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ABSTRACT As the memory footprint of emerging applications continues to increase, the address translation
becomes a critical performance bottleneck owing to frequent misses on the Translation Lookaside Buffer
(TLB). In addition, the TLB miss penalty becomes more critical in modern computer systems because the
levels of the hierarchical page table (a.k.a. radix page table) are increasing to extend the address space.
To reduce TLB misses, modern high-performance processors employ a multi-level TLB structure using a
large last-level TLB. Employing a large last-level TLB may reduce TLB misses. However, its capacity is
still limited, and it can incur a chip area overhead. In this paper, we propose a Page Structure Entry (PSE)
pinning mechanism that provides a large PSE store by dedicating some space to the last-level cache to store
only the page structure entries. The PSE Pinning is based on three key observations. First, memory-intensive
applications suffer from frequent misses in the last-level cache. Thus, most of the space in the last-level
cache is not utilized well. Second, most PSEs are fetched from the main memory during the page table walk
process, meaning that the cache lines for the PSEs are frequently evicted from on-chip caches. Finally, a small
number of PSEs are frequently accessed while others are not. By exploiting these three observations, PSE
Pinning pins the frequently accessed page structure entries to the last-level caches so that they can reside
on the cache. Experimental results show that PSE Pinning improves the performance of memory-intensive
workloads suffering from frequent L2 TLB misses by 7.8% on average.

INDEX TERMS Address translation, page walk, translation lookaside buffer, virtual memory.

I. INTRODUCTION
For decades, physical memory capacity has been increasing
dramatically to accommodate the ever-growingmemory foot-
print of modern applications. Recently, this trend has been
rapid because of the emerging big-data applications consum-
ing large amounts of data on physical memory [1], [2], [3].
The prevalence of cloud services also increases the demand
for large memory capacity to provide more virtualized com-
pute instances with a physical compute node [4].

The rapid scale-up of physical memory capacity reveals
a fundamental limitation in the current memory subsystem.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mario Donato Marino .

Inmost computing systems, from smartphones to data-center-
scale servers, memory is orchestrated by the paging-based
virtual memory that provides a virtual address space with the
support of virtual-to-physical address translation [5]. As vir-
tual memory provides an isolated large memory space for
each process irrespective of the physical memory capacity,
it is one of the common building blocks ofmodern computers.
However, virtual memory has been ineffective in large-scale
memory systems due to the address translation becoming a
significant performance bottleneck. [6], [7], [8], [9], [10].

For address translation, the virtual memory typically uses
a radix page table, which is a type of radix-tree data struc-
ture [11]. In the radix page table, each tree level is imple-
mented with a table called Page Structure Table (PST).
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An intermediate PST entry, called Page Structure Entry
(PSE), provides an address of the next-level tree nodes, while
the actual address translation information is stored in the leaf
PSTs of the radix page table.

Address translation with the radix page table requires a tree
traversal process called a page walk, which traverses each
level of the radix tree from the root to the leaf. Because the
PSTs are stored in memory, a page walk requires multiple
memory references to provide all required PSEs to obtain
the address translation information. Therefore, when the page
walk process involves frequent access to the main memory,
it significantly degrades system performance. Furthermore,
the height of the radix tree increases as the address space
is expanded [12], making virtual memory systems even less
efficient. A page walk can be more critical in virtualized
environments where second-level address translation (SLAT)
is required for address translation. Intel and AMD processors
employ an extended page table (EPT) [13] or rapid virtual-
ization index (RVI) [14] to reduce the overhead of SLAT.
However, even with these architectural supports, enormous
memory accesses can be generated because of the page walks
for irregular workloads because a page walk is required for
each level of the guest page table [15], [16].

To mitigate page walk overheads, modern microprocessors
employ a Translation Lookaside Buffer (TLB), which is a
small cache that holds translation information for recently
and frequently accessed pages. Even if the TLB can effi-
ciently reduce the page walk overhead, its capacity is small
(it holds the translation information for a few pages) because
the TLB is on the critical path of the processor pipeline. Thus,
the TLB is also implemented in a multi-level hierarchical
structure, where a large L2 TLB is employed along with a
small L1 TLB. Unfortunately, however, an L2 TLB suffers
from frequent misses because L2 TLB capacity is not suffi-
cient to meet the high capacity demand of many emerging big
data applications with a large memory footprint and irregular
memory access patterns [6], [17], [18], [19], [20].

There has been a large corpus of prior work on mitigating
the overhead of page walks by reducing TLB misses [15],
[21], [22], [23], [24], [25], [26], [27], [28], [29], [30] or by
reducing the TLB miss penalty [13], [16], [18], [31], [32],
[33], [34], [35]. This study focuses on the second approach.
Specifically, we propose a technique that avoids expensive
off-chip main memory (i.e., DRAM) accesses by holding as
many PSEs in the on-chip caches as possible. Because the
main memory accesses contribute a large portion of the page
walk latency as shown in Figure 1, eliminating themainmem-
ory accesses in the page walk process can lead to significant
performance gain in the address translation.

Recently, Marathe et al. [35] proposed a similar approach,
called CSALT, to reduce page walk latency. In their work, on-
chip caches were dynamically partitioned into a TLB entry
region and a normal data region. By holding frequently and
recently referenced TLB entries in the TLB entry region,
CSALT reduces the expensive off-chip memory accesses for
reading the TLB entries from POM-TLB (proposed in [34])

FIGURE 1. Page walk latency reduction with PSE Pinning. Our goal is to
minimize the off-chip memory accesses by pinning frequently re-fetched
PSEs to the last-level cache.

which is a large TLB located at the off-chip memory. Even
though CSALT is an efficient method that provides a ded-
icated on-chip storage for holding the address translation
information, it relies on their specific memory system archi-
tecture (i.e., POM-TLB). More recently, Park et al. [18]
proposed a method called page table prioritization (PTP) to
prioritize cache blocks such that cache blocks containing
PSEs (PSE blocks) reside in the on-chip cache. The basic idea
of PTP is similar to ours. However, PTP does not provide a
method to determine the PSE blocks that must reside in the
on-chip caches. Therefore, it can suffer from frequent conflict
misses when many PSE blocks are referenced with a low
temporal or spatial locality.

This paper proposes PSE Pinning to reduce page walk
latency by pinning frequently accessed PSEs (referred to as
hot PSE) to the last-level cache (LLC). The PSE Pinning is
motivated by three key observations. First, the LLC is not
effective for workloads with a large memory footprint and
irregular memory access patterns, and thus the performance
of those workloads is not sensitive to the LLC capacity. Sec-
ond, many PSEs have the temporal/spatial locality, even in
memory-intensive workloads. Finally, in the most page walk
process, PSEs are fetched from the main memory, meaning
they are repeatedly evicted from the LLC because of conflict
misses on the LLC and are brought again from the main
memory.

Based on these observations, PSE Pinning detects the
PSE blocks (a cache block containing the PSEs) repeatedly
brought from themainmemory and then pins them to the LLC
to make them reside in the LLC. By pinning the PSE blocks,
the page walk process can find the required PSEs in the
LLC without accessing the slow main memory (i.e., DRAM),
significantly reducing the page walk latency as shown in
Figure 1. PSE Pinning relies on two mechanisms: PSE selec-
tion and dynamic pinning. The PSE selection mechanism
selects the PSE blocks that have to be pinned in the LLC by
maintaining per-block access counters. When a PSE block
is brought from the main memory, the access counter for
that block is incremented. By referring to the access counter,
PSE blocks repeatedly fetched from the main memory can
be detected. A access counters can be maintained without
additional storage overhead by storing them in unused bits of
the PSE. The dynamic pinning mechanism detects program
phases in which performance is significantly degraded by
frequent TLB and LLC misses. After detecting the program
phase, the PSE Pinning mechanism configures the LLC to
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designate the LLC space specifically for the PSEs and then
pin the selected PSEs there.

Experimental results with a cycle-level simulator show that
PSE Pinning reduces the main memory accesses for fetching
the PSE blocks by 65.1% on average, leading to an aver-
age reduction of 28.4% in page walk latency. With the dra-
matic improvement in the page walk latency, PSE Pinning
achieves a speedup of 7.8% on average for memory-intensive
workloads suffering from frequent page walks.

II. BACKGROUND
A. VIRTUAL MEMORY SYSTEM
Virtual memory (VM) is a fundamental building block in
modern computer systems. It simplifies application program-
ming by providing a separate (virtual) address space for
each process. Furthermore, virtual memory enables appli-
cations to use more (virtual) memory space than physical
memory capacity. In virtual memory with a paging scheme,
address translation is performed in page size granularity (e.g.,
typically 4KB).

A page table is commonly used for address translation
to maintain the virtual to physical address mapping infor-
mation, but with different structures across computer sys-
tems. The x86-64 architecture, for example, uses a radix page
table implemented with a multi-level radix-tree structure.
In modern computer architectures, the radix page table level
has increased from four to five to accommodate the rapidly
increasing memory footprint of memory-intensive applica-
tions. With the expansion of the page table level, the virtual
address (VA) has increased from 48 to 57 bits, expanding the
virtual memory space from 256 TB to 128 PB [12].

Figure 2 shows a 5-level radix page table in the x86-64
architecture. Each level of the page table is denoted as Page
Map Level-5 (PML5), Page Map Level-4 (PML4), Page
Directory Pointer (PDP), Page Directory (PD), and Page
Table (PT), respectively [12]. In this paper, we refer to all
these tables as Page Structure Tables (PSTs) and the entries
of the tables as Page Structure Entries (PSEs). The PSEs of
each intermediate PST holds the address pointing to the next-
level PST, while the PSEs of the last-level PST (i.e., a leaf of
the tree) hold the address translation information. The entry
of the last-level PST is also known as Page Table Entry (PTE).

To translate a given virtual address to a physical address,
the radix page table is traversed from the PML5 table (root
PST) to the page table (leaf PST). This traversal process is
called a page walk, which incurs multiple memory accesses
for address translation. In the x86-64 architecture, the CR3
register contains the base address of the PML5 table. The
base address is added to bits [56:48] of the virtual address to
get the address of the corresponding PSE that holds the base
address of the PML4 table. The objective of the page walk
is to find a page table entry in the page table (leaf PST) by
repeatedly carrying out this search process. Since consecutive
searches are required for the 5-level radix page table, address
translation incurs frequent memory accesses. Although PSEs
are cacheable in the memory hierarchy, the page walk

FIGURE 2. Virtual to physical address translation. The hierarchical
structure of radix page table makes the address translation less efficient
due to frequent main memory accesses.

process involves five main memory accesses in the worst
case.

Owing to consecutive memory accesses, page walk may
introduce a significant amount of latency into the address
translation. In order to reduce the address translation latency,
Translation Lookaside Buffer (TLB) is utilized by the Mem-
ory Management Unit (MMU). TLB maintains a cache of
the most recently and frequently accessed address translation
information. When performing address translation, the CPU
first checks the TLB, and if the necessary address translation
information is present, a page walk is bypassed. Even if the
TLB reduces the number of page walks, it cannot reduce the
latency of the page walk caused by a TLB miss. Therefore,
if the TLB miss rate is high, the system’s performance will
be degraded dramatically as a result of the long page walk
latency.

B. PAGE STRUCTURE CACHE
To minimize the page walk latency, the Intel x86 architec-
ture includes Page Structure Caches (PSCs) to hold the PSEs
of the intermediate PST (from PML5 to PD). By holding
recently and frequently used PSEs, the PSC allows the page
walk to skip some levels of the radix page table, reducing the
memory accesses involved during the page walk and conse-
quently reducing the page walk latency [17], [19], [36]. For
example, PML4 can be accessed directly while skipping the
PML5 table access if high-order 9 bits of the virtual address
(VA[56:48]) required for the PML5 index are matched on
a PML5-PSC (PSC holding the entries of the PML5 table).
In the best case, if VA[56:21] is matched on the PD-PSC
(PSC holding the entries of the PD table), the 5-step page
walk is reduced to just a single step. On average, PSCs enable
skipping steps 2.2 ∼ 2.9 in the 4-level page walk [18].
Unfortunately, as pointed out in a previous study [18],

the efficiency of PSCs varies according to the locality of
the memory references, and it rarely performs effectively for
workloads with irregular access patterns. When a PSC miss
occurs, the page walk process traverses the memory hierar-
chy, from the L1 data cache to the off-chip main memory,
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TABLE 1. Workload specification.

looking for the required PSEs. As a result, page walk latency
varies dramatically depending on the incidence of PSCmisses
and the memory hierarchy level at which the PSEs are found.

C. EMERGING WORKLOAD CHALLENGES
Table 1 shows the memory footprints of the workloads used
in this study, which comprises memory-intensive workloads
from the SPEC CPU 2006 suites [37], GAP benchmark
suites [38], XSBench [39] and HPCC [40]. As shown in the
table, the emerging graph analytic workloads have a consid-
erably larger memory footprint than the memory-intensive
SPEC CPU2006 benchmarks. Their memory footprints range
from a few to several gigabytes.

Graph analytic workloads often have poor locality in mem-
ory reference because of their irregular memory access pat-
terns and large memory footprints [41]. When the workload
lacks locality in the memory reference, caches such as the
TLB and PSC operate less efficiently, resulting in frequent
misses. For theseworkloads, pagewalks are required to locate
entries in the lower memory hierarchy, resulting in frequent
off-chip memory accesses.

Due to the frequent off-chip memory accesses, address
translation is faced with a drastic increase in latency. Mem-
ory accesses triggered by page walks can account for up
to 20∼40% of the total memory accesses [20]. Recent
studies have pointed out that address translations requiring
many memory accesses are the primary performance bottle-
necks [18], [29], [30], [33], [34], [42], [43].

The address translation latency may be reduced by increas-
ing the size of TLB and PSC. Unfortunately, this can produce
chip area overheads because the TLB and PSC must be kept
close to the processor core and small in size to enable fast
address translation. To make matters worse, memory foot-
prints have grown larger, and the height of the radix page
table has been expanded from four to five. As the height
of the page table increases, the page walk overheads also

FIGURE 3. L2 TLB misses per kilo-instruction (MPKI). Memory-intensive
workloads with irregular memory access patterns suffer from frequent
misses on L2 TLB.

increases [32]. Thus, a new mechanism is required to reduce
address translation overheads with minimal hardware modi-
fication by mitigating this challenge of virtual memory on the
emerging workloads.

III. MOTIVATION
A. TLB MISSES
Because the memory footprint of new memory-intensive
applications can exceed several terabytes, the TLB is not
enough to handle address translations for such massive data,
resulting in frequent TLB misses. Figure 3 shows Miss Per
Kilo Instructions (MPKI) in the L2 TLB for various memory-
intensive workloads. As shown in the figure, the work-
loads with relatively small memory footprint (lbm, leslie3d,
and soplex) experience negligible L2 TLB misses. However,
L2 TLB does not performwell on workloads with large mem-
ory footprints and irregular memory access patterns (bc-kron,
bc-urand, bfs-kron, bfs-urand, and gups), and hence these
workloads suffer from frequent L2 TLB misses. Because of
the frequent misses on the L2 TLB, the fraction of page walks
in total memory access latency becomes considerably high
when these workloads are executed, resulting in a substantial
decrease in system performance [15], [43], [44].

B. PAGE WALK LATENCY
As described in Section II-B, when both the TLB and PSC fail
to translate an address, a page walk is performed to traverse
the memory hierarchy from the L1 cache to the off-chip main
memory. Figure 4 shows the contribution of each level of the
memory hierarchy on the page walk latency. As shown in
the figure, a large portion of the latency encountered during
page walks is due to the main memory accesses. On average,
61% of the page walk latency is contributed by accessing the
main memory (denoted byMEM). In the worst case, the main
memory accounts for up to 91% of the page walk latency.
Applications with a large memory footprint and irregular
memory access patterns involve severe cache contention [45].
Consequently, the on-chip cache has a relatively low contribu-
tion to page walk latency compared with the main memory.
This observation implies that address translation overhead
can be significantly reduced by avoiding access to the main
memory during page walks.
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FIGURE 4. Distribution of page walk latency. Off-chip main memory
contributes up to 91% of the page walk latency.

FIGURE 5. Distribution of cache block reused in LLC. Overall, 90% of the
cache blocks are reused no more than once before eviction.

C. LLC’S INCOMPETENCE
The LLC is a large on-chip cache that is employed to reduce
expensive main memory accesses. If a PSE is found in the
LLC, the number of accesses to the main memory can be
significantly reduced. Unfortunately, however, the LLC does
not work well for memory-intensive workloads with a large
memory footprint and irregular memory access patterns. Fig-
ure 5 shows the reuse pattern of cache blocks on the LLC
for the workloads listed in Table 1. The X-axis represents the
number of times a cache block has been reused (i.e., hit count)
on the LLC until it is evicted. For example, a reuse count
of zero indicates that a cache block is never reused within
the LLC; such a block is referred to as a dead block [30].
As shown in the figure, 77% of cache blocks are dead, and
90% of cache blocks are reused no more than just once.

The prevalence of dead blocks makes the LLC ineffec-
tive, especially for memory-intensive workloads, leading to
the wastage of LLC capacity. To demonstrate the perfor-
mance impact of the LLC capacity allocated to data blocks
(i.e., cache blocks containing normal data), we measured the
execution time while varying the number of ways allotted
to the normal data in the LLC. Conventional LLC stores
both normal data and PSEs. However, in this experiment,
we employed a separate virtual buffer to store all PSE blocks
(i.e., cache blocks containing PSEs) to eliminate any per-
formance impact caused by the PSE blocks. As shown in
Figure 6, most workloads experience a slight increase in
the execution time with the reduced cache ways allocated
to the data blocks. Compared with the baseline (16 ways),
the execution time increases by an average of only 1.9%
and 2.9% when the number of cache ways allocated to the
data blocks is reduced to 10 and 8, respectively. In the

FIGURE 6. Performance impact of LLC ways allocated to data blocks.
Most memory-intensive workloads are less sensitive to the LLC capacity.

FIGURE 7. Access pattern of PSE blocks.1 On average, 37.5% of PSE
blocks are frequently re-fetched from the main memory, while 38% of
PSE blocks are fetched only once.

workloads with a modest memory footprint (such as leslie3d
and soplex), reducing the LLC capacity significantly impacts
performance, as their working set is mostly accommodated
in the LLC. However, in memory-intensive workloads with
a large working set (such as lbm, tc-urand, sssp-urand, and
gups), reducing the LLC capacity rarely affects the perfor-
mance because LLC is ineffective due to the frequent capacity
misses. This observation implies that the performance impact
of the cache capacity allocated to the normal data blocks is
small, motivating to store more PSE blocks in the LLC instead
of normal data blocks.

D. ACCESS PATTERN OF PSE BLOCKS
As described in Section III-B, the main memory accesses
account for more than half of the page walk latency. There-
fore, we need to minimize the main memory accesses during
the page walk by keeping PSEs in the LLC as much as pos-
sible. While pursuing this goal, it is necessary to balance the
number of data and PSE blocks in the limited LLC space.
If we reduce the space allocated for data blocks too much
in order to accommodate more PSE blocks, the performance
may suffer significantly.

To determine the PSE blocks that must be stored in the
LLC, we analyze the access patterns in fetching the PSE
blocks from the main memory and classify PSE blocks into
three groups based on their access pattern. As shown in

1The ‘‘Average’’ in the legend is the average number of PSE blocks
re-fetched from the main memory for each workloads.
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Figure 7, the number of accesses to the main memory varies
significantly across PSE blocks. On average, 37.5% of PSE
blocks are fetched frequently from the main memory, while
38% of the PSE blocks are fetched only once. This observa-
tion on the skewed access counts of the PSE blocks motivates
the techniques for identifying the PSE blocks that are fre-
quently re-fetched from the main memory and pinning those
PSE blocks to the LLC.

IV. PINNING THE PSE TO LLC
A. PSE PINNING
This study focuses on mitigating page walk latency to reduce
address translation overhead. To achieve this goal, we pro-
pose a novel mechanism called PSE Pinning (PSP). This
mechanism sticks hot PSE blocks (i.e., PSE blocks frequently
re-fetched from the main memory) in the LLC, allowing
the address translation to be completed without accessing
the main memory. PSP operates in three basic steps. First,
it detects program phases where the TLB misses frequently
occur, and the performance is not sensitive to the LLC capac-
ity. Second, the hot PSE blocks that cause frequent main
memory accesses are identified. Since the LLC capacity
is limited, holding all PSE blocks in the LLC is imprac-
tical. Therefore, the PSP carefully identifies the most fre-
quently reused PSE blocks inside the LLC based on the
observed PSE access patterns. Finally, the LLC is config-
ured to allocate a portion of its storage capacity dedicated
only to the PSE blocks. Depending on the frequency of the
LLC and TLB misses, the ratio of the LLC space dedi-
cated to the PSE blocks is dynamically adjusted to appropri-
ately balance the cache spaces between the data block and
PSE blocks.

Figure 8 shows the overall operating flow of PSP. If a page
walk misses on the PSC, the page walker looks for PSEs in
the L1 and L2 caches. If it fails to find the requested PSEs in
those caches, it searches them in the cache space dedicated to
the PSEs in the LLC (¶). In the baseline system, it is highly
likely that the LLC does not have the desired PSEs. However,
if frequently reused PSE blocks are pinned to the LLC, most
address translations can be completed without accessing the
main memory (·).

To effectively utilize the limited LLC capacity, it is neces-
sary to identify the PSE blocks that cause frequent memory
accesses. To this end, the number of main memory accesses
per PSE block is tracked. When installing a PSE block to
the LLC, the block is pinned to the dedicated LLC space if
it has already been brought from memory several times (¸).
In the conventional LLC replacement policy, a victim block
is selected without distinguishing between the data and PSE
blocks. However, our proposed PSP excludes the pinned PSE
blocks in the victim selection because they are expected to be
reused soon.

Adjusting the dedicated LLC space to the PSEs is essential
for efficient pinning with low-performance impact. To this
end, the PSP determines the appropriate program phase
for pinning the PSEs by profiling the LLC and L2 TLB

FIGURE 8. Overview of PSP.

FIGURE 9. LLC structure with access counters. PSE Pinning uses an access
counter per a cache block to select PSE blocks to pin.

misses. Subsequently, it dynamically adjusts the LLC space
dedicated to the pinned PSE blocks per cache set (¹). For the
program phase where both TLB and LLC are not effective
(i.e., frequent misses on both LLC and TLB), PSP allocates
more space for the PSE blocks. In contrast, for the phase of
the program where TLB and LLC operate effectively, PSP
reduces the LLC space allocated to the PSE blocks.

B. SELECTING PSE TO PIN
As described in Section III-D, on average, only 37.5% of PSE
blocks are frequently fetched from the main memory. If these
blocks are frequently evicted from the LLC due to the conflict
misses and fetched again from the expensive off-chip main
memory, the system performance will be degraded due to a
slow address translation. This subsection describes how the
PSPmechanism detects the PSE blocks that have to be pinned
in the LLC.

PSP employs an 8-bit access counter per a PTE block to
identify the PSE blocks that are frequently read from themain
memory. A simple way to maintain the access counter per a
PTE block is to extend the tag array of the LLC to include
an access counter per cache block, as shown in Figure 9. The
access counter tracks the number of main memory accesses
for the corresponding cache block in the LLC. When a cache
block is read from the main memory and installed in the
LLC, the access counter is incremented. A cache block with
a counter value of 1 indicates that it has been read from
the main memory only once, whereas a cache block with a
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FIGURE 10. PSE formats of Intel’s 5-Level paging scheme [46].

FIGURE 11. Storing an access counter in PSEs. An access counter is
interleaved across eight PSEs within a PSE block.

large counter value indicates that it has frequently been read
from the main memory. When hot PTE blocks (frequently
read from the main memory) are successfully identified and
pinned to the LLC, the page walk latency can be reduced
significantly because address translation can avoid excessive
main memory accesses.

Adding an 8-bit access counter per cache block in the
LLC incurs significant hardware overheads. To avoid hard-
ware costs, we store the access counter in the PSE’s existing
unused fields. Figure 10 depicts the format of five differ-
ent types of page structure entries (i.e., PML5E, PML4E,
PDPTE, PDE, and PTE) in the five-level paging scheme [46].
The length of all PSE types is 64 bits, and each field in
the entry specifies specific information used in the address
translation. In the figure, we can observe that all PSE type
has ‘‘Ignored’’ and ‘‘Reserved’’ fields that are not used in
the current virtual memory systems. Even without using these
unused bits, we can store a 48-bit base address of the PST in
a PSE, resulting in a maximummemory capacity of 1024 PB,
which is significantly larger than the typical memory capacity
of modern server systems.

By utilizing the ‘‘Ignored’’ bits, it is possible to secure up
to 11 bits. Furthermore, when Reserved bits are combined
with Ignored bits, the maximum number of bits that can be
utilized is further increased. In addition, since a PSE block
contains eight PSEs, each bit of the 8-bit access counter for
a PSE block can be distributed across the eight PSEs within
the block, as shown in figure 11. Therefore, only one unused
bit of a PSE is used to accommodate the 8-bit access counter
for a PSE block.

FIGURE 12. Program phase of bfs-kron.

C. DYNAMIC PINNING
PSP dynamically adjusts the LLC space through program
phase recognition. To determine the program phase, PSP pro-
files LLC miss rate and L2 TLB MPKI during the program
execution and utilizes them as reference factors. The LLC
miss rate can be used to determine the locality of memory
references, and the L2 TLB MPKI is closely related to page
walk frequency. Figure 12 shows the L2 TLB MKPI and
LLC miss rate during program execution for the bfs-kron
workload. Both TLB miss counts and LLC utilization exhibit
various patterns during program execution and can be uti-
lized as indicators of the program phase.In this subsection,
we present a process of analyzing TLB and LLC misses to
find the program phases where the LLC is ineffective, and
the L2 TLB suffers from frequent misses. PSP classifies the
program phases into four classes, as shown in Table 2. If the
LLC miss rate is high and there are many L2 TLB misses
during a phase, the PSE blocks can be safely pinned in the
LLC without any impact on the performance. This phase is
referred to as Strong Pinning where PSE blocks need to be
pinned aggressively in the LLC. Conversely, if there are a few
misses on LLC and L2 TLB during a phase, it is not required
to pin the PSEs in the LLC, and sometimes it is necessary to
remove the pinned PSEs from the LLC. This phase is referred
to as Pinning Out.

As described above, the program phase is classified
according to the level (high or low) of reference factors
(L2 TLB MPKI and LLC miss rates). Thus, PSP collects the
LLC miss rate and L2 TLB MPKI at regular intervals and
determines the level of reference factors as high or low. The
reference factors’ level (i.e., high or low) can be determined
only when the corresponding comparison target is available.
The simplest and most precise way to obtain the comparison
target is to accumulate the events throughout the entire exe-
cution. However, continuous collection of the LLC miss rate
and L2 TLB MPKI during the entire execution of a program
can incur high overheads in the storage space.

To minimize the overheads required to detect the program
phase, we define a local value (LV) storing the reference
factor for the current interval of program execution and a
global value (GV) that is updated with the LVs during the
entire program execution. The program phase is identified by
evaluating the changes of LV and GV.

GVn+1 =
LV + GVn

2
(1)
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TABLE 2. Program phase classification.

Equation 1 is used to calculate the GV. The LV and GVn of
the current interval determines the next GVn+1. To determine
the level of a reference factor, GVn+1 is compared with LV.
If LV is greater than GVn+1, the level of the corresponding
reference factor is considered ‘‘high’’. Otherwise, the level
is deemed to be ‘‘low’’. With the determined level of the
reference factors (i.e., L2 TLB MPKI and LLC miss rates),
a program phase is classified.

According to the identified program phase, PSP adjusts
pinning threshold to control the maximum number of
pinnable PSE blocks in a cache set. PSP allocates more LLC
space to the PSE blocks when the pinning threshold is less
than the number of currently pinnable PSE blocks for a set.
To this end, when evicting a victim from a physical cache line,
the line is deactivated so that it is not selected to accommodate
a new data block. The deactivated line is then only utilized to
store the PSE blocks.

D. IMPLEMENTATION
This section describes hardware extensions and algorithms
for PSP. To determine the program phase, we need a pro-
cess that collects the LLC miss rate and L2 TLB MPKI)
at a specific interval (defined as a number of committed
instructions). To this end, we use three 32-bit counters, each
of which counts LLC misses, LLC accesses, and L2 TLB
misses, respectively. When a miss occurs on the LLC and
the L2 TLB, the corresponding counter is incremented by 1.
For the LLC, the number of accesses should be counted as
well as the number of misses to calculate the miss rates. Each
counter value is initialized at every interval. By default, we set
the interval to 10 million instructions to avoid too frequent
initialization.

Modern processors typically employ performance mea-
surement facilities that profile the various hardware
event [47], [48]. Consequently, the continuous profiling of the
LLC and L2 TLB events can be implemented with minimal
hardware overhead by utilizing those performance measure-
ment facilities (e.g., Performance counters on Intel proces-
sors [47]), which are already incorporated into the modern
processors.

Algorithm 1 describes a mechanism that classifies the pro-
gram phase and adjusts Pinning threshold. For the phase clas-
sification, the local value of the LLC miss rate (lx) and that
of the L2 TLB MPKI (ly) are collected for the current inter-
val, and then used to update their global value (gx and gy).
The phase classification is basically conducted by checking
whether the local value is relatively greater than the global
one. If both lx and ly are greater than their global value

Algorithm 1 Updating Pinning Threshold
Input : profiling result for specific interval

lx← LLC miss rate, ly← L2 TLB MPKI
Output : pinning_threshold

function compare (local, global)
if local ≥ 1.05 x global then
return HIGH

else if local ≤ 0.95 x global then
return LOW

end if
return IGNORE

end function

Initialization :
gx← compute_gv (lx), gy← compute_gv (ly)
/∗ compute global value with eq.(1) ∗/
x ← compare(lx,gx), y ← compare(ly,gy)

1: if lx > standard_mr AND ly > standard_mpki then
2: if x is HIGH AND y is HIGH then
3: increase pinning_threshold by 2 /∗ Strong Pin-

ning ∗/
4: else if x is HIGH then
5: increase pinning_threshold by 1 /∗Weak Pinning
∗/

6: else if x is LOW AND y is LOW then
7: decrease pinning_threshold by 1 /∗ Pinning Out
∗/

8: end if
9: else if lx < standard_mr OR ly < standard_mpki then

10: decrease pinning_threshold by 1
11: end if

(gx and gy), the program phase is determined as Strong Pin-
ning. If only lx is greater than gx, the program phase is
determined as Weak Pinning. If both lx and ly are smaller
than their global value (gx and gy, respectively), the pro-
gram phase is determined as Pinning Out. In this process,
the local value is considered to be greater (or smaller) than
the global one only when their gap is higher than a specific
rate (i.e., 5% in our default configuration). Algorithm 1 also
compares the lx and ly with a standard miss rate (denoted
by standard_mr) and a standard L2 TLB MPKI (denoted by
standard_mpki), respectively, as shown in line 1. By referring
to these standard values, the algorithm can prevent unneces-
sarily pinning PTE blocks to the LLC in the program phase
where the LLC miss rate or L2 TLB MPKI is low. The stan-
dard_mr and standard_mpki are obtained by offline profiling
that collects the LLC miss rates and L2 TLB MPKIs for all
target workloads and calculates the averages of the collected
statistics. In this paper, we obtained the standard_mr and
standard_mpki for all workloads listed in Table 1. Since the
standard values can be different depending on the target work-
loads, it is required to provide a facility to update them. This
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Algorithm 2 Replacing PSE Blocks
Input : blk_access_cnt is the number of accesses for a PSE

block pin_cnt is the number of pinned blocks in
current set

Initialization : pin← false

1: if blk_access_cnt > hot_threshold then
2: pin← true
3: increase pin_cnt by 1
4: end if

5: if pin_cnt > pinning_threshold then
6: remove pin for pinned blocks by replacement policy
7: end if

8: find victim for no-pinned blocks by replacement policy
9: update cache block using pin state (true or false)

can be easily implemented, as will be discussed later in this
section.

After phase classification, the pinning threshold is adjusted
to control the maximum number of PSE blocks pinned to the
LLC according to the program phase. For example, in the
‘‘Strong Pinning’’ phase, the pinning threshold is set to a
high value to allocate more space for the PSEs. With a
high pinning threshold, PSP aggressively pins more PSEs in
the LLC. In the opposite case (i.e., ‘‘Pinning Out’’ phase),
where both LLC miss rate and L2 TLB MPKI are low,
the pinning threshold is decremented to reduce the maxi-
mum number of PSEs that can be pinned in the LLC space.
We empirically determine the upper bound of the pinning
threshold to 14 blocks. By limiting the maximum pinning
threshold, we can prevent all LLC spaces are occupied by the
PSE blocks.

Algorithm 2 shows an LLC replacement mechanism that
selects a victim while considering the pinned PSEs. In the
baseline LLC, the replacement mechanism selects a victim
among all cache blocks in a corresponding set. However,
in the LLC with PSP, the replacement mechanism excludes
the pinned PTE blocks from the victim candidates.

When installing a PSE block in the LLC, PSP determines
whether or not the block is a hot PSE block that needs to
be pinned in the LLC. For detecting the hot PSE blocks,
we define a hot-PSE threshold (denoted by hot_threshold)
which is compared to the access counter of the PSE block
fetched from themainmemory. Suppose the access counter of
the PSE block (denoted by block_access_cnt) is greater than
a hot-PSE threshold. In that case, the block is determined to
require pinning in the LLC.2

In the case where the newly installed PSE block is deter-
mined to be pinned, the number of pinned blocks in the corre-
sponding cache set can exceed its upper bound. To avoid this
situation, the total number of pinned blocks is compared to

2Since approximately 40% of the PSE blocks are fetched from the main
memory only once (shown in Figure 7), it is sufficient to set the hot PSE
threshold to a small value for selecting the PSE blocks to be pinned.

TABLE 3. Simulated system configuration.

the pinning threshold whenever a PSE block is pinned. If the
total number of pinned PSE blocks is greater than the pinning
threshold, one of the PSE blocks in the set is selected by using
the cache replacement policy and converted to a normal PSE
block. And then, a victim block is selected among data blocks
or PSE blocks that are not pinned.

To implement PSP, two additional bits are added to each
tag entry. One is used to distinguish PSE blocks and nor-
mal data blocks, while another is used to determine whether
a cache block is pinned or not. These additional bits may
occupy a negligible amount of LLC area (less than 1%). In
addition, we need a facility to update the standard values
for adapting the algorithm to various target workloads. This
requirement can be easily met by storing the standard values
in the processor’s registers. The processor contains a variety
of control registers that can be used to control the behavior
of its various components. To store the standard values in the
processor’s registers, we can either add new control registers
to the processor or utilize the free bits of the existing control
registers (e.g., the EFER register [11]).

V. EXPERIMENTAL METHODOLOGY
A. WORKLOADS
We use 16 memory-intensive workloads from SPEC CPU
2006, XSBench, GAP benchmark suites, and HPCC for our
evaluations. Table 1 describes the workloads and their respec-
tive memory footprint. Among various graph inputs in the
GAP benchmark suite, we conduct experiments with kron and
urand inputs because they are relatively large and cause graph
algorithms to have irregular memory accesses. Additionally,
the workloads are classified into three groups according to the
L2 TLB misses per kilo instructions (L2 TLB MPKI): Low
(L-group), Mid (M-group), and High (H-group). Because the
workloads belonging to M-group and H-group cause fre-
quent L2 TLB misses, they are suitable for evaluating the
performance improvement with PSP. Even though L-group is
not sensitive to the page walk latency since they accomplish
most address translations in the TLB, we use them to verify
whether PSP does not degrade the system performance for the
workloads with low TLB misses.
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FIGURE 13. Performance.

B. SIMULATION
Weuse ChampSim [50], a trace-based simulatormodeling the
4-wide out-of-order processor, for our evaluation. ChampSim
includes PSCs as well as L1 and L2 TLBs, and it models
the page walk on the 5-level radix page table. We modified
ChampSim to implement the proposed PSP and a competitive
technique called Page Table Prioritization (PTP) [18]. PTP
prioritizes the PTE blocks to keep them in the cache when
the TLBmiss rate is high.With a high probability (e.g., 99%),
PTP selects a victim among data blocks, which allows more
PTE blocks can reside in the cache. Although PTP has a
similar goal to PSP, PTP uses an empirical probability with
a simple phase detection, and it does not provide a mecha-
nism to distinguish hot PSE blocks. Workload trace files are
generated using the SimPoint methodology [51]. For every
workload, we warm up the simulated system for 250 million
instructions and execute 200 million instructions in detailed
mode. Table 3 summarizes the system configurations used in
our evaluations.

VI. SIMULATION RESULTS
A. PERFORMANCE
Figure 13 shows the performance improvement of the pro-
posed PSP mechanism when compared to the baseline and
PTP (cache prioritization) [18]. Since we focus on reducing
the page walk overhead, we compare the performance gains
of the PSP and PTP for H-group workloads separately. In Fig-
ure 13, H-geomean is the geometric median for H-group
workloads, while geomean is the geometric median for all
workloads.

Our PSP mechanism achieves an average 4% performance
improvement for all 16 workloads when compared to the
baseline. For fiveH-groupworkloads (bc-kron, bc-urand, bfs-
kron, bfs-urand, and gups), which are the target workloads
of the PSP mechanism, the performance improvement with
PSP is 7.8% on average. Even for M-group workloads, PSP
achieves a performance improvement of more than 2.6% on
average. However, because the L-group workloads have high
hit rates on the L1 and L2 TLBs, there is trivial performance
improvement when employing either PSP or PTP mecha-
nisms. Our PSP outperforms PTP for most workloads. In par-
ticular, it provides much higher performance gains than PTP
for the H-group workloads. This higher performance gain of

FIGURE 14. Normalized number of read requests to the main memory for
fetching normal data and PSEs.

FIGURE 15. Page walk latency.

PSP compared with that of PTP is mainly due to its efficient
pinning mechanism. The goal of PTP is similar to that of PSP,
but PTP only provides a static prioritization method that gives
a higher priority to all PTE blocks.

B. MEMORY ACCESS
PSP reduces the number of main memory accesses required
for fetching PSEs. Figure 14 shows the normalized number
of read requests to the main memory for fetching PSEs and
normal data. Overall, both PTP and PSP increase the memory
accesses for fetching normal data by only 1% on average.
While the PSP slightly increases the memory access for the
normal data, it significantly reduces the memory access for
the PSEs. With PSP, the memory access for the PSEs is
reduced by 65.1% on average. PTP, our competitive tech-
nique, reduces the memory access for the PSEs by 45% on
average.

By avoiding the memory accesses involved in the page
walk, PSP significantly reduces the page walk latency as
shown in Figure 15. PSP reduces the page walk latency by
28.4% on average. For bfs-kron, PSP reduces page walk
latency by 65.3%, which is 19.9% greater than the reduction
achieved with PTP. Compared to PTP, PSP provides a 7.4%
higher reduction in the page walk latency on average.

C. ENERGY CONSUMPTION
Figure 16 shows the normalized energy consumption of
the memory system. To evaluate the impact of the PSP on
energy consumption, we extracted the parameters regarding
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FIGURE 16. Dynamic energy consumption of caches and main memory
(DRAM). Results are normalized to the baseline.

FIGURE 17. Impact of hot-PSE threshold.

FIGURE 18. Impact of profiling interval.

the energy consumption of the memory system, including
on-chip caches and the main memory, by using CACTI [52].
Then, we use the extracted parameters to estimate the energy
consumption of the memory system in the system-level
simulation with the Champsim. As shown in the figure,
PSP reduces the total energy consumption of the mem-
ory system by 1.6% on average. This energy-saving is
mainly achieved by reduced access to the main memory.
Even if the PSP increases the energy consumption of the
LLC due to the increased hits when accessing the PSE
blocks, it significantly reduces the energy consumption of
the main memory, which is a major contributor to the energy
consumption.

D. SENSITIVITY ANALYSIS
In this section, we analyze the performance impact of PSP
according to various system configurations.

FIGURE 19. Impact of LLC prefetcher.

1) IMPACT OF HOT PSE THRESHOLD
First, we compare the performance impact of PSP accord-
ing to the hot-PSE threshold used in Algorithm 1. The
hot-PSE threshold controls the aggressiveness of. With a
low hot-PSE threshold, PSP pins more PSE blocks in the
cache, which reduces the percentage of the data blocks in the
cache. Increasing the hot-PSE threshold reduces candidate
PTE blocks for pinning. Thus, with a large hot-PSE threshold,
PSP conservatively selects the PSE blocks to be pinned in the
cache.

As shown in Figure 17, the performance difference across
various hot-PSE thresholds is very small. For some work-
loads, PSP with a hot-PSE threshold of 1 can deliver almost
optimal performance. This is because PSP pins the PSE
blocks in the program phase, where the LLC does not effec-
tively provide the data blocks because most of the data blocks
are not reused in the cache. In addition, a large number of
the PSE blocks (62% on average) are fetched from the main
memory more than once as shown in Figure 7. For some
benchmarks, such as bc-urand and bfs-urand, that have a rel-
atively small number of hot PSE blocks, PSP achieves better
performance when conservatively pinning the PSE blocks in
the cache by using a high hot-PSE threshold.

2) IMPACT OF PROFILING INTERVAL
Second, we evaluate the performance impact of profiling
intervals in PSP. Figure 18 shows the performance improve-
ment of PSP for various profiling intervals: 5M (Million
instructions), 10M, and 20M. Overall, PSP with long pro-
filing intervals delivers better performance for the H-group
workloads. In the case of sssp-kron, however, the perfor-
mance of PSP is sensitive to the profiling interval. This result
implies that it is required to determine an appropriate pro-
filing interval for each workload or dynamically adjust the
profiling interval during the program execution.

3) IMPACT OF CACHE PREFETCHER
Third, we evaluate the performance improvement with PSP
for various LLC prefetchers: Next-line prefetcher, Instruc-
tion Pointer-based stride prefetcher (IP-stride) [53], Kill the
Program Counter Prefetcher (KPCP) [54], and Access Map
Pattern Matching prefetcher (AMPM) [55]. When employ-
ing a prefetcher, PSP delivers better performance than the
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FIGURE 20. Impact of LLC size.

configuration without the prefetcher. As shown in Figure 19,
PSP improves the performance by 7%/4.8%/4.2%/5.1% with
Next-line/IP-stride/KPCP/AMPM, respectively, on average.
For the H-group workloads, PSP with a prefetcher achieves
more than 9% performance improvement on average.

4) IMPACT OF LLC SIZE
Finally, we evaluate the impact of LLC size on performance.
Figure 20 shows the performance gain of PSP according to the
LLC size. Overall, PSP achieves higher performance when
the LLC size is relatively small because it pins the PSE blocks
in the LLC for the program phase where the LLC miss rate is
high. For example, in the case of omnetpp and sssp-kron, the
LLC miss rate increases by more than double when the LLC
size is reduced by half (i.e., 1MB), meaning that the small
LLC does not operate effectively. By aggressively pinning the
PSE block for those workloads, PSP achieves significant per-
formance gain. In contrast, for gups, the PSP provides better
performances for the configuration with a larger LLC. This is
because gups have a completely random access pattern, and
as can be seen in Figure 4, most of the PSE access latency is
contributed by the main memory accesses. For the workloads
with random memory access patterns, increasing the LLC
size does not help to improve the performance, meaning most
LLC space is not effectively utilized. However, when PSP is
applied, more PSE blocks will be pinned in the enlarged LLC,
leading to a significant reduction in the page walk latency.

VII. RELATED WORK
In this section, we summarized prior works about reducing
the address translation overhead in virtual memory systems.

A. HASHED PAGE TABLE
In order to avoid the page walk latency, we can use a hashed
page table [31] that store the PTEs in a hash table. Even
if the hashed page table can provide a PTE with a single
memory access, it can suffer from the hash collision. Skar-
latos et al. [33] proposed Elastic Cuckoo Hashing, an algo-
rithm for gradual resizing, to reduce hash collision overhead.

B. MULTIPLE PAGE SIZE
Several recent studies have attempted effective address
translation through using various page sizes: small pages

(4KB page) and large pages (e.g., 2MB page) [22], [23],
[24], [25], [26]. Using a large page is an efficient way to
increase the TLB reach, reducing the TLB misses. However,
the efficiency of this approach is highly dependent on the
memory access pattern of the workloads. If there is an insuf-
ficient locality in memory references, using large pages may
result in fragmentation, page fault latency, and paging traffic
overhead.

C. TLB PREFETCHING
TLB prefetching mechanisms have been studied to reduce
TLB misses [15], [28], [29]. If the prefetching decision is
correct, we can reduce the TLB misses by prefetching the
TLB entries in advance. Otherwise, these mechanisms can
significantly reduce performance because they pollute the
TLB. The TLB prefetch mechanism is orthogonal to our PSP
and is thus used synergistically.

D. USING MEMORY AS LARGE TLB
A recent study proposes a large virtual TLB called POM-TLB
that uses a memory region to store TLB entries [34]. POM-
TLB converts frequent memory accesses involved in the page
walks into one memory access by maintaining TLB entries
in the memory. POM-TLB can place most address transla-
tion information by using a 16MB space of the main mem-
ory. However, POM-TLB still has difficulties with expen-
sive off-chip memory access. To reduce the off-chip memory
accesses in the POM-TLB, CSALT [35], a caching mecha-
nism for POM-TLB, was proposed. CSALT provides a dedi-
cated on-chip cache space to store the frequently and recently
accessed POM-TLB entries.

E. PRIORITIZING PTE IN CACHE
Park et al. [18] proposed the flattened page table (FPT) and
page table prioritization (PTP). FPT flattens the page table
level to reduce the number of memory accesses during the
page walk. PTP provides a high priority to the PSE blocks so
that they can reside in the cache. PSP differs from the PTP
in three folds. First, PSP keeps the PSE blocks within the
cache if they are frequently re-fetched from themainmemory.
Therefore, PSP can store the frequently accessed PSE blocks
with a long reuse distance, even if they are not recently and
frequently accessed on the cache. Second, PSP maintains the
access history (i.e., access count) for all PSE blocks. By uti-
lizing the history, PSP can correctly determine the PSE blocks
that should be pinned to the cache. However, PTP relies only
on the cache replacement policy to determine the PSE blocks
to be stored in the cache. Third, PSP dynamically adjusts the
ratio of pinned PSE blocks and normal blocks. By contrast,
PTP uses an empirically determined static ratio. Therefore,
the PTP’s decision could be sub-optimal because it can fail to
take into account the dynamic behavior of workloads.

VIII. CONCLUSION
This study proposed a PSP mechanism that pins the page
structure entry in the LLC to reduce the page walk overheads.
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By repurposing a part of LLC space as a large PSE storage
in the program phase, where both LLC and TLB suffer from
frequent misses, PSP reduces the page walk latency by up
to 65.3% and achieves an average speedup of 7.8% for the
memory-intensive workloads with irregular access patterns.
PSP mechanism can be implemented with trivial hardware
overheads by storing metadata in the unused bits of the PSE.
As emerging applications are expected to have a larger mem-
ory footprint and irregular memory access patterns, PSP is
likely to be an essential solution for virtual memory systems.
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