condition that the beam spatial isolation criterion is
satisfied.

min



O1 :
∑M

m=1 x
Tsj
m

1

Ĉm
O2 :
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m=1 x

Tsj
m
Cm
Ĉm

O3 :
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m=1
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i=1 x
Tsj
m

1
DyPr(U i

m)

s.t. C1 : Ĉm ≤ Cm

Cm =
∑Im

i=1
C i
m

Ĉm = B̂m log2
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)
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m=1
x
Tsj
m = N , x

Tsj
m ∈ {0, 1}

C3 : DyPr(U i
m) = V i

m ×

(
S im − s

i
m

S im
+
S im − s

i
m

W − Tsi

)
1 ≤ Tsi ≤ W , sim ≤ S

i
m, S

i
m ≥ 1

C4 :
∑M

m=1
B̂m ≤ Btotal

C5 :
∑M

m=1
P̂m ≤ Ptotal (4)

Ĉm and Cm represent the actual allocated capacity and the
requested capacity of the ground partition cellm, respectively.
x
Tsj
m = 1 represents that the m-th ground partition cellm is
selected by the spot beam in time slot Tsj; otherwise, it is
not selected. O1 is the satellite resource utilization func-
tion, which maximizes the utilization of satellite resources to
ensure the full utilization of satellite resources. O2 is a func-
tion that reflects the fairness of resource allocation, which
can meet the capacity requirements of the service as much
as possible and ensure service satisfaction. O3 is a function
that reflects the dynamic priority of the service, which means
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that the LEO satellite communication system completes the
service of high-priority tasks as much as possible.

Constraint C1 indicates that the capacity of the beam
provided by the satellite is usually not higher than
the requested capacity, ensuring maximum utilization of
on-board resources and avoiding idle resources. Constraint
C2 indicates that in the same time slot, a beam can only
serve one ground partition. Constraint C3 indicates that the
Tsj that a service is served for the first time should be after
the Tsj that the service applies to access. Additionally, before
the effective satellite coverage time window ends, simultane-
ously, the number of time slots that the current service has
been served should be less than or equal to the number of
time slots applied for by the service (the number of time slots
requested by the service is at least 1). C4 and C5 are band-
width resource constraints and power resource constraints,
respectively, which indicate that the bandwidth and power
actually allocated to the service should not exceed the satellite
on-board bandwidth and power resources.

IV. MULTIBEAM RESOURCE SCHEDULING ALGORITHM
FOR SATELLITE COMMUNICATION SYSTEMS
To solve the above resource optimization problem, we com-
monly use intelligent algorithms, including genetic algo-
rithms, ant colony algorithms, particle swarm algorithms,
ABC algorithms and their combinations. The beam hopping
pattern based on the traditional ABC algorithm is optimized
in this paper. In theABC algorithm, the employed bee updates
the solution according to (5) as follows:

x ′i = xi + φi(xi − xk ), i = 1, 2, . . . ,SN (5)

where SN is the number of solutions; xi = (xi1 , xi2 , . . . , xiD )
is an original solution, which is a D-dimensional vector; k ∈
{1, 2, . . . ,SN} and k 6= i; x ′i is the updated solution; and φi is
a random number in the interval [−1, 1].
The onlooker bee stage updates the solution according

to (6) as follows:

x ′id = xmin
id + r(x

max
id − x

min
id ) (6)

where x ′id is the d-th component of the updated solution x ′i ,
xmin
id and xmax

id are the lower and upper bounds of the d-th
component of all solutions, respectively, and r is a random
number in the interval [0, 1].
The important factors affecting the convergence speed of

the ABC algorithm mainly come from the following aspects:
(1) The selection of the reference solution xk is random

when the bee is in the process of updating the solution, which
leads to the uncertainty of the reference standard when the
update range is generated.

(2) Randomness is generated by the acceleration factor φi
in the bee’s process of updating the solution, which leads to
the uncertainty of the update range.

(3) The selection of parameter r is also random when the
onlooker bee searches for a new solution in the neighborhood.

So, the ABC algorithm will be improved from three
aspects: optimizing the population initialization process

through the double loop learning idea, optimizing the original
solution update process through the adaptive solution update
method, and optimizing the scout bees’ jumping out of the
local optimal solution process through the dynamic neigh-
borhood optimization strategy. A dynamic beam scheduling
method based on the Enhanced Artificial Bee Colony algo-
rithm (DBSM-EABC) is proposed. The specific process is as
follows.

A. INITIALIZATION RULES BASED ON DOUBLE-LOOP
LEARNING
To use beam hopping technology in beam scheduling of
multibeam LEO satellites, it is necessary to select N out ofM
ground partitions at the beginning of each time slot to provide
services. WhenM = 20 and N = 10, the size of the solution
space is 184756. When N remains unchanged and M = 40,
the size of the solution space will be hundreds of millions,
and the calculation delay will be greatly increased, so the
complete traversal of the solution space is unrealistic.

To solve the catastrophic problem of a large solution space,
this study proposes a ground partition preprocessing method
based on the idea of double-loop learning. According to
the service needs of terrestrial terminal users, we calcu-
late the priority index indexm of the ground partition cellm,
and the ground partitions with poor quality are eliminated.
The search space of the algorithm is reduced so that the
algorithm can converge in a short time. The calculation of
indexm is as follows:

indexm = φ ×
Cm
Ctoltal

+ ϕ ×
Sm

W × N
+ ψ × DyPrm (7)

where

Ctotal =
∑M

m
Cm, Sm =

∑Im

i=1
S im,

DyPrm =
∑Im

i=1
DyPr(U i

m)

A schematic diagram of the preprocessing method for
ground partition selection based on double-loop learning is
shown in Fig. 3.

FIGURE 3. Schematic diagram of double-loop learning.

The main idea is to select L(L > 1.5N ) waiting service
partitions fromM ground partitions and construct the solution
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space of the above optimization problem in these L parti-
tions. In loop 1, one of the M ground partitions cellm,m =
1, 2, . . . ,M is selected in turn as the initial selection partition.
In loop 2, cellm is used as the initial selection partition, and the
ground partitions that satisfy the spatial isolation conditions
are searched among the M ground partitions to be added
to the ground partition subset Sm. When Loop 1 ends, M
ground partition subsets Sm,m = 1, 2, . . . ,M are obtained.
According to (7), the subset of ground partitions with the
highest sum of partition priorities is selected as the set of
partitions to be served, and the DBSM-EABC algorithm uses
this to construct a feasible solution set of the optimization
problem.

Table 1 gives a detailed description of the method.

TABLE 1. Ground partition preprocessing algorithm based on
double-loop learning.

B. ADAPTIVE SOLUTION UPDATE STRATEGY
Considering the local coverage of the fireworks algorithm,
the number and the range of its search are used to improve
the update strategy of feasible solutions of employed bees
and onlooker bees. Dynamically adjusting the number of
fireworks explosions can effectively avoid repeated searches,
jump out of the local optimal solution, and reflect a good
global searchability. Therefore, for the solution update of the
employed bee and the onlooker bee, based on the fireworks
algorithm, this study carries out research from three aspects:
the range of the update solution, the number of the update
solution, and the retention of the update solution. Then, the

adaptive update solution process is designed to speed up the
convergence of the algorithm.

1) UPDATE RANGE OF THE SOLUTION SEARCH
The updated solution search range Ai is related to the fitness
of solutions and computed by (8) as follows:

Ai = Amax ×
f (xi)∑N

j=1 (fmax − f (xi))+ ε
, fmax = fbest (8)

Amax is a constant used to adjust the range of the solution
search, fmax is the maximum fitness value in the current
solution set, f (xi) is the fitness of the current solution xi, and
ε is a small constant, which ensures that the denominator
is not 0 and is taken as 0.0001. (8) shows that the solution
with better fitness has a smaller search range, and its update
result will revolve around itself. In contrast, the solution with
poor fitness has a larger search range that ensures that a better
fitness can be found.

2) UPDATE NUMBER OF THE SOLUTION SEARCH
The number Ni of search results for each solution is deter-
mined by its fitness value as follows:

Ni = Nall ×
fmax − f (xi)+ ε∑N

j=1 (fmax − f (xi))+ ε
(9)

where Nall is the total number of normal results produced by
the controlNi solutions. Since the value calculated by (9) may
be a decimal, (10) is used to convert the value to an integer.

N̂i

=


round(a× Nall), Ni < a× Nall

round(b× Nall), Ni > b× Nall, a < b < 1
round(Ni), a× Nall≤Ni≤b× Nall, a < b < 1

(10)

where a, b ∈ (0, 1) and are set as 0.04 and 0.8, respectively,
in the simulation.

3) RETENTION POLICY FOR SEARCH RESULTS
It can be seen from the above process that in the process of
each solution update,Ni solutionswill be generatedwithin the
range of the search range Ai. In this paper, Arena’s principle
is used to select one of the Ni solutions for reservation.

a: THE DOMINATION RELATIONSHIP BETWEEN
INDIVIDUALS IN THE DECISION SPACE
X and Y are set as two different individuals in the evolutionary
population. If X dominates Y , the following two conditions
must be satisfied:

(i) For all subgoals, X is not worse than Y ;
(ii) At least one subgoal exists where X makes Y better.

b: CONSTRUCTING PARETO OPTIMAL SOLUTIONS USING
ARENA’S PRINCIPLE
In the process of using Arena’s principle to retain the solu-
tions, one solution is selected from the N solutions as the ring
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master, and the ringmaster is comparedwith other individuals
in the structure set. The loser is eliminated from the game,
and the winner becomes the new ring master and continues
the round of comparison. After the round is over, the final
ring master is the nondominant individual, that is, the updated
solution to be retained.

C. DYNAMIC NEIGHBORHOOD OPTIMIZATION STRATEGY
If a solution is not updated in successive Lim generations,
it means that the algorithm is in a local optimum dilemma.
The DBSM-EABC algorithm jumps out of the local optimum
dilemma through the dynamic neighborhood optimization
strategy of scout bees.

This strategy is based on the set {cell1, cell2, . . . , cellL} of
ground partitions obtained after double-loop learning, com-
prehensively considers the services requirements of cellm
and the historical experience of cellm in the limited iteration
process, calculates the probability prom that the ground par-
tition cellm is retained, and determines the probability that
the partition is reserved of cellm by roulette. prom is given as
follows:

prom = η ×
indexm∑M
i=1 indexm

+ (1− η)×
St
Stb

(11)

where St is the number of ground partitions cellm selected
during the most recent Lim generation iteration process; Stb
represents the number of higher quality solutions generated
by using the partition; η is the inertia weight factor, indicating
the proportion of cellm in the calculation of selection proba-
bility; and 1− η represents the weight of the latest historical
search experience on the update probability.

Finally, according to the principle of priority with higher
retention probability, N ground partitions are selected from
the observation scheduling queue as scout bees to update the
solution: {cell1, cell2, . . . , cellL}.
Table 2 provides a detailed description of the algorithm.

D. DETERMINE THE FITNESS FUNCTION
We use the method of linear weighting to transform the
objective functions O1,O2, and O3 into the fitness function
of the DBSM-EABC algorithm, which is shown in (12) as
follows:

f = λ1f1 + λ2f2 + λ3f3 (12)

where λ1 + λ2 + λ3 = 1. Before the calculation, the three
objective functions are normalized, and then the weight of
the response is determined according to their importance.
In this paper, we first ensure the resource utilization of LEO
satellites, and then ensure that resources are allocated as
fairly as possible and serve as many high-priority services
as possible. Thus, the corresponding weight relationship is
λ1 � λ2 � λ3, and λ1 = 0.5, λ2 = 0.3, λ3 = 0.2 is set in our
simulation.

In summary, the flow chart of the DBSM-EABC algorithm
is shown in Fig. 4.

TABLE 2. Dynamic neighborhood optimization strategy.

FIGURE 4. Flow chart of the LEO satellite resource scheduling algorithm
based on beam hopping.

This research solves the problem of generating beam
hopping patterns in LEO satellites based on the EABC.
In the population initialization stage, the ground partition
that conforms to the space interval is selected through the
double-loop learning idea, and the size of the solution space
is compressed while the cochannel interference is eliminated.
In the employed bee and onlooker bee stage, the search
range and quantity of the current solution during updating
are determined according to the fitness of the solution, avoid-
ing invalid and repeated searches. In the scout bee stage,
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we determine the update strategy of the scout bee on the
basis of analyzing the fitness of the solution and considering
the historical experience of solution updating. Through the
above three aspects, the convergence speed of the algorithm
is accelerated, and it is further adapted to the high dynamic
characteristics of LEO satellites.

V. SIMULATION RESULTS AND ANALYSIS
A. REALIZATION OF THE SIMULATION PROCESS
Based on the Iridium Satellite and Satellite Tool Kit (STK),
the coverage time of the satellite is obtained for each ground
partition. Then, we establish a simulation system according to
the LEO satellite coverage model in Section 3 and implement
the beam-hopping scheduling algorithm through MATLAB.
In the simulation scenario, the distribution of users in the
coverage area follows a normal distribution [8]. The other
simulation parameters are shown in Tables 3 and 4.

TABLE 3. System simulation parameters.

TABLE 4. Parameters of the DBSM-EABC algorithm.

B. ANALYSIS OF THE SIMULATION RESULTS
In this set of simulation experiments, we compare the pro-
posed DBSM-EABC algorithm against MB-SRSA-IACO
[16], DPABC [17] and the ABC algorithm with respect to
convergence, on-board resource utilization, resource alloca-
tion fairness, the number of completed services, the sum of
service priorities that are completed, etc.

The convergence of the algorithm is an important index to
measure the performance of the intelligent algorithm. Bet-
ter convergence can provide better adaptations to the high

FIGURE 5. The number of iterations and best fitness in algorithms.

dynamic characteristics of LEO satellites. As shown in Fig. 5,
the DBSM-EABC algorithm can reach the best fitness in
220 iterations, while theMB-SRSA-IACO,DPABC andABC
algorithms need approximately 470 times, 570 times and
630 times to reach the best fitness, respectively. Compared
with theMB-SRSA-IACO, DPABC and ABC algorithms, the
DBSM-EABC algorithm proposed in this paper reduces the
space for updating solutions through double loop learning and
makes the solution update more accurate through an adaptive
updating solution strategy, so it speeds up the search for the
optimal solution; thus, this algorithm has better convergence.

FIGURE 6. On-board resource utilization.

LEO satellite resources are limited, and avoiding idle
resources and making full use of on-board resources
are important goals of resource scheduling algorithms.
Fig. 6 shows the on-board resource utilization of differ-
ent resource scheduling calculations under the same service
requirements. An analysis of Fig. 6 shows that the on-board
resource utilization of the DBSM-EABC algorithm can reach
96.8% of the resource utilization in the 33rd time slot, which
is much better than the other scheduling algorithms. This
is because the double-loop learning idea is used to achieve
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spatial isolation of beams in the population initialization pro-
cess, which reduces the interference between beams. At the
same time, after the introduction of beam-hopping technol-
ogy, the ground partitions can be divided more finely so
that the resource scheduling algorithm can better match the
unevenly distributed terrestrial service requirements.

FIGURE 7. Resource allocation fairness.

The fairness of resource allocation is defined by the ratio
of the allocated capacity to the requested capacity, which
reflects the satisfaction of ground partition services. A fairer
resource allocation can reduce unnecessary resource compe-
tition. An analysis of Fig. 7 shows that the resource allocation
fairness is relatively high in the initial stage of the algorithm
because there are few services connected to satellites at the
beginning, and the system resources are relatively sufficient,
which can better meet the service needs of the ground par-
tition. The service is converted from a new access type to a
handover type, the priority of the service is increased, and
the remaining capacity of the on-board resources is reduced,
which leads to more intense competition for resources. Thus,
the fairness of scheduling is reduced. In the simulation,
DBSM-EABC keeps the fairness function dynamic and stable
at the fastest speed and has the maximum value, which proves
the algorithm’s superior performance.

The number of remaining services reflects the LEO satel-
lite resource processing capacity. Fig. 8 shows that at the
same time, DBSM-EABC comprehensively considers the
requested capacity and allocation fairness of the ground par-
tition, which breaks through the space limitation of resource
scheduling and seeks to maximize the total benefit so that
more services can be handled at the same time. This is an
important basis for improving satellite throughput.

In Table 5, P1 represents the number of timeslots required
for the satellite resource utilization to reach 96%, P2 repre-
sents the stable value finally reached by the resource schedul-
ing fairness function, and P3 represents the average number
of services completed in each timeslot. The DBSM-EABC
algorithm uses the fewest time slots to achieve 96%utilization
of satellite resources. The final stable value of the resource

FIGURE 8. The number of completed services varies with time slot.

scheduling fairness function of this algorithm is the largest,
which is 17.87. Additionally, the average number of services
completed in a time slot of this algorithm is also the largest.

TABLE 5. Evaluation of simulation experiment results.

FIGURE 9. The priority of services changes with the time slot.

In Fig. 9, during the initial phase of the satellite service,
a small number of services are completed. Over time, the
number of completed services increases, increasing the sum
of the priorities of the completed services. Since DBSM-
EABC can effectively find the global optimal solution and
provide services for high-value services, after a schedul-
ing cycle is completed, the algorithm completes the largest
number of services, and the corresponding services have the
highest priority.
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FIGURE 10. The relationship between the number of time slots required
to complete the service and the number of services.

Fig. 10 reflects the relationship between the number of
time slots required to complete the service and the number
of services. As seen in Fig. 10, as the number of services
increases, the number of time slots required by each algorithm
to complete services increases. However, under different task
scales, the DBSM-EABC algorithm requires the least number
of time slots to complete services. In general, DBSM-EABC
is better than the other algorithms, whether it is the number
of completed services within the same number of time slots
or the number of time slots consumed to complete the same
number of services. This is mainly because the algorithm
is optimized for the ABC algorithm in the solution update
process and the dynamic neighborhood update process so that
the algorithm can select the global optimal solution faster,
which proves that DBSM-EABC has good fitness.

VI. CONCLUSION
The introduction of beam-hopping technology into the
resource scheduling of LEO satellites provides a new direc-
tion for the effective use of on-board resources and meets the
needs of ground services as much as possible. In addition, the
introduction of beam-hopping technology into the resource
scheduling of LEO satellites is difficult for adapting to its
highly dynamic characteristics. In this paper, the interbeam
interference, limited on-board resources and variable termi-
nal service requirements are comprehensively considered,
and a multibeam LEO satellite dynamic beam scheduling
model is established. To solve the above dynamic beam
scheduling optimization problem, we employ the improved
ABC algorithm—DBSM-EABC. In order to speed up the
convergence speed of ABC algorithm, an initialization rule
based on double loop learning is designed to reduce the size
of the solution space, and an adaptive solution update strategy
is adopted to make the solution update of the employed bee
and the onlooker bee more oriented. A dynamic neighbor-
hood optimization strategy is designed for the local opti-
mal solution of ABC algorithm, so that the scout bee can
search the global optimal solution faster. The DBSM-EABC

algorithm proposed in this paper is used for beam hopping
to generate the beam-hopping pattern optimization method,
which provides a feasible solution for the resource scheduling
of LEO satellites based on beam hopping and meets the
requirements of satellite networks for service needs, efficient
use of resources, and key coverage in hotspot areas.
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