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ABSTRACT One task of nonparallel speech conversion is to convert the source speaker’s speech samples
to the target speaker’s speech samples, keeping the content unchanged. In view of the advantages of
MaskCycleGAN-VC in nonparallel speech conversion, such as small model size and superior performance,
our paper uses the basic structure of MaskCycleGAN-VC to improve it and proposes a cyclic boundary
method filling in the frame MaskCycleGAN-VC (CBFMCycleGAN-VC) model, which predicts the voice
of a person as he ages by using voice samples of his younger self. First, this paper adds speech preprocessing
modules, including the Chebyshev low-pass filter and adaptive filter, which increases the robustness of the
system. Second, our paper considers the time-domain difference in the weight parameters, which makes
it easier to grasp the mapping law of the time-domain structure, with a faster convergence speed. Last,
the circular boundary method is introduced to avoid the ringing effect, to enhance the connection between
the filled frame and the adjacent frame, and to obtain a better generator. The simulation results show that
the CBFMCycleGAN-VC model is more suitable for the speech conversion task of predicting the voices
of elderly people, and the convergence speed is faster. The converted voice is also closer to the voice of the
target speaker in the time domain and frequency domain. Under the condition that the accuracy rate is similar
to that of MaskCycleGAN-VC, the MOS score is 17.5% higher than that of MaskCycleGAN-VC.

INDEX TERMS Nonparallel speech conversion, speech preprocessing, loss, cycle boundary method,
CBFMCycleGAN-VC.

I. INTRODUCTION
Speech conversion is a branch of speech synthesis. The pur-
pose of speech conversion is to convert the voice of the source
speaker to the voice of another target speaker without chang-
ing the language content. Speech conversion greatly comple-
ments and expands the function of the text-to-speech (TTS)
synthesis system, making it universal and capable of meeting
more requirements. The speech conversion of nonparallel
corpora is an important hot topic of speech conversion. The
research of nonparallel corpora helps speech conversion to
achieve the goal in fewer corpora, including the database of
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missing corpora. Therefore, an investigation of the speech
conversion of nonparallel corpora is important.

Early speech conversion is divided into speech analysis,
mapping and reconstruction modules. [1] The information
contained in speech is divided into language content infor-
mation and speaker feature information. The analysis module
separates the information, and the mapping module maps
the speaker feature information to the reconstruction module.
The language content information remains unchanged. The
speech conversion of the target speaker is realized in the
reconstruction module, but its limitation is that a parallel
corpus must be utilized. The early models employed dynamic
time alignment to align or parallel the corpus and established
a more appropriate mapping based on numerous parallel
databases. Therefore, how to collect and establish such a large
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database has become an unavoidable problem that continues
to puzzle scholars studying speech conversion. For example,
a convolutional neural network, Gaussian mixture model,
and Tacotron end-to-end model are designed based on this
idea [2]. With the concept of speech conversion, our infor-
mation about the target speaker should be insufficient or even
unknown, so it ismore realistic that we obtain nonparallel cor-
pus databases. Therefore, nonparallel data speech conversion
is the key direction of future speech conversion. Sun L et al.
proposed Phonetic Posteriorgram (PPG)-based, post-speech
image alignment technology in [3]. This technology improves
dynamic time warping (DTW), connects nonparallel corpora
as much as possible, and realizes the processing of nonparal-
lel corpora to a certain extent.

After the introduction of neural networks, the trained
model converts speech that is not in the corpus, overcom-
ing the limitations of traditional speech conversion. The
WaveNet vocoder and its variants, WaveRNN, WaveGlow,
FloWavenet, etc., provide more possibilities for speech con-
version. Moreover, due to the correlation between speech
conversion and speech synthesis, Park et al. applied the
Tacotron end-to-end TTS system to speech conversion, and
others applied a similar TTS system based on Transformer
[4] to speech conversion and achieved good results. However,
these models did not throughly solve the problem of a non-
parallel corpus.

Later, the emergence of generative countermeasure net-
works and their superiority in nonparallel data attracted con-
siderable attention. The generating countermeasure network
is composed of a generator and discriminator. After learn-
ing how to convert the source picture to the target picture,
the generator generates a picture, and then the discrimina-
tor identifies whether the generated picture is a real target
picture or a false target picture. In this way, the generator
and discriminator confront each other and generate a gener-
ator that can confuse the discriminator with the fake target
picture. CycleGAN was introduced to the field of speech
conversion by Rafael ferro et al. in [5]. CycleGAN has
shown great advantages in the field of speech conversion
where nonparallel training data are lacking. The network is
good at style transfer. Speech conversion not only needs to
continue to convert the features in the time domain but also
attaches importance to the conversion of the features in the
frequency domain. The Mel-cepstrum reflects the character-
istics of the time-frequency structure of speech, especially the
frequency domain, which is more conducive to the generative
adversarial network completing the speech conversion task.
On the basis of [5] and through continuous improvement,
CycleGAN-VC, CycleGAN-VC2 and CycleGAN-VC3 have
been successively published. On December 21, Takuhiro
Kaneko et al. proposed in [6] that MaskCycleGAN-VC
combines the latest filling in frame (FIF) technology with
CycleGAN-VC2 and achieves better results.

Based on the overall structure of MaskCycleGAN-VC,
our paper adds the speech preprocessing part, and improves
the loss of the MaskCycleGAN-VC network. In addition,

inspired by the circular boundary method, the FIF tech-
nology in [6] is improved, and the algorithm of filling
frames with the circular boundary method is proposed. The
subjective and objective indicators show that our proposed
CBFMCycleGAN-VCmodel can better achieve the expected
objectives of this paper than FastSpeech-VC [7], StarGAN-
VC [8], MaskCycleGAN-VC and other models.

The content of this paper is organized as follows: Chap-
ter 2 briefly introduces the composition of the loss of
MaskCycleGAN-VC, which is convenient for performing a
comparison with the improvement in loss below. The advan-
tages and disadvantages of the FIF technology adopted by
MaskCycleGAN-VC are also reviewed in Chapter 2. Chap-
ter 3 introduces the improved CBFMCycleGAN-VC model
in this paper. Chapter 4 presents the simulation verification
and analysis, and Chapter 5 provides a summary.

II. RELATED WORK
MaskCycleGAN-VC belongs to the category of Cycle-
GAN in speech conversion applications, so it is essentially
CycleGAN. The most important aspect of the CycleGAN
network is to address losses. In many cases, improper selec-
tion of losses often causes failure to converge or poor
results. This chapter introduces the composition of losses in
MaskCycleGAN-VC and the FIF technology employed by
MaskCycleGAN-VC for comparison with the improvement
in this paper.

A. LOSS OF MASKCYCLEGAN-VC
CycleGAN-VC2 adds a discriminator based on CycleGAN-
VC, adds a second adversarial loss, and improves the loss
of CycleGAN-VC. MaskCycleGAN-VC follows the loss of
CycleGAN-VC2. The total loss, including antagonism loss,
cyclic consistency loss, flag mapping loss and secondary
antagonism loss, is applied, as shown in (1).

Lfull = LX→Y
adv + LY→X

adv + λcyc

(
LX→Y→X
cyc + LY→X→Y

cyc

)
+ λid

(
LX→Y
id + LY→X

id

)
+ LX→Y→X

adv2 + LY→X→Y
adv2

(1)

where the countermeasure loss LX→Y
adv , LY→X

adv is the loss of
mutual conversion between the target speaker and the source
speaker, which renders the generated speech more authentic.
The cyclic consistent loss weighted parameter λcyc specifi-
cation is used to prevent the target speaker from simplifying
the transformation between the source speaker and the target
speaker, and to prevent the generator from directly using the
target speaker’s voice to deceive the discriminator. If no flag
mapping loss is added, the generator will change the image
through tone change and gradually deviate from the preset
target of speech conversion. The secondary confrontation loss
is used to balance the statistical average caused by L1 loss in
the confrontation loss. However, this loss does not set the loss
part that can be directly affected by the difference in time-
domain structure, and is not sensitive to the large difference
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in the time-domain structure of two speeches. The update
iteration of the loss is small, making it more difficult for the
network to learn the conversion of speech features. In the third
chapter, this paper proposes an improved method.

B. FILLING IN FRAME
MaskCycleGAN-VC uses the latest FIF filling technol-
ogy. Compared with CycleGAN-VC2, MaskCycleGAN-
VC with FIF filling technology more easily captures the
time-frequency structure and optimizes the results. Although
the Mel-spectrum has been introduced to CycleGAN-VC3,
the CycleGAN-VC3 model is large due to the addition
of an additional time-frequency adaptive normalization
module. In contrast, the MaskCycleGAN-VC model has
achieved better performance than the CycleGAN-VC2model
and CycleGAN-VC3 model while it is smaller than the
CycleGAN-VC3 model.

FIF filling technology is a technology to fill the vacant
frame by surrounding frames, which makes it easier to
address conversions with gaps in the time-frequency struc-
ture. The equation of this technology is used as follows:

X̂ = X ∗M (2)

After filling the vacant frame, it is sent to the subsequent
network for circulation and obtains better results. Although
FIF achieves better results than the time-frequency adaptive
normalization (TFAN) module, the missing frames filled by
FIF are not continuous with the frames at both sides, and the
matrix is random, which cannot help CycleGAN-VC learn.

FIGURE 1. Schematic of filling in frames. After X is multiplied by matrix
M, the missing frames are filled and entered into CycleGAN-VC as input.

III. CBFMCycleGAN-VC
As shown in Fig. 2, The structure of the CBFMCycleGAN-
VC model is proposed. The overall architecture follows the
structure of MaskCycleGAN-VC. In the dataset preprocess-
ing stage, a low-pass filter and LMS adaptive noise reduc-
tion algorithm are added to improve the robustness of the
system. In this stage, the problem that most of the nonac-
tively matched speech database samples contain Gaussian

FIGURE 2. Structure diagram of the CBFMCycleGAN-VC model. The red
box represents the process of filling the frame via the loop boundary
method. The loss is reflected in the generator and discriminator, which is
not shown in the Fig.2.

white noise of different degrees in the actual environment is
addressed. According to the task characteristics of the speech
conversion target proposed in this paper, the loss function is
improved, so that the loss function can better grasp the map-
ping on the time-domain structure. In addition, this paper also
uses the cyclic boundary method to improve the FIF, which
can effectively supplement the information of the missing
frame. The filling frame expanded by the cyclic boundary
method is more consistent with the continuous structure in
the time domain and is more conducive to the generation of
the learning of the countermeasure network.

After the dataset is processed by the Chebyshev filter and
LMS adaptive filter, relatively pure speech is obtained, which
is converted to the Mel-spectrum through windowing and a
fast Fourier transform, i.e., input A. In this paper, the source
speaker’s voice in the database is named A, and the target
speaker’s voice is named B. Since the speech time domain
length of the source speaker and that of the target speaker
differ, it is determined whether the length of B in the database
is longer than the input A. If so, extended A is obtained
through the cyclic boundary method to reduce the difference
between the two, and then generator GA→B is converted to

VOLUME 10, 2022 114299



X. Zhou et al.: CBFMCycleGAN-VC: Using the Improved MaskCycleGAN-VC to Effectively Predict a Person’s Voice After Aging

fake B, which is then sent to generator GB→A to generate
cycleA.At this time, the obtained cycleA should be similar to
input A or extended A, but it is generated by two generators.
At this time, input A or extended A, fake B and cycle A
will be sent to discriminators DA and DB. The second term
Through constant confrontation, the generated fake B will
become increasingly similar to B, and the discriminator will
be increasingly difficult to identify. The above is the whole
process of the cycle. Because A and B are nonparallel speech,
we also participate in the loop of B’s speech in the same way.
The discriminator and generator are unchanged. After a con-
tinuous loop, we obtain generatorGA→B, which can cheat the
discriminator. This generator is the final requirement of the
speech conversion task. When inputting the young voice A,
generator GA→B generates an output of sound in old age.

A. SPEECH BATCH PREPROCESSING
The purpose of this pretreatment is to remove the Gaussian
white noise from the samples obtained from the network and
to enhance the practicability of the samples. The reason for
using this algorithm is that most of the non-actively-matched
speech database samples contain Gaussian white noise, but
the size of the noise is different. The manual processing
method is obviously too cumbersome. Moreover, after setting
this preprocessing noise reduction module, the collection
requirements of the speech database are reduced and the
practicability of the system is enhanced. In this paper, the
LMS algorithm is used to batch process the collected speech
materials. The LMS algorithm equation is used as follows:

W (n+ 1) =W (n)+ 2µX (n)e(n) (3)

B. CYCLIC BOUNDARY METHOD FILLING FRAME
Although the FIF technology adopted by MaskCycleGAN-
VC in [3] has completed the task of filling, the filling frame
and the frames at both ends are not continuous, and the
truncation between the two is quite obvious, which easily
causes a ringing effect. Moreover, because the matrix is ran-
dom, the filled frame cannot sufficiently help CycleGAN-VC
learn. Therefore, the CBFMCycleGAN-VC model proposed
in this paper adopts the circular boundary method, which can
effectively suppress the ringing effect caused by boundary
truncation while expanding the image. The circular bound-
ary method extends the observation image in a reflection
symmetric manner, that is, the original image is extended
in a symmetrical downward, rightward, and downward right
manner. In this paper, the young speech is segmented accord-
ing to syllables, and the adjacent frames of the syllables
whose time domain structure changes by more than 170%
of themselves are extracted, then horizontally, vertically and
diagonally expanded, and spliced to obtain expanded frames.
At this time, the extended frame does not lose too much
information and has coherence. We cut out the filling frame
from the center and add it to the original young speech to
avoid the ringing effect caused by the truncation and to obtain
more filler speech for rich padding frames.

FIGURE 3. Detailed flow chart of the filling frame with the circular
boundary method.

As shown in Fig. 3, the method used to supplement the
missing frame in this paper is to add the adjacent frame
An−1 to carry out the expansion by using the cyclic bound-
ary method and intercept the frame from the center of the
expanded image to fill in. The filled frame is more consistent
with the original frame on both sides, avoids the ringing
effect, and contains more information than the filled frame
of FIF, which is more conducive to generating the counter
network for learning to obtain a better generator.

C. LOSS
Considering that the task of speech conversion is to con-
vert a person’s voice to the aging voice, although the two
are different in the frequency domain, the difference is not
substantial. However, the difference is larger in the time
domain. Therefore, in the design of loss, this paper prefers to
supplement the loss with the actual time domain gap, so this
paper adds the consideration of the time domain to the weight
parameter. The loss proposed in this paper is represented
by (4):

Lfull = LA→B
adl + L

B→A
adl

+$A→B
ccl · L

A→B→A
ccl +$B→A

ccl · LB→A→B
ccl

+ λidlLA→B
idl + λidlLB→A

idl + LA→B→A
adl + LB→A→B

adl

(4)

First, the first term of (4) is the countermeasure loss, and
the countermeasure loss is the generator GA→B, which is the
loss corresponding to the generation of old voice B from
young voice A. The L1 loss is used for the cycle consistency
and the identity mapping but not for the adversarial loss of
Equation (5).

LA→B
adl = EB∼P(B)[logDB(B)]+
EA ∼ P(A)[logDB(1− DB(GA→B(A)))] (5)

The discriminator discriminates by maximizing the loss,
and the generator generates more deceptive speech by min-
imizing the loss. The two fight and produce better results.
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EB∼P(B) represents the expected value of B in a given dis-
tribution P (b), and the following similar expressions are the
same and will not be repeated. Similarly, LB→A

adl is represented
by GB→A, which is the corresponding loss when generated
speech B is converted to speech A.

The second term of (4) is the cyclic consistency loss, which
is the loss required after A generates B and then generates A,
to prevent the mapping from being too simple to obtain an
ideal effect in the process of generating A from young voice
A to old voice B and then generatingA. The equation of cyclic
consistency loss is used as follows:

$A→B
ccl · L

A→B→A
ccl = $A→B

ccl ·

EA∼P(A)[‖GB→A (GA→B (A))− A‖1
(6)

where ‖·‖1 represents the L1 norm and $ccl is a weight
parameter used to increase its sensitivity to the time domain
structure. The calculation equation of$ccl is used as follows:

$A→B
ccl =

tA − 1
N

∑
P(B) tB

1
N

∑
P(B)

√
(tn − 1

N

∑
P(B) tB)

2 (7)

where tB is the time domain length of the old voice, P(B)
is the given distribution of old voice B in the time domain
structure, and the distribution method is the same as that used
to calculate the old voice expectation in the adversarial loss
and cycle consistency loss. N is the total number of data in
the dataset, where we set N = 81; n ∈ [1, 2, . . . , 81]. $B→A

ccl
will also be used as the weight parameter of LB→A→B

ccl .
The third item in Equation (4) is identity loss, which

prevents the generator from mapping through simple tone
change. Notably, this is not the mapping that the voice con-
version task wants the generator to generate. The calculation
equation of identity loss is used as follows:

λidlLA→B
idl = EB∼P(B)

[
‖GA→B (B)− B‖1

]
(8)

where λidl is theweight parameter of identity loss; this param-
eter reflects the importance this paper attaches to the gap in
the time domain structure. The gap between the young voice
and the old voice in the time domain will directly affect the
update speed of the loss. The larger the gap is, the faster the
update speed.

The second countermeasure loss is used to balance the loss
of the L1 norm to avoid the generation of countermeasure
networks that cannot converge. The equation of the second
countermeasure loss is used as follows:

LA→B→A
adl = EA∼P(A)[logD′A(A)]

+EA∼P(A)
[
log

(
1− D′A (GB→A (GA→B (A)))

)]
(9)

where D′A is A obtained after a cycle, which is different from
the original speech A. Similarly, LB→A→B

adl is also used to
balance the loss of the L1 norm.

IV. EXPERIMENT
A. DATA COLLECTION AND PREPROCESSING
This article collected several videos about Trump’s interviews
when he was young and old and the video of the president’s
swearing in speech on the internet, and intercepted the speech
fragments, for a total of 81 voice records when he was
young and 81 voice records when he was old. As the training
database used in this article, the voice records in the database
are nonparallel voices, with a length of 2.8-7.9 seconds.

Since the TV program from which the speech segment
is intercepted is a program many years ago, the speech
contains low-frequency Gaussian white noise by drawing
the time-domain diagram and frequency-domain diagram.
Considering that speech is intercepted from different videos,
this paper uses the aforementioned preprocessing module to
process speech before the speech conversion system. The
preprocessing module designed in this paper basically com-
pletely eliminates the Gaussian white noise in the frequency
part of 200 Hz-20000 Hz and suppresses 90% of the Gaussian
white noise in the frequency part of 20 Hz-200 Hz, which
basically realizes the data processing requirements of this
paper.

FIGURE 4. Trump (young) voice time domain waveform.

According to the analysis of the speech signal by the
Fourier transform, a Chebyshev I low-pass filter is designed.
The passband frequency of the filter is set to 2.5 kHz, and
the stopband frequency is set to 25 kHz. The LMS needs a
reference signal D(n), so this paper adds a low-pass filter to
the collected speech for preliminary processing and selects it
as a reference signal. The order of the LMS is set to 50 orders,
and the step size is 0.000008. As shown in Fig. 5, both of them
are very effective for noise reduction processing of speech
signals in the dataset.

After noise reduction processing, the dataset is subjected
to fast Fourier transform using a window size of 1024 with a
length of 40 milliseconds and a jump length of 10 millisec-
onds to obtain an 80-dimensional Mel-spectrum.
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FIGURE 5. The time domain and frequency domain diagram of the source
speech and the speech after LMS noise reduction are the time domain
diagram of the unfiltered speech, the time domain diagram of the filtered
speech, the frequency domain diagram of the unfiltered speech, and the
frequency domain diagram of the filtered speech from top to bottom.
(a) The time domain and frequency domain diagram of the raw speech
signal. (b) The time domain and frequency domain diagram of speech
signal processed by preprocessing module.

B. TRAINING SETTINGS
This paper verifies whether the improved loss is effective in
the CBFMCycleGAN-VC model by pretraining the model
with different losses for 200 rounds. The original loss in
Fig. 6 and Fig. 7 means that the loss of MaskCycleGAN-VC
in [3] is substituted into the CBFMCycleGAN-VC model for
the experiment, and the other line is obtained by our proposed
loss test in CBFMCycleGAN-VC. The two are compared, and
the drawn loss diagram is shown in Fig. 6 and Fig. 7.

As shown in Fig. 6 and Fig. 7, the discriminator DA basi-
cally completed the convergence in the 146th round, which
was 14 rounds earlier than the loss of MaskCycleGAN-VC in
the 160th round, and the generator GA→B converged to 5 in
the 150th round. In comparison, MaskCycleGAN-VC did not
converge to 10 until the 200th round. Notably, the loss of the

FIGURE 6. GA→B loss comparison chart.

FIGURE 7. GA→B loss comparison chart.

model proposed in this paper can achieve a faster convergence
speed in the task of transforming young voices into old voices,
which is more conducive to fast training and saves time.

The generator of the CBFMCycleGAN-VC model is com-
posed of a 2-1-2d CNN, and the discriminator is PatchGAN.
Compared withMaskCycleGAN-VC, CBFMCycleGAN-VC
does not need to receive the M matrix mentioned in (2),
so it does not need to expand the input channel. In the
training, the Adam optimizer training network is used for
200K iterations, and the initial values of the discriminator and
generator are set to 0.5 and 25, respectively. The learning rates
of the discriminator and the generator are set to 0.0001 and
0.0002, respectively, the batch size is set to 4, and λidl is
set to 5.

C. TEST RESULTS
In this paper, the speech generated by the CBFMCycleGAN-
VC model is compared with the speech generated by
MaskCycleGAN-VC in many ways. First, this paper selects
several words to form multiple phrases; forms the speech
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FIGURE 8. Comparative experiment (time domain). (a) Time domain of
trump (young) and speech signal synthesized by our model. (b) Time
domain of trump (old) and speech signal synthesized by
MaskcycleGAN-VC.

of young people, the speech of old people, the speech
synthesized by MaskCycleGAN-VC, and the speech synthe-
sized by the improved model in this paper; and observes
the similarity between their time domain and the frequency
domain to analyze whether the model proposed in this paper
is better than the MaskCycleGAN-VC model. Fig. 8 and
Fig. 9 are comparative images of a phrase composed of the
words ‘‘this’’ and ‘‘country’’.

As shown in Fig. 9, compared with MaskCycleGAN-VC,
the speech synthesized by CBFMCycleGAN-VC is more
consistent with not only the time domain characteristics of
the target speaker but also old Trump’s speaking habits in
the time domain, and the transformation in the frequency
domain is also closer to the target, Fig. 6 and Fig. 7 shows
that MaskCycleGAN-VC has obviously not completed the
transformation of this part, especially between 1000 Hz and
2000 Hz. However, the improved model in this paper pays
attention to and learns this mapping, and produces a voice
more like old Trump.

FIGURE 9. Comparison test (frequency domain). (a) Frequency domain of
trump (young) and speech signal synthesized by our model. (b) Frequency
domain of trump (old) and speech signal synthesized by
MaskcycleGAN-VC.

TABLE 1. Accuracy and MOS for the different VC systems.

D. SUBJECTIVE INDEX
This paper also compares the similarity, accuracy and natu-
ralness of speech produced by several different models. The
comparison results are shown in Table 1.
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TABLE 2. Evaluation form of four people.

In addition to MOS scores, this paper also conducted a
reverse verification by collecting the voices of four old people
both when they were young and now, removing GA→B to
restore the voices of the four old people to the voices of the
young people, and proposing some questions. The full score
is 5 points. The evaluation is shown in Table 2.

V. CONCLUSION
The purpose of speech conversion in this paper is to predict
the voice of a person when he or she ages. Generally, the
speech speed of young people is generally faster, and the
speech speed of old people is generally slower and more
turbid. The time difference between the two may be greater
than that of male and female conversion. Therefore, this
paper updates the loss function with the time-domain length
improvement weight parameter. This paper also proposes
a new additional module to improve the performance of
CycleGAN, making it more consistent with the experimental
purpose of this paper. Fig. 8, Fig. 9, Table 1 and Table 2 show
that the model basically achieved the goal of predicting the
sounds of the elderly through the sounds of young people. The
CBFMCycleGAN-VC model obtained a score of 98.059%
in the accuracy rate, which is relatively stable and surpasses
most models. The MOS naturalness score obtained 3.01 ±
0.38, and the similarity score obtained 3.11 ± 0.43, both of
which are in the leading position. The model also reversely
passed GB→A, which reversely verified the effectiveness of
the model. The model is successful in the transformation of
men and slightly poor in the transformation of women.
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