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ABSTRACT The human factor is one of the most critical parameters in car accidents and even traffic
occurrences. Driving style affected by human factors comprises driving events (maneuvers) and driver
behaviors. Driving event detection is the fundamental step of identifying driving style and facilitates
predicting potentially unsafe behaviors, preventing accidents, and imposing restrictions on high-risk drivers.
This paper proposes a deep hybrid model to detect safe driver behaviors and driving events using real-
time smartphone sensor signals. The ensemble of Multi-layer Perceptron, Support-Vector Machine, and
Convolutional Neural Network classifiers process each driving event sample. In order to evaluate our
model, we develop an Android Application to capture smartphone sensor signal data. We capture about
24000 driving data from 50 drivers. Results indicate that the fusion model performs better than each
individual classifier in terms of Accuracy, False Positive Rate (FPR), and Specificity (96.75, 0.004, and
0.996). This research gives insights to Auto-mobile developers to focus on the speed and cost efficiency
of smartphone driver monitoring platforms. Although some insurance and freight management companies
utilize smartphones as their monitoring platforms, the market share of these use cases is meager and could
improve rapidly with the promotion of new smartphones with better processing and storage.

INDEX TERMS Convolutional neural network, driver behavior, driving event, driving style, multi-layer
perceptron, support-vector machine.

I. INTRODUCTION
Road accidents cause around 1.35 million fatalities and up
to 50 million injuries yearly globally. Traffic-related mortal-
ity and injury cost the global economy around 518 billion
dollars annually [1]. Although road quality, weather con-
ditions, and vehicle performance all play a crucial role in
accidents, human behavioral factors significantly impact the
vast majority of accidents [2], [3]. Studies show that in 95%
of accidents, the human factor is critical and driver behavior
is recognized as the most important factor [4]. Specifically,
in the United States, according to a 2016 study, it was found
that only 7.27 million car accidents occurred, resulting in
37,914 deaths and 2.17 million injuries in which human
factors had the most effect (about 94%) [5].

Many platforms can assist drivers in making safe trips
and decrease road fatalities. One of these platforms is the
Advanced Driving Assistance System (ADAS). Rather than

The associate editor coordinating the review of this manuscript and

approving it for publication was Huiyan Zhang .

monitoring driver driving style, ADAS focuses on assisting
drivers. These systems could protect many lives after acci-
dents but could not prevent accident from taking place [6],
[7]. Due to the expensive price, ADAS implementation has
been limited.

Managers in freight management companies utilized real-
time, continuous, and automated driver behavior profiling
to institutionalize campaigns to improve drivers’ scores,
decrease the accident rate, increase the resource-based econ-
omy, and extend vehicle lifetime warranties. Moreover,
to prevent accidents, we could notify drivers of aggres-
sive driving events in real-time. For example, a smart-
phone app could warn when the driver makes an aggressive
U-turn [8].

Considering all of the aforementioned aspects, driver
behavior should be regarded as one of the most vital areas
for improving road safety. In addition, driver behavior could
impact the decrease in fuel consumption and greenhouse
gas emissions, which is the objective of Green Intelligent
Transportation Systems.

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 113827

https://orcid.org/0000-0001-9832-0763
https://orcid.org/0000-0002-5721-0143
https://orcid.org/0000-0003-3860-5999
https://orcid.org/0000-0002-8390-4093
https://orcid.org/0000-0003-3406-8954


E. Khosravi et al.: Safe Deep Driving Behavior Detection (S3D)

Researchers used different solutions to evaluate their driv-
ing event detection and behavior models. Some of them used
the Driver Behavior Questionnaire to investigate the effect
of safety skills on driver behaviors [9]. These questionnaires
are based on drivers’ self-statements about their previous
driving behaviors and experiences. However, they did not
give insights into real-time driving events. In order to cover
this limitation, in-vehicle black box systems were introduced
to capture sensor data and driver behaviors simultaneously.
Richard et al. [10] used SHRP2 in-vehicle sensor data to
examine real-time driver speeding behavior which primarily
comprised video images of the front and rear windshields,
rate of acceleration, and some sensor data. Nevertheless,
SHRP2 had its limitations, such as Gyroscope and Linear
Accelerator sensors were not used in this dataset, and there
was no real-time labeling mechanism for driving events
and driver behaviors (except for reporting emergencies).
Wu and Xu [11] also analyzed SHRP2 real-time data to detect
Right Turn driving events.

Previous research [12], [13], [14] demonstrated that smart-
phone sensor data that had been properly preprocessed and
managed for driver behavior monitoring was a valuable alter-
native to traditional black boxes. Thus, phones offered more
precise sensor data for driver profile analysis [8]. MEMS
gained popularity over OBD ports because of their small size,
low weight, and low energy consumption. Therefore, it was
simple to integrate various sensor units such as Magnetome-
ters, Gyroscopes, and Accelerometers [15]. Collecting data
from a car interior bus over CAN using an OBD connection
was dependent on the vehicle’s connection protocol and
posed a hazard to human and vehicle security [15]. Therefore,
MEMS was better suitable for driving event detection [7].
Although to the authors’ best knowledge, there is a gap in
the literature to not providing a comprehensive dataset of all
possible signals of smartphones.

According to the reasons mentioned above, we used smart-
phone sensor signals to analyze driver behaviors because of
their ubiquitousness, embedded set of comprehensive sen-
sors, and low energy consumption. Also, other researchers
of Intelligent Transportation Systems used smartphone data
to evaluate driver styles [16]. White et al. [17] detected
road conditions using the data generated by smartphones,
and Dey et al. [18] used them for traffic monitoring. Soares
et al. [19] used them for traveling mode detection; for the
same purpose, Li et al. [20] used a couple of Generative
Adversarial Network and Convolutional Neural Network
(CNN); Ramanujam et al. [21] reviewed Deep Learning
Methods for recognizing human activity such as cleaning
the kitchen, washing clothes, cooking, cycling, climbing
upstairs and down, jogging, running, lying, jumping, and
walking.

Recent research uses Deep Learning models due to their
promising performance in feature extraction which outper-
forms the handcraft methods and their success in identify-
ing sensor-based behaviors. These benefits make researchers
use various kinds of Neural Networks, including Recurrent

Neural Networks (RNNs) and CNNs [22]. New improve-
ments to CNN [23] and RNN models with the introduction
of new large-scale data make these approaches good alter-
natives to traditional methods [24]. Yu et al. [25] collected
data on the driving habits of 20 volunteers. They trained
a Neural Network with this data and achieved more accu-
racy than an SVM. Also, Sarker et al. [7] utilized collected
data from Magnetometer, Accelerometer, and Gyroscope
installed in smartphones to detect aggressive driving events.
They developed an LSTM model to classify driving events.
To decrease Mean Per Class Error, the authors used specific
threshold rules for each sensor data (introduced as domain
knowledge).

Recent research indicates some gaps in the driving event
and driver behavior recognition literature as follows (more
details are given in Section II):

1. There is no comprehensive dataset of all possible smart-
phone sensor signals to detect driving events and driver
behaviors.

2. In the data capturing phase, real-time ground truth
driving events labeling is not used and researchers usually
prefer to tolerate offline labeling errors.

3. The previous works did not fuse multiple machine learn-
ing classifiers to evaluate the driving style. Thus certainty
level of their proposed models may be questionable.

In this manuscript, we utilized the ensemble learning
method to fuse different deep learning and traditional classi-
fiers to cover these gaps. An ensemble of classifiers processes
each input sample and combines the results according to a
rule. In our situation, the outputs of the fundamental clas-
sifiers are mixed by a majority vote which indicates that a
sample window of the sensor signal is allocated to a specific
class if at least fifty percent of the classifiers produced that
class. Other combination strategies, such as the variant of
weighted voting [26], have been proposed in the literature,
but they were deemed inadequate for the present application.
Another reason for using ensemble voting models is about
certainty level. Because all Advanced Driving Assistance
Systems are life-critical systems, the certainty of driving
event detection is crucial. Therefore, we used three different
models and a majority voting ensemble method in order to
have more certainty [27], [28].

Following are the main contributions of the manuscript:
1) We proposed a new structure of multi-classifier fusion

(hybrid CNN, SVM, and MLP model) to get better
accuracy in detecting driving events.

2) We developed an aggregate model by using ensemble
learning (majority voting).

3) We developed an Android application to collect smart-
phone sensor signals for detecting driving events.

4) Collect a comprehensive labeled dataset consisting of
24000 samples of ten different driving events from fifty
drivers to distinguish between different types of safe
and aggressive driving events. Data of 21 sensor signals
are collected and a Police Officer simultaneously labels
the data during the experiments.
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Also, our research questions are as follows:
1) Is it possible to use smartphone signals to detect driving

events and driver behaviors?
2) Does it make more information to divide the safe

driving events into fine-grained detailed classes? Or
cumulate all non-aggressive driving events as safe?

3) If other than Accelerometer and Gyroscope sensors are
needed to detect driving events?

4) Is this important to have a coarse-grained set of sen-
sors? Furthermore, what is the fine-grained set?

The remainder of this manuscript is structured as follows:
Section II includes a thorough review of research about driv-
ing events and driver behavior recognition. Section III pro-
vides details of the proposed hybrid SVM-CNN-MLPmodel.
Data collecting is explained in section IV. Results of the
experimental investigation are discussed in section V. Finally,
in section VI, the paper’s conclusion is provided.

II. LITERATURE REVIEW
Various classification methods such as Random Forest [29],
Fuzzy Modeling [30], Discrete Wavelet Transform [31],
Dynamic Time Warping [32], and machine learning algo-
rithms such as K-Means [33], K-Nearest Neighbor (KNN)
[34], Hidden Markov Model (HMM) [35], Support Vector
Machine (SVM) [36], and Neural Network [37] are used to
classify data.

Increasingly, Deep Learning algorithms have grown pop-
ular in recent years. High accuracy and ability to process
big data are the most important features of using these
methods. Since the data recorded by driver behavior (via
smartphone sensors) are time-series big data, the use of
Deep Learning-based approaches can be very accurate. Deep
and reinforcing learning methods are used in various areas
of transportation systems such as predicting Macroscopic
Traffic Congestion [38], [39], [40], [41], [42], Transportation
System Planning [38], [39], [43], customer demand forecast
for transportation [43], [44], [45], [46], traffic monitoring and
congestion detection [47], [48], [49], [50], predicting driver
behavior [51], [52], [53], [54], [55], [56], detecting driver,
and classification of vehicle types [57]. Representing compli-
cated nonlinear connections between related and dependent
variables is the primary benefit of Deep Learning architecture
over standard statistical approaches (integrating hierarchical
and distributed features) [58].

Different Deep Learning architectures were provided to
drive event detection using time-series smartphone sensor
signals. The vanishing and exploding gradient problem of
RNNs made researchers provide new architecture called
LSTM to solve these problems. An unsupervised LSTM
autoencoder was implemented by Sarker et al. [59] to
learn the encoded feature vector. Also, the authors pro-
posed a supervised LSTM classier of the labeled encoded
feature vector to classify the driving events. Their results
indicated that the supervised model outperformed other
existing models that they considered. Although they pro-
vided an innovative method to analyze unlabeled data,

their domain-specific knowledge was similar to tradi-
tional threshold-based techniques in signal processing. They
declared some handy crafted thresholds on input signals.
Also, their proposed model did not provide detailed informa-
tion on the fine-grained classification of Safe driving events
and the best performance model converged after 500 epochs
(two hours). The authors planned to do more experiments to
optimize the amount of data used to improve their model’s
overall accuracy.

Sarker et al. [7] also proposed another threshold-based
feature extraction method that analyzed the motion sensor
data changes and detected the driving events. The proposed
LSTM classification model utilized the physical model of a
moving vehicle in order to improve its performance. In this
research, driving events were identified based on the labeler’s
danger perception. The authors suggested further studies on
the procedure of label assignation in order to reduce potential
bias.

Carvalho et al. [8] analyzed different RNN architectures
(Simple RNN, GRU, and LSTM) using an Accelerometer
sensor signal in order to detect the driving events. GRUmodel
reached its best performance after 901 epochs. The authors
suggested further studies on low-cost, high-performance, col-
laborative sensing solutions.

Researchers compared the performance of Different RNN
architectures and the Random Forest model [29]. In this
research, they proposed a safe driving event classifier back to
the back of an event-type classifier. The best model accuracy
was 95 percent. By dividing the number of positive changes
by the number of time steps, the authors proposed a danger
score. However, the proposed model could not distinguish
between Right or Left Lane Changes, so the authors com-
bined both events and evaluated the Lane Change driving
events detection performance. Also, the used window size
(between 1 and 10 seconds) might cause the occurrence of
two events in window size. The authors suggested further
studies incorporating events like gaze, head position, and
blinking.

Recent reviews of various articles on driving event detec-
tion using driver behavior lead us to conclude that there
are still gaps in the literature regarding how to improve the
performance of CNNs in detecting driving events and driver
behavior. Most Deep Neural Networks (i.e., CNNs, RNNs,
and DBNs) used to recognize human behaviors are built on
time series data from sensors with significant spatial and
temporal couplings [22]. We have proposed a hybrid model
to improve the performance of driving event detection. This
model is explained in part C of section III. We compare
evaluation criteria, limitations, advantages, model, dataset
properties, device, and sensor signals of previous research in
Table 1 and Table 2. These tables also provide details of our
proposed model and dataset.

III. MATERIAL AND METHODS
As we mentioned above, the globally high rate of road mor-
talities and injuries made the researchers work on improving
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TABLE 1. Related works limitations and advantages.

the detection performance of ADAS. In order to cover this
need, we proposed an ensemble of classifiers to detect driving
events and driver behaviors. The model was a combination
of three individual classifiers, including CNN, SVM, and
MLP, which also led to a high certainty level for a life-critical
system such as ADAS. To evaluate our proposed model,
we developed an Android application to capture smartphone
sensor signals and simultaneously label the events using a
Traffic Police Officer’s expertise. Then the captured data
is sent to a remote server for further processing and eval-
uation of the performance criteria. All experiments were
conducted in a real-world situation using fifty drivers aged
23-45 years. Results indicated that the proposed fusion model
performs better than each individual classifier in terms of

Accuracy, FPR, and Specificity (96.75, 0.004, and 0.996).
In this section, we describe our proposed model in detail.

A. CONVOLUTION NEURAL NETWORKS (CNNS)
Convolutional Neural Networks (CNNs) are one of the most
significant Deep learning approaches for profoundly teach-
ing many layers. This approach is highly efficient and is
one of the most often used algorithms in computer vision
applications. A CNN network comprises three primary layers
and each layer is responsible for different duties: the con-
volutional layer, the pooling layer, and the fully connected
layer. Any CNN has two training stages: feed-forward and
back-propagation. Initially, in the proposed model, the sen-
sor signals are fed into the network, and this operation is
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TABLE 2. Related datasets.

nothing more than multiplying the point between the input
and the parameters of each neuron, followed by convolution
operations in each layer. Then driving event (network output)
is computed. The overall architecture of the proposed CNN
model is shown in Fig. 1.

FIGURE 1. The proposed CNN architecture.

Each CNN Block has six layers: Conv1D, MaxPooling1D,
Conv1D, MaxPooling1D, Dropout, and Flatten. Addition-
ally, four blocks have different kernel sizes of three, five,
seven, and eleven. Details of the architecture are described
in Appendix A (Fig. 9). To establish the network parameters,
the output result is utilized to compute the loss which is
done by comparing the network output against the proper
response using a loss function and calculating the loss rate.

Following is the back-propagation step which is dependent
on the estimated loss rate. A chain rule has been used to
compute the derivative of each parameter which is then
updated in response to the loss’s influence. The next feed-
forward phase begins when the parameters are changed. The
network training will be completed after the accomplishment
of several stages.

Each layer is described as follows:
The Convolutional Layer: comprises multiple filters that

use convolution at network input to generate feature maps.
The continual updating of filter components (Neural Network
weights) characterizes a Deep NeuralNetwork’s learning pro-
cess. We must first construct several filters of the same size
and with random values to mimic this layer.
The Pooling Layer: is often put after the convolutional

layer and can minimize the size of feature maps and network
parameters. Because of side features in computations, pool-
ing layers (like convolutional layers) are unaffected by dis-
placement. Commonly, to reduce feature dimensions, they are
implemented in two ways: max pooling and average pooling.
Feature maps taken from the preceding layer are split into
window sizes of two or so. Finally, each window’s average or
maximum values are computed and used to populate the new
feature map.
The Fully Connected Layers (FC): transform the pooled

feature maps into a one-dimensional feature vector. They are
similar to conventional Neural Networks and approximately
account for ninety percent of a CNN network’s parameters.
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These layers can show grid results as a vector of a specific size
which can be used for classification or additional processing.
The primary disadvantage of these layers is their high training
processing cost which is caused by their large number of
parameters. As a result, the most often utilized approach is
either eliminating these layers or minimizing the number of
connections. A hybrid model based on MLP, SVM, and CNN
was employed to address this limitation. Fig. 1 depicts the
proposed CNN architecture.

B. SUPPORT VECTOR MACHINE (SVM)
In SVM method, we assume that there is a set of data points
(x1, c1), (x2, c2), . . . , (xn.cn)} which have to be divided into
two separate classes ci = {−1, 1}. Each xi is a real number
p-dimension vector that has the same variables which can
express model behavior. By building a hyperplane (a linear
equation), linear classification techniques attempt to segre-
gate data. The SVM classification technique, one of the linear
classification methods, determines the optimal hyperplane
that divides the data into the two classes with the least
distance. In this technique, input vectors are transferred to
a multidimensional space. Then a hyperplane will be built
to separate the input vectors by the shortest feasible dis-
tance. This hyperplane is the ‘‘hyperplane with the greatest
separator border,’’ which is not on the boundary between
these two hyperplanes. ‘‘Hyperplane with Maximum Sep-
arator Boundary’’ is a hyperplane that optimizes the dis-
tance between two parallel hyperplanes. The greater separator
boundary (distance between two parallel hyperplanes) leads
to lesser classification error. The SVM classifier equation is
as follows:

g (x) =
∑Ls

i=1
αidiK (xi, x)+ α0 (1)

In equation (1), K is kernel function and xi represents the
support vector that is obtained from the training data. Ls
represents the number of support vectors, di is the corre-
sponding class number xi, and finally αi is constant training
number. Support vectors are elements of training data located
exactly on or within the boundaries of classification decision
making. These vectors include samples that are more difficult
to classify than others [60]. In Fig. 2, the schematic of an
SVM is provided.

FIGURE 2. The SVM schematic of Safe driving event detection.

A multidimensional SVM is used since sensor multi-class
type data ultimately leads to different driver behaviors. For
enabling SVM to classify several classes, three methods
are proposed: One-Against-All (OAA), One-Against-One
(OAO), and All-At-Once (AAO) [39].

In the OAO model, classes are divided into n×(n−1)
2 binary

classification classes. The following problem is solved to
build an SVM that classifies the kth class and lth class:

minQp
(
W kl, bkl, ξ kl

)
=

1
2

(
W kl

)T (
W kl

)
+ C

∑m

i=1
ξ kli

(2)

subject to
(
W kl

)T
.φ (xi)+ bkl ≥ 1− ξ kli , if yi = k, (3)(

W kl
)T
.φ (xi)+ bkl ≥ 1+ ξ kli , if yi = 1, (4)

ξ kli ≥ 0, i = 1, . . . .,m and k, l = 1, . . . ., n

(5)

According to the above equations, W is equal to the
n-dimension weights matrix, b is bias. Superplane’s shape
and position are determined by W and b. ξ = {ξ1, . . . , ξm
is an auxiliary variable and C is the penalty coefficient that
balances the model’s complexity with classification error
(a high value of C will cause overfitting). Also φ (xi) is a
nonlinear transformation that transforms the sample into a
point space with larger dimensions called the property space.
i = 1, . . . ,m and n are the numbers of test data records and
data dimensions, respectively. yi is considered as a training
data tag.

C. PROPOSED MODEL
Training data are entered one by one in the hybrid system.
Each algorithm produces a model separately according to its
logic. Then experimental samples are fed into each model to
measure the accuracy of the proposed model. Each algorithm
issues an answer that indicates whether the entered sample
is correctly classified. Finally, all answers are entered into
the maximum voting mechanism, which finds the most can-
didates and sends them as final answers. Since the paper’s
primary aim is to improve the accuracy of driving event
detection, majority voting is utilized in the voting process.
Fig. 3 shows the block diagram of the proposed model. The
trained models of SVM, CNN, and MLP are used in voting.
The output is mapped as a multilabel problem; each output
neuron is linked to an event type, as shown in Table 3.

FIGURE 3. Block diagram of the proposed model.

113832 VOLUME 10, 2022



E. Khosravi et al.: Safe Deep Driving Behavior Detection (S3D)

TABLE 3. Details of the collected data.

Following stages describe the implementation process of
the suggested model.
Step 1: In this step, training data are fed into the algorithm

to create a model through the algorithm’s training procedure.
The generated model has rules and structure based on the
entered sample data. First, the training data are entered into
the SVM classification algorithm.
Step 2: Each model gets the experimental data as input.

The models are fully structured at this stage and can apply the
detection process to the data. Therefore, each model imple-
ments the detection process on each sample of experimental
data.
Step 3: Step 2 applies to SVM, CNN, andMLP algorithms.

As a result, we have three different or identical answers from
algorithms. They are placed into the maximum voting system
as three numbers. The proposed system uses majority voting
to decide between the provided answers. The answer with the
most candidates is the main answer for the proposed system.

Finally, steps 1 to 3 continues until all experimental data
have been analyzed.

IV. DATA COLLECTION
The smartphone sensor signals (vehicle traffic data) were
collected by an Android application instantaneously. The
application collected data on its SD card and sent them to
the remote server. Table 3 provides details of our dataset,
including event window size, event types, test size, validation
size, train size, captured sensor signals, number of drivers in
the experiments, and the drivers’ age. The Y-axis was across
the vehicle’s front direction, the X-axis was the vehicle’s
lateral direction, and the Z-axis was perpendicular to the
horizontal direction.

Real-time data were collected with about 50 Hz fre-
quency (with a 2.56-second window length). These data
had various information such as event label, start times-
tamp, and finish timestamp. Signals of a Galaxy S8 Plus

smartphone were collected, including Gravity, Linear Accel-
eration, Gyroscope, Pressure, Magnetometer, Light Meter,
Inclinometer (Azimuth angles, Pitch, and Roll), Sound Inten-
sity, GPS (Latitude and Longitude), and speed. For example,
the Accelerometer sensor provided a 3-dimensional (x, y,
and z) temporal series with nanosecond precision in the
standard sensor coordinate system (relative to the device).
In attempting to achieve device independence for positions,
we used a rotation matrix to translate sensor data from the
device’s coordinate system. The Galaxy S8 Plus was chosen
because its sensor set, processing, and storage capacity were
adequate for our data collecting task. Fig. 4 shows a schematic
of the proposed system, from data collection to driving event
detection. As you can see, signals from ten sensors were
captured during the experiments; then, they were sent to a
remote server for further processing.

FIGURE 4. Schematic of the proposed system.

Finally, we had about 24000 samples fromfifty drivers rep-
resenting ten distinct types of driving events. These driving
events included the following: Stop (S), Safe Front Brake
with Gear Two (SFB), Aggressive Front Brake with Gear
Four (AFB), Rear Gear (RG), Aggressive Rear Brake (ARB),
Safe Acceleration (SA), Aggressive Acceleration (AA), Lane
Change (LC), Left Turn (LT), and Right Turn (RT).

Randomly seventy percent of the collected data are utilized
for training, while the rest are used for testing. In addition,
twenty percent of the training data were used for validation.
At the start of training, initial random weights and biases
were generated. The intended output value for each model is
determined to avoid the risk of excessive connections while
maintaining the maximum accuracy possible. The data are
split into batches of size 256 to optimize speed and perfor-
mance. Different batch sizes are evaluated in the hyperparam-
eter tuning phase, indicating that the optimal size is 256.

V. RESULTS AND DISCUSSION
As mentioned before, we utilize the multi-classifier fusion
technique in this article. An ensemble of classifiers pro-
cesses each input sample and combines the results according
to a rule. In our situation, the outputs of the fundamental
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classifiers (CNN, SVM, and MLP) are mixed by a majority
vote, indicating that a sample window of the sensor signal is
allocated to a specific class if at least fifty percent of the clas-
sifiers produced that class. Other combination strategies, such
as the variant of weighted voting [26], have been proposed in
the literature, but theywere deemed inadequate for the present
application. Another advantage of using ensemble voting
models is the certainty level. Because all Advanced Driving
Assistance Systems are life-critical systems, the certainty of
driving event detection is crucial. Therefore we used three
different models and a majority voting ensemble method in
order to have a more certainty level [27], [28].

Following, we discussed the experiment procedure. Quan-
titative criteria are used to evaluate the simulation results,
such as Accuracy, False Positive Rate, and Specificity. Also,
we provide details information about the proposed model
performance by drawing the confusion matrix. A confusion
matrix is a C × C dimension square matrix in which C is
the number of classes (C equals 10 in our experiments). Non-
diagonal elements indicate incorrect samples predicted in a
class different from their actual class, whereas the matrix
diameter contains appropriately classified samples. Classifi-
cation accuracy is computed once the interference matrix has
been calculated. The following relationships define the other
two quantitative requirements.

FPR = FalsePositiveRate =
FP

FP+ TN
(6)

Specificity =
TN

FP+ TN
(7)

where:

False Positive (FP): A claimed correct outcome that
was, in fact, wrong.

False Negative (FN): An incorrect outcome that has
been misidentified.

True Positive (TP): A claimed correct outcome that
was, in fact, correct.

True Negative (TN): A claimed incorrect outcome that
was, in fact, incorrect.

In four distinct circumstances, we analyze the outcomes of
driving event detection to determine the performance of the
proposed model. First, we use the Multi-Layer Perceptron
(MLP) model. Second, a simple CNN is used. In the third
scenario, we analyze data with the SVM model and in the
fourth scenario, the proposed hybrid model is utilized. All
simulations have been done in theWindows operating system
with 32 GB of DDR4 RAM hardware, an Intel Cori7-6700K
CPU, and a VGA GTX 1080.

Following, we provide the details of MLP and CNN archi-
tecture and their hyperparameter tuning. Table 4 comparison
results show that the Adaptive Moment Estimation (Adam)
algorithm is chosen to train the CNN (Learning Rate is set
to 0.0025). The Adam Optimizer is an adaptive estimation
of the moment form of the Stochastic Gradient Descent
method, known as Adam in Tensorflow, which has the best

TABLE 4. Performance comparison of different optimizers.

TABLE 5. Comparison of several mlp architectures.

correlation value among the above functions. According to
Table 4, Adadelta and RMSprop have the second and third
performances among optimizers.

The various MLP architectures are evaluated to find the
best performance architecture. Table 5 indicates that increas-
ing and decreasing the number of layers from ten decreases
the correlation between data (as the number of neurons rises).

As a result, it can be concluded that the optimal architec-
ture for an MLP Neural Network is ten layers and twenty
neurons in order to predict driving events. The structure of
the proposed MLP architecture is provided in Fig. 5. First,
sensor sample data is flattened to feed the ten layers of MLP.
After these hidden layers, a softmax layer of ten neurons is
utilized in order to normalize the output to a distribution over
predicted driving event labels.

FIGURE 5. MLP structure for driving event detection.

The performances of different CNN architectures with
varying numbers of convolutional layers are compared in
Table 6. CNN with two convolutional layers has the best
performance overall. Also, the results imply that concatenate
layer’s output is sufficient for describing driving behavior.
Consequently, the detection process may be accomplished
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TABLE 6. Performance comparison of networks with different depths.

just with two convolutional layers. Once a certain depth is
achieved, the accuracy begins to degrade.

FIGURE 6. Driving event detection confusion matrix.

FIGURE 7. Driver behavior confusion matrix.

Fig. 6 and Fig. 7 show the confusion matrixes of driving
events and driver behaviors detection, respectively. A driver
who drives with some aggressive driving events which could
be caused an accident refers to an aggressive driver. Stop
(S), Safe Front Brake with Gear Two (SFB),1 Rear Gear
(RG), Safe Acceleration (SA), Left Turn (LT), and Right Turn
(RT) are all examples of safe driving behaviors. Aggressive
behaviors include driving events such as Aggressive Front
Brake with Gear Four (AFB), Aggressive Rear Brake (ARB),
Aggressive Acceleration (AA), and Lane Change (LC). After
investigating the confusion matrix, we identify that some
of the Lane Change events are detected as Turn events.

1A manual car with 5 gears is used for these experiments.

TABLE 7. Comparison of various models.

Webelieve that the similarities in the first part of driving event
windows for Left/Right Lane Change and Turn events are the
reason for these results. Also, there is some incorrect detec-
tion of Aggressive Front Brake events which are predicted as
Right or Left Turn. Reviewing the experiments’ details helps
us identify the root cause of these underperformances. At the
start of the Right and Left Turn events, we detect that the
drivers decrease their speed to perform the Turn events. Some
of these decreases are similar to the Aggressive Front Brake
which caused the incorrect detection.

FIGURE 8. Accuracy and loss of the proposed model for driving event
detection.

Fig. 8 shows the proposed model accuracy and loss (bold
line indicates the training results). As you can see, the accu-
racy and loss of the proposed model improve gradually in
each epoch and converge to their best performance after
45 epochs.

Table 7 compares the proposed and individual MLP, CNN,
and SVM models. Results demonstrate that the proposed
model has the best accuracy, FPR, and Specificity among all
models. Also, these results indicate that the CNN model has
second place in terms of performance among other models.
Although the Specificity of the CNN model is near to the
best result, its accuracy is far away from the proposed model.
It indicates that the proposed ensemble model could achieve
better accuracy by fusing different individual models.

VI. CONCLUSION
Wireless technology advancements allow for the instan-
taneous collection and analysis of massive amounts of
high-resolution data from vehicles and drivers. These data
make an opportunity for researchers to study driving events
and driver behaviors in order to reduce road accidents.
Researchers can use spatial and temporal characteristics of
the data to introduce customized Deep Neural Networks for
extracting some information. In this paper, we propose a
multi-classifier fusion model in order to detect driving events
and driver behaviors. An ensemble of three classifiers (CNN,
SVM, and MLP) processes each sample input and com-
bines the outputs using a majority vote. The reason behind
using this technique is the certainty level. Advanced Driving
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Assistance Systems are life-critical systems requiring high
certainty in driving event detection. Therefore, utilizing an
ensemble of three different models leads to a more certain
decision on the class type of each sample window. The pro-
posed model is trained and evaluated using data from instan-
taneous driving events collected via an Android application.
We captured about 24000 driving data from 50 drivers and
utilized a Traffic Police Officer’s expertise to simultaneously
label the captured sensor signal. Results indicate that the
fusionmodel performs better than each individual classifier in
terms of Accuracy, False Positive Rate (FPR), and Specificity
(96.75, 0.004, and 0.996).

VII. FUTURE WORKS
For future studies, researchers may examine a broader range
of driving events, conduct behavioral analysis using addi-
tional signals (e.g., EEG), or utilize driving simulators for
new drivers in order to explore driving style characteristics.
Also, we plan to investigate the SVM model to find if our
high accuracy is at the expense of diversity. Investigating the
performance effect of using an attention mechanism in driv-
ing behavior detection is another open issue in the literature.
Furthermore, future works on incorporating Fuzzy Inference
Systems like Adaptive neuro-fuzzy inference systems can be
expected to evaluate the proposal of different models more
adaptive to our problem.

APPENDIX A
DETAILED ARCHITECTURE OF THE CNN MODEL
Details of the proposed CNN architecture are shown in Fig. 9.

FIGURE 9. The proposed CNN tensor architecture.
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