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ABSTRACT Autonomous Unmanned Aerial Vehicle (UAV) interactions with powerlines, such as close-up
inspections for fault detection or grasping and landing for recharging, require advanced onboard perception
capabilities. To solve such tasks, the UAV must be equipped with perception abilities that allow it to
navigate between powerlines and safely approach specific cables of interest. A perception system with
such capabilities requires state-of-the-art sensor technologies and data processing while still being subject
to the limited hardware and energy resources of the UAV. In this paper, we present an advanced embedded
system based on the cutting-edge Multiprocessing System-on-Chip (MPSoC) for onboard UAV powerline
perception. Our platform consists of a mmWave radar and an RGB camera with data processing carried out
on the MPSoC, covering both CPU and Field-Programmable Gate Array (FPGA) computations. Following
hardware-software co-design methodology, the heavy image processing tasks are accelerated in the FPGA
and fused with computationally light mmWave data on the CPU, facilitating pose-estimation of the power
lines. Utilizing the open-source autonomy frameworks PX4 and ROS2, we demonstrate integration of the
system with onboard path planning based on the estimated cable positions. The robustness of the detection
and pose-estimation methods have been demonstrated in several tests performed both in simulated and
real-world powerline environments. The results show that our proposed perception system allows the UAV
to safely navigate in close proximity to powerlines, by perceiving more individual cables at longer distances
compared to previous work, while remaining lightweight, power-efficient, and low-cost.

INDEX TERMS Autonomous UAV, computer vision, FPGA, hardware acceleration, mmWave radar,
powerline, sensor fusion.

I. INTRODUCTION
Autonomous operations of drones have significantly
increased in the last few years, spanning from large-scale
infrastructure inspections and monitoring to interactions and
manipulation of hard-to-reach objects [1]. These drones inte-
grate several technologies and algorithms for accomplishing
their tasks (e.g., path planning and scene reconstruction, 3D
sensing, localization, exploration and navigation) [2], [3].
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These tasks pose many challenges due to the large amount
of data that needs to be processed onboard of the drone in
real time. Central Processing Units (CPUs) and Graphics
Processing Units (GPUs) are commonly used to run novel
algorithms and handle a wide range of tasks [4]. In contrast,
reconfigurable hardware units, so called FPGAs, typically
handle a more narrow set of tasks but are able to process mas-
sively parallel computations in real-time while being energy
efficient compared to CPUs andGPUs. Utilizing the strengths
of both general purpose and flexible software on a CPU as
well as rigid and deterministic custom hardware accelerating
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FIGURE 1. Timelapse showing UAV positions during autonomous flight.

logic circuits on an FPGAmakes a heterogeneous systemwell
suited for performing various dynamic and complex robotic
workloads efficiently.

In this work, we utilize the cutting-edge heterogeneous
and reconfigurable embedded boards featuring chips named
MPSoC [5] to build an advanced system that is capable of
fusing large amounts of sensory data and running heavy algo-
rithms onboard the drone in real-time. The developed sys-
tem is designed to detect and pose-estimate powerline cables
to accomplish intelligent autonomous drone operations near
overhead energized cables such as inspections or recharging.

This work extends our previous work on drones developed
to recharge from, interact with, and inspect powerlines [6],
[7] by adding an advanced onboard perception platform to
the drone system to increase its onboard capabilities, aware-
ness, and smartness to detect and pose-estimate the powerline
cables in real-time.

The contributions of this work are

• a novelmmWave and camera sensor fusion algorithm for
multi-cable powerline detection and pose-estimation;

• a heterogeneous compute architecture with FPGA-
accelerated high-throughput onboard processing; and

• an open-source, efficient, and lightweight powerline per-
ception system.

The developed software is available on GitHub [8] and
a video demonstration on YouTube [9] shows the system’s
performance. A timelapse of the video demonstration can be
seen in Fig. 1 showing the autonomous drone alignment near
powerlines.

The rest of the paper is structured as follows: Sec. II out-
lines related work; Sec III introduces the utilized background

technologies; Sec. IV explains the applied methodology and
how the system is set up; Sec. V, VI, and VII detail the
computer vision, sensor fusion, and autonomy aspects of the
system; Sec. VIII presents the experimental setup and results;
Sec IX discusses the work and highlights points for future
work; and finally, Sec. X concludes on the findings.

II. RELATED WORK
Compared to previous works on autonomous powerline
approaching, our system performs similarly or better but with
significant improvements in severeal areas. LineDrone [10]
is based purely on optical perception of the environment
to perform the powerline pose estimation. As the system’s
tests show, adverse lighting conditions limits accurate pow-
erline depth estimation to less than 2 meters using purely
camera based estimation, and less than 3 meters using a
LiDAR approach. Additionally, their powerline alignment
system only works as an assisting tool to a pilot who is in
full control of height at all times. [11] demonstrates power-
line approach maneauvers. However, this is achieved based
on full state knowledge of both drone and powerline and as
such does not focus on the perception aspect of the problem.
LOCATOR [12] uses two 8-segment solid-state LiDARs
for powerline pose estimation. The system is able to
autonomously align itself with the nearest detected power-
line, but does not take into considerations other nearby pow-
erlines. The chosen sensors also suffer from relatively low
range, with one sensor not able to detect a 38mm cable further
than 2m away. Additionally, in 2022, a single 8-segment lidar
(of which two is used in LOCATOR) costs more than the
entire system proposed in this paper.

Several previous works [13], [14], [15] make contributions
towards detection of and perching on pipe-like objects. These
use some combination of monocular and stereo cameras to
detect the pipe-like structures. However, as shown in [16],
the performance of stereo depth perception of thin powerline
cables deteriorates heavily within a few meters. Additionally,
for a purely monocular approach, the diameters of each pow-
erline cable must be known in order to obtain a depth estimate
for the powerlines.

Tab. 1 compares metrics of our system with several pre-
vious works. Metrics of special interest include perception
range, diameter and number of tracked objects, as well as
weight, size, and hardware price. The diameter and number
of tracked objects as well as the range at which our system
can perceive the objects are crucial to the system’s ability to
enable safe navigation in close proximity to multiple pow-
erlines. Our system outperforms previous work by detecting
more, thinner, and further objects and has been shown to
be robust in a real outdoor powerline environment. Addi-
tionally, our test platform is significantly more lightweight,
compact, and affordable than the platforms used in the com-
pared works thanks to the use of novel sensor and compute
technologies.

Powerline detection from aerial vehicles using mmWave
radars has previously been explored for detection and
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TABLE 1. Quantitative comparison between previous work and our system.

warning systems [17], [18]. However, these systems are
mainly targeted for larger aircraft and do not focus on high-
fidelity detection. Barrett et al. [19] demonstrate a small,
low-power mmWave radar device for measuring distances to
overhead powerlines.

Compared to sensors of similar price, weight, and size,
our previous work [16] shows that a mmWave radar device
outperforms a range of other sensors when detecting multiple
powerlines from onboard a UAV. Particularly the signal-to-
noise ratio of the produced data and the detection range stand
out. Other work with UAV-mounted mmWave radars focuses
on general depth perception [20], [21] and detection of other
UAVs [22], [23]. Additionally, mmWave radars have been
extensively studied in driver assistance and autonomous car
research [24], [25], [26]. Recently, mmWave radars along-
side cameras have been used on UAVs for general object
avoidance [27] and specifically powerline avoidance [28].
These works focus on obstacle detection and avoidance rather
than object detection and approach, which requires accurate
estimates of the objects’ positions and precision maneuvers
for cable following and grasping.

Cameras are another popular sensor for powerline detec-
tion. Santos et al. [29] present PLineD, an algorithm for
extracting powerlines from aerial images that runs at 2 Hz
on a dual-core Intel Pentium T4300 CPU with 4GB
RAM. Zhou et al. [30] demonstrate an algorithm that can
autonomously detect powerlines and use it on a UAV to track
powerlines in a real-life setting. Recently, deep learning has
also been applied to this problem. Son et al. [31] develop
and test a powerline detection system for UAVs powered by
a tiny-YOLO variant and show its performance running on
an embedded device onboard a drone. Vemula et al. [32]
use a YOLACT deep learning algorithm to perform instance
segmentation on powerline infrastructure elements and show
how it can detect and outline powerlines and other related
hardware in the image. While these works perform well at

powerline detection, they do not provide any information on
their 3D position around the UAV.

Other approaches for powerline detection from UAVs
often use LiDAR sensors [33], [34]. In previous work
from our group, Iversen et al. [12] use two 2D LiDARs
to autonomously align a drone with a cable for grasp-
ing. However, the used sensors cannot detect wires further
than a few meters. Mirallès et al. [10] present a UAV that
semi-autonomously lands on powerlines based on camera
and LiDAR data. Their system is not fully autonomous and
requires expensive hardware.

Another proven but expensive approach is to use event
cameras. These sensors are robust to motion blur and adverse
lighting conditions, and Dietsche et al. [35] show how their
unique data can be used to track powerlines with a UAV.
In [36], Konopka introduces a powerline detection system
based on fusion between event camera and magnetometer
data. Single line detection is achieved on the ground, but the
effects of multiple cables or powered flight is not discussed.

Powerline detection based solely on magnetic field sensing
is another area of active research. These sensors are unaf-
fected by otherwise common issues like poor weather or
lighting conditions, but rely completely on an emitted mea-
surable magnetic field. Vasiljević et al. [37] show how an
array of magnetic sensors can be used to obtain an estimate
of a current carrying wire. Martinović et al. [38] demonstrate
UAV localization around two parallel magnetic field emitting
transmission lines. Wu et al. [39] present a scheme for power-
line parameter reconstruction based on magnetic sensors and
show how their approach can produce a 3D pose estimate of
three lines in a lab setting. However, besides relying on cur-
rent in the powerlines, these approaches only work well when
in close proximity to the powerline and usually do not handle
multi-line, multi-phase powerline setups. Additionally, none
of themethods have been demonstrated to run onboard a UAV
in real-time.
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FIGURE 2. Visualization of data generated by powerline perception system. Left: Actual drone position in 4-cable powerline test setup with annotated
cable numbering. Middle: 3D mmWave data and UAV frame as seen in Rviz2. The mmWave radar sensor has a larger field of view than the camera and
is able to detect all four cables. Right: UAV upward facing camera with 3D mmWave data projected onto image. Given the position of the UAV relative
to the cables and the 100◦ lens of the camera, only three of the four cables are in the camera’s field of view. The green cable direction line indicates
the perceived powerline direction.

Because of their power efficiency and high throughput
capability, FPGAs have been used on UAVs as flight con-
trollers [40], neural network accelerators [41], [42], and gen-
erally deployed for their reconfigurability [43], [44]. NASA’s
Mars UAV [45] uses FPGAs for flight control, fault toler-
ance, and as IO and communications hubs. FPGAs have also
shown great promise for embedded, real-time implementa-
tions of advanced algorithms such as linear and nonlinear
Model Predictive Control (MPC) [46], [47], [48] and various
computer vision algorithms [44], [49]. Ladig et al. [50] show
an FPGA-accelerated perception system that assists a pilot in
yaw-alignment of a drone relative to detected lines.

III. BACKGROUND
The work builds on several novel and unconventional tech-
nologies, such as mmWave radar for sparse point cloud
acquisition, as well as hardware acceleration of computation-
ally heavy processing tasks. This section introduces these
technologies.

A. ONBOARD COMPANION COMPUTER
For UAVs requiring more autonomy than simply following
a set of waypoints, additional onboard processing is usually
facilitated by the use of an onboard companion computer. The
companion computer may be responsible for sensor interfac-
ing, processing of sensor data, and exchanging information
with the flight controller. The type of onboard computer used
on a drone platform is typically restricted with respect to its
size, weight, and power consumption. Many suitable single
board computers are restricted in their computational power
which limits the possible complexity of the autonomy and
algorithms running on the UAV.

By mixing the use of CPUs and FPGAs, computation-
ally heavy tasks can be accelerated with customized hard-
ware kernels while general tasks run in software. An FPGA
is an integrated circuit that in a grid structure features a

significant number of various logic gates, lookup tables,
memory elements, digital signal processing blocks, and other
logic building blocks linked by a configurable array of elec-
trical connections. FPGAs are traditionally programmed in
a hardware descriptive language such as VHDL and Verilog
that require deep understanding of hardware design.

B. FLIGHT CONTROLLER
Low-level control of the drone is handled by an onboard
flight controller. The flight controller ensures the stability
and smooth flight of the drone and includes several safety
functions such as geo-fencing, return-to-home if radio contact
is lost, and automatic landing if the battery is low. Addition-
ally, interfacing with peripherals such as the GPS module
and radio and telemetry links as well as the electronic motor
speed controllers is handled by the flight controller. Intricate
autonomous flight control is achieved by using the so-called
offboard mode. In this operational mode, the drone’s posi-
tion, velocity, and acceleration can be controlled by sending
control reference trajectory messages to the flight controller
from the onboard computer.

C. PERCEPTION SYSTEM
The perception system uses data from several sensors in order
to interpret the surroundings of the drone. Distance, inertial,
and image sensor data is filtered and fused to enhance this
interpretation. Fig. 2 visualizes some of the data captured and
produced by the system.

1) mmWave RADAR
Frequency Modulated Continuous Wave (FMCW) radar is
a mature technology that has been used in the automotive
industry for years. Miniaturization means that these devices
are now small and lightweight enough to fit on drones. They
provide long-range 3D point measurements, and in the case
of powerline detection, they are capable of detecting small
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FIGURE 3. High level overview of the powerline perception system
dataflow.

cables (1cm diameter) at distances of more than 10 meters.
The data produced is very sparse and therefore not an issue
to process on embedded platforms. Radar is known to be
robust in adverse weather and lighting conditions, and this
may become useful when drones are deployed on a large
scale.

2) RGB CAMERA
Cameras are extremely versatile sensors that have a huge
number of applications. Images contain large amounts of
complex information that can be useful in scenarios like pow-
erline detection. However, extracting this information can
sometimes be a burden on even large computers, let alone
embedded devices. Therefore, the camera is used solely to
detect the direction of the powerlines when the mmWave
sensor is unable to do so. Unlike mmWave sensors, cameras
rely on good lighting conditions to function properly, and
weather conditions like fog and heavy rain may obstruct their
sensing of the environment.

3) SENSOR FUSION
Our powerline perception system relies on data from several
sensors to estimate the positions of surrounding powerlines.
The act of creating a single, coherent model or estimate based
on multiple sources of data is often referred to as sensor
fusion. Each source of data likely provides something that
cannot be inferred from the other sources. Therefore, data
from all sources must be combined in a way that preserves
each source’s unique information in order to create the coher-
ent model.

Fig. 3 shows an overview of the system. Various inputs,
i.e. mmWave, camera, and odometry data, are processed and
fused in several computational nodes in the FPGA and CPU.
The resulting coherent powerline estimation can then be used
to calculate waypoints for simple autonomous flight.

IV. METHODOLOGY
This section describes the methodology applied for develop-
ment of the different sub-systems. Fig. 3 shows a high-level

FIGURE 4. Powerline perception system UAV platform based on a QAV250.

overview of the full system. Here, sensor and flight control
data is fetched and processed to produce an estimate of each
surrounding powerline’s position relative to the drone. This
is referred to as the perception system. This system relies on
an intricate design of software and hardware data processing
modules running on the onboard computer. These modules
and their underlying dependencies are described as onboard
processing. Now, with robust perception capabilities onboard
the UAV, autonomy can be implemented to perform tasks
such as autonomous powerline alignment.

A. HARDWARE
The platform is based on a Holybro QAV250 racing kit with
a maximum payload capacity of 500g. The frame has been
modified to place the battery on the bottom instead of on
the top and longer legs have been designed to support this.
A custom GPS mount is used to place the GPS module in
a more convenient position. The Ultra96-V2 is connected
to the drone frame via a set of screws, and the sensors are
mounted above the onboard computer on a custom sensor
mount. A generic USB hub is also attached to the sensor
mount and is used to expand the number of available USB
ports of the onboard computer to accommodate the three USB
devices; mmWave radar, USB camera, and Pixhawk USB-
to-serial connection. In our testing, only with FTDI branded
USB-to-serial devices were we able to successfully establish
a connection between the flight controller and onboard com-
puter. The onboard computer has had its aluminum passive
heat sink replaced with an low-profile 12V fan for lower
weight active cooling. All USB cables have been cut to length
to save weight.

The resulting UAV platform is shown in Fig. 4 with anno-
tations for the most relevant pieces of hardware including
the onboard computer, mmWave and camera sensors, and the
flight controller.

The entire platform, as shown in Fig. 4 (excluding bat-
tery), is assembled from parts worth around US$780 based
on manufacturers’ suggested retail pricing (MSRP) (2022),
see Tab. 2. The battery is excluded because this component’s
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TABLE 2. Bill of materials of drone platform components.

specifications varies depending on use-case; a lightweight,
cheap, low capacity battery could be used to demonstrate the
functionality of this work, while a heavier, more expensive
battery with higher capacity would enable longer flights. The
specific battery used during test flights is a Turnigy Graphene
Professional 4000mAh 4S 15C LiPo Pack that weighs 420g
and is available for around 35 US$. The dimensions of
the modified platform are 183×276×327 mm and the total
weight (without a battery) is 612g.

B. PERCEPTION
The mmWave sensor used in this work is the
IWR6843AOP-EVM [51] from Texas Instruments (TI). Its
antenna-on-chip design results in a very small and efficient
device and a USB connection to the onboard computer makes
for easy system integration.

The parameters of the IWR6843 device, such as maximum
unambiguous range, range resolution, and update frequency,
can be configured through a command-line interface given in
a configuration file that has been createdwith the TImmWave
Demo Visualizer tool [52]. With a Graphical User Interface
(GUI) from TI it is possible to fine-tune a configuration to
meet the requirements of the use case. Using the GUI, a ‘‘Best
Range Resolution’’ preset is fine-tuned to have a maximum
unambiguous range of 18.5m, range resolution of 4.5cm,
30 Hz update frequency, and automatic clustering of detected
points close to each other. The mmWave device is interfaced
via a serial script which we have modified to publish received
data as a PointCloud2 topic on the ROS2 network. The script
configures the device with the above preset and starts reading
data.

The upward facing camera for the powerline perception
system has been carefully chosen to be immune to vibrations
while still offering a good resolution. Fig. 5 compares images
taken with rolling and global shutter - notice the wavy lines
in the first three images, resulting from flight induced vibra-
tions and rolling shutter. Such artefacts could pose challenges
in the perception pipeline. The AR0144 camera module has
a global shutter and offers easy integration via USB in a
small and affordable package. The 720p RGB sensor captures
enough detail with a 100 degree horizontal field-of-view lens
to enable the Hough Lines algorithm to perform as expected.
The usb_cam ROS2 package is used to publish image data
from the camera on the ROS2 network at a rate of 10 Hz.

FIGURE 5. Comparison of cable appearance in images taken during flight.
a, b, c: Images taken with rolling shutter camera - notice wavy effect.
d, e, f: Images taken with global shutter camera.

Most of the image processing takes place on the FPGA to
meet throughput requirements without saturating any single
CPU core. Ideally, the incoming images should be processed
at least as fast as they are received. This means that image
processing should take 100 milliseconds or less. Running
part of the image processing in a hardware accelerator means
that the system can meet the throughput requirements with-
out spending unnecessary CPU resources. The decision to
hardware accelerate image processing rather than other parts
of the perception system, such as estimation or projection
and transformation, was made based on previous observa-
tions that the Hough Lines algorithm is demanding on small
embedded systems. Additionally, estimation is done using
linear low order Kalman filters, which are relatively light
to run on the CPU, and the projection and transformation
algorithms include equations that are not efficiently executed
on FPGAs.

The perception system also relies on vehicle odometry
information, and this is fetched from the Pixhawk via a
USB-to-serial connection. Information from the flight con-
troller is made available to the onboard computer as a set of
topics on the ROS2 network. The UAV inertial state estimate
is published to the /vehicle_odometry topic at a rate
of 100Hz and includes information on the position, velocity,
orientation, and angular velocities. These values are derived
from sensors internal in the flight controller where their data
is also processed and filtered.

C. ONBOARD PROCESSING
The Ultra96-V2 onboard computer [53] features a quad-core
application CPU (APU) with 2GB of RAM as well as
FPGA fabric and Advanced eXtensible Interface (AXI)
bus intra-chip communication infrastructure. Setting up
the onboard computer for autonomous drone operations is
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non-trivial and time consuming, and the MPSoC4Drones
framework [54] exists to ease this process on the Ultra96-V2
single-board computer. The framework targets applications
using an external PX4 flight controller and creates bootable
images with Ubuntu 20.04, ROS2, PX4 communication,
drivers, and custom programmable logic designs. In essence,
the framework acts as a wrapper for Xilinx’s embedded devel-
opment tools and lets the developer iteratively develop FPGA
circuits for UAV applications. MPSoC4Drones manages the
installation of Ubuntu 20.04, drivers, ROS2, PX4 commu-
nication dependencies, and custom hardware kernels on the
Ultra96-V2 device. The operating system and other devel-
oped software runs on the APU, and custom hardware kernels
in the FPGA are made available to the operating system as
device files (in /dev).
The operating system running on the onboard computer is

Ubuntu Base 20.04 for Arm architectures that includes a min-
imal environment suitable for constrained systems. Ubuntu
was chosen because most developers are familiar with this
distribution and use it on their development workstations.
This means less time is spent on solving issues related to
porting the developed software from a workstation to the
deployment hardware. Version 20.04 is the currently recom-
mended Ubuntu distribution to use with PX4.

For high-level inter-process communication, visualiza-
tions, and debugging, ROS2 is used as the middleware of
choice. ROS2 is the second major version of the popular
set of open-source software libraries and tools that aims to
ease the development of robot applications. ROS2, like its
predecessor, combines sensor drivers, complex algorithms,
and advanced visualizations in an easy-to-use package that
is light enough to run on most devices.

For most tasks that are not handled by the operating sys-
tem, ROS2 Foxy is used as the middleware for ‘‘gluing’’ all
the computational nodes of the system together. ROS2 was
chosen over ROS(1) for its superior networking communica-
tion, newer language standards, greater flexibility, and since
ROS(1) is nearing end of life and ROS2 represents the future
in robotic systems development. ROS2 is used out-of-the-box
and no special configurations is applied when running on the
onboard computer. ROS2 Foxy is the recommended version
to use with PX4 autopilot.

Flight control is handled by an onboard Pixhawk Mini
flight controller running the PX4 software stack. PX4 is
the most advanced open-source flight-control software on
the market. Coupled with a ground control application like
QGroundControl, PX4 offers a user-friendly experience for
getting started developing applications with drones as fast as
possible. Seamless and deep integration with ROS2 enables
the development of complex autonomous systems. The PX4
firmware V1.13.0alpha is built with Real Time Publish Sub-
scribe Protocol (RTPS) support, and a microRTPS agent on
the onboard computer acts as a bridge between PX4 and
ROS2 messages and topics, enabling reading information
(e.g. vehicle odometry) from and writing commands (e.g.
waypoints) to the flight controller.

FIGURE 6. Detailed node interaction diagram of the system.

Every piece of software meant to run onboard the drone is
written in C++. Nodes for visualization and ground station
monitoring are written in Python.

A detailed diagram of the computational nodes and their
connections can be seen in Fig. 6. The diagram is split into
Perception and Autonomy and again subdivided into Pix-
hawk, Sensors, CPU, and FPGA to convey where system
components are used and how they are processed. Some com-
ponents are greyed out in the Autonomy section to signify
that they are solely used to perform the autonomous flight
demonstrations and do not have any functional roles in the
perception system itself.

D. UAV AUTONOMY
Autonomous flight is mostly handled by the flight controller,
while the onboard computer only publishes desiredwaypoints
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FIGURE 7. The powerline test environment at Hans Christian Andersen Airport in Odense shown in simulation (left) and real life (right).
The two towers are approximately 10 meters tall and the span between them is about 35 meters. The bottom three powerlines have a
diameter of 20mm while the top cable is 10mm.

to a specific topic on the ROS2 network. UAV position esti-
mation is also handled internally in the flight controller based
on Inertial Measurement Unit (IMU) and GPS readings. The
flight controller is configured to limit its XY velocity to 2 m/s
and Z velocity to 1 m/s, purely for safety reasons. This is done
by setting the MPC_XY_VEL_ALL and MPC_Z_VEL_ALL
PX4 parameters via the QGroundcontrol GUI. The baud rate
of the serial communication between the flight controller and
the onboard computer has been set to 460800 to ensure stable
data transfer. In our testing, lower baud rates may interfere
with the data transfer via RTPS. Prior to every test, the differ-
ent sensors in the flight controller are calibrated by follow-
ing instructions from QGroundControl. While the UAV flies
autonomously in the tests presented in this work, a Secure
Shell Protocol (SSH) connection between the ground station
and the onboard computer is open at all times to monitor
system health and provide input when needed, e.g. to choose
which cable to align beneath.

E. TEST ENVIRONMENTS
Development and testing starts in our simulated powerline
environment shown on the left in Fig. 7. The simulation
environment is modeled after the real-world environment;
the buildings, ground, and other structures are recreated via
photogrammetry while the powerlines and pylons are mod-
elled in CAD since their details are too fine to be accu-
rately recreated via photogrammetry. When a functionality
has been validated in simulation, testing is moved outdoors
to the real setup, shown in Fig. 7 right. The two towers are
approximately 10 meters tall and the span between them
is about 35 meters. The bottom three cables, which are
meant for 3-phase transmission, are each 20mm in diame-
ter while the top cable, meant as ground, is just 10mm in
diameter.

The powerlines and pylons are decommissioned parts
obtained from an energy transmission provider, and the
real-world powerline setup has the option to be powered with
120 amperes of current to simulate the magnetic field seen in

actual transmission infrastructure. This is mainly used to test
the effects of the magnetic field on the drone flight controller
and other onboard equipment like sensors and computer as
well as another source of information that can be used for
powerline pose estimation. However, no current flows in the
powerlines during the tests performed in this work, and the
simulation environment does not support this feature yet.

1) SOFTWARE IN THE LOOP SIMULATION
New functionality is tested in a safe space in a Software
In The Loop (SITL) environment during development. This
environment runs entirely on a workstation, and testing is
done by synthesizing inputs to and responses from the new
functionality. SITL is implemented usingROS2 and PX4with
Gazebo as the virtual world simulator. Gazebo plugins have
been developed to mimic the functionality and behavior of
the sensors mounted on the physical drone. Figure 7 shows a
screenshot of the SITL environment on the left.

The perception system running in SITL is mostly identical
to the system running onboard the drone with the exception
being Hough Lines Transform executed in software since no
FPGA is available on the workstation. Besides that, every
node and interface remains the same. Instead of real data,
the system is instead fed synthetic sensor data and vehicle
odometry, and the resulting autonomous flight is based on
simulated drone dynamics.

2) HARDWARE IN THE LOOP SIMULATION
Once new functionality has been verified in SITL, Hardware
In The Loop (HITL) is used to tune the system’s behavior
when running on the actual hardware of the UAVwhile still in
a safe space. This includes making sure the new functionality
runs on the different compute architecture of the embedded
device as well as optimizing for the resource-constrained
platform. HITL is implemented similarly to SITL, but instead
of running system functionalities on the developer’s worksta-
tion, the workload is now shifted to the real UAV hardware,
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i.e. the Ultra96-V2. New functionalities are tested by run-
ning the developed software on the real drone while real or
synthetic sensory data is streamed to it. The simplest way of
testing and tuning the perception system in hardwarewith real
data, without flying every time a test is needed, is to record
the needed data (i.e. vehicle odometry and sensor data) during
a flight with ROS2 bags. These bags can then be replayed
as many times as needed and the data will publish to the
relevant topics as if the system were in flight. The downside
to this development methodology is that the autonomy part
of the system cannot be tested. Thus, this method is used for
fine-tuning the perception system only.

V. IMAGE PROCESSING
This section describes the role of the camera in the powerline
perception system as well as how images are processed to
extract required information.

While the mmWave radar measurements provide posi-
tional data of the powerline cables, the data is too sparse to
be able to extract information about the powerline directions.
The direction is needed in order to align the drone yaw with
the powerline direction e.g. to allow the cable to enter a grip-
ping mechanism in the case of a landing on the cable.

Therefore, in order to fully perceive the powerline envi-
ronment, a camera is utilized for visual evaluation of the
powerline direction which is assumed to be equal among the
cables. The camera is mounted pointing upwards in the same
direction as the mmWave radar. Images are captured at a
rate of 10Hz and processed on the onboard computer. First,
the images are passed through a Canny edge detector which
binarizes the image based on whether a given pixel belongs to
a detected edge or not. The resulting black-and-white image
is then loaded into the Hough Line Transform accelerator on
the FPGA. Typically, this algorithm will return the position
and angle of any detected line in the input image above a
threshold. The actual implementation only returns the angles
of the 8 lines with the strongest responses. In the FPGA,
the accelerator will produce a result within 4.9ms according
to the High-level Synthesis (HLS) post-synthesis estimation
given a 100MHz clock frequency, and including data transfer
to and from the accelerator with a custom data-loader the
total time becomes 38.8ms. The output values of the hard-
ware accelerated Hough Lines Transform given an image are
identical to the outputs from the same algorithm running in
software.

The resulting angle is then filtered to avoid 180◦ flips
when the relative yaw between the drone and powerline cable
crosses 90◦ or 270◦. While the system does not functionally
differentiate between e.g. 0◦ and 180◦, this filtering is done
to avoid sudden jumps in the final estimated value.

An acceleration module is developed for the FPGA to run
the Hough Lines Transform algorithm in hardware. Run-
ning algorithms in hardware offloads heavy tasks from the
CPU to the FPGA where they can be run on custom cir-
cuits to increase deterministic behavior without affecting
execution of what is running on the CPU. The hardware

TABLE 3. Hough lines accelerator FPGA resource utilization.

acceleration module is developed using Xilinx’s HLS tool
which synthesises code written in C/C++ with special
directives (#pragma) into a hardware definition language
like VHDL. In the provided Vision Library, Xilinx offers
many OpenCV-like algorithms ready to be modified and
implemented into an HLS project, and the Hough Lines
implementation is modified from that library. The specific
implementation of Hough Lines has been modified to only
output the angles of the 8 most distinct lines in the input
image. When looking at powerlines from below, the clearest
lines will always be the mostly straight and monochrome
cables against the random patterns of the sky above.

The Hough Lines accelerator takes up a significant portion
of the resources on the FPGA. Tab. 3 shows the utilization of
FGPA resources as presented by Vivado post-implementation
analysis. While some resources such as DSP slices are under-
utilized, the hardware accelerated image processing meets
the aforementioned 10 Hz output rate requirement and has
therefore not been optimized further.

With Vivado, the custom Hough Lines accelerator is inte-
grated into the overall MPSoC hardware architecture. Here,
it is connected to the CPU via the AXI bus and memory
addresses are assigned to it, which are used to read from
and write to the accelerator from software, where it appears
as a device file in the Ubuntu operating system. For more
information, see our previous MPSoC4Drones work [54].

VI. SENSOR FUSION
This section describes the implemented fusion of mmWave
radar, vision, and vehicle odometry data to obtain estimates
of the positions of nearby powerlines.

As the powerline cables for the application are assumed
to be parallel to each other and perpendicular to the gravity
vector, full information about the powerline cables are given
by their two dimensional positions and their direction. The
plane in which the positions of the cables are described is
fully given by the UAV position and the direction of the
cables as obtained from the vision system described in Sec. V.
Thus, the estimation of the cable poses involves keeping a
description of this plane, termed the projection plane, along
with the positions of the cables within this plane. The fusion
of the three data sources into this description is facilitated
using a Kalman filter for the powerline direction and indi-
vidual Kalman filters for the position of each registered
cable.

A tracking scheme is then defined to evaluate the number
of powerline cables, to register new cables, and to remove
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FIGURE 8. Functionality of the sensor fusion kalman filters.

cables that are not perceived any more. The tracking scheme
is based on an alive counter, a model of the mmWave sensor’s
field of view (FOV), and simple Euclidean clustering.

Direction data from the image, depth data from the
mmWave radar, and vehicle odometry data from the flight
controller are fused together to create a coherent powerline
pose estimate with the information from all available sensors.
The final output of the perception system is a point cloud
containing one point per nearby powerline cable, along with a
vector representing the powerline direction. Each point in the
point cloud corresponds to the closest point on that powerline
relative to the current drone position.

A. PERCEPTION MODEL
Given the powerline direction d and the UAV position p,
a projection plane A is defined as the plane parallel to the
gravity vector g and perpendicular to d which intersects p.
Thus, d is the normal to A, and A is fully described by d .
Since A is perpendicular to d and intersects p, the closest
point on any of the powerline cables will lie in A, as will
the shortest vector between p and the powerline cable. This
is visualized in Fig. 9. Since the mmWave radar data points
are somewhat unpredictable and do not always correspond
to the nearest point on the powerline, a scheme is needed to
calculate the closest point given a mmWave radar data point.

When new mmWave radar data (in blue in Fig. 9) is
obtained from the sensor, the points are projected onto the
plane A in the direction of d . The unpredictability of the
mmWave radar data is mostly in either direction of d , as is
shown later in Fig. 10, so this projection removes the largest
source of unpredictability.

B. KALMAN FILTER
To reduce the noise and increase the accuracy of the pow-
erline cable direction and position estimates, the mmWave
and vision data is fused with inertial odometry measurements
from the flight controller on the drone in multiple linear
Kalman filters. A single Kalman filter tracks the powerline
direction estimate, while one Kalman filter per registered

FIGURE 9. The powerline cable perception model with the UAV
positioned in the projection plane A.

powerline cable tracks its two dimensional position. How-
ever, the Kalman filters are not independent of each other
since the direction estimate dictates the formulation of the
projection plane which again influences the perceived pow-
erline cable positions.

Thus, the combined filtering algorithm defines three differ-
ent steps which are visualized in Fig. 8; the predict step, the
vision update step, and the mmWave update step, triggered
asynchronously by the reception of odometry data, vision
data, and mmWave data, respectively. Generally, the recep-
tion of vision data, i.e. the powerline direction, will update the
direction Kalman filter, and the reception of mmWave data
will update the individual powerline cable position Kalman
filters. Meanwhile, the reception of odometry data drives the
predict step of both the direction and position Kalman filters.

Estimates Pψ̂ , d̂ , and îp, i= 1, · · · ,n are kept for the yaw
angle Pψ between the powerline direction d and the drone
frame x-axis, the powerline direction d , and the positions
ip, i = 1, · · · ,n of the closest points to the drone on the n
registered powerlines, respectively, as well as variance esti-
mates ψP̂ and ipP̂ =

[
ipP̂x ipP̂y ipP̂z

]T
, i = 1, · · · ,n. The

predict step of Fig. 8 is driven by the reception of new inter-
nal odometry from the flight controller which comes with a

113552 VOLUME 10, 2022



N. H. Malle et al.: Onboard Powerline Perception System for UAVs Using mmWave Radar

steady period of 1t = 0.01 s. At time step t , the previous
powerline yaw angle estimate Pψ̂t−1 is projected forward to
obtain an a priori powerline yaw angle estimate Pψ̂−t along
with the a priori variance estimate ψP̂−t as

Pψ̂−t =
Pψ̂t−1−1ψt and

ψP̂−t = ψP̂t−1+ψQ , (1)

where 1ψt = ψt −ψt−1 is the change in drone yaw angle
ψ between time step t − 1 and t as obtained from the flight
controller and ψQ is the model noise variance. Here, Pψ̂t−1
is either the previous a priori estimate Pψ̂−t−1, or the previous
a posteriori estimate Pψ̂+t−1 if the vision update step has exe-
cuted, as detailed below. The powerline direction estimate d̂ t
at time step t , describing the projection plane A is then com-
puted by applying the negative drone pitch angle to the drone
x-axis unit vector followed by a yaw rotation corresponding
to the estimated powerline yaw angle as

d̂ t = Rz(Pψ̂t ) ·Ry(−φt ) ·

10
0

 , (2)

where φt is the drone pitch angle at time step t as obtained
from the flight controller internal odometry. Finally, the a pri-
ori position estimates îp−t of currently tracked powerlines
i= 1, · · · ,n at time step t are predicted along with their a pri-
ori variance estimates ipP̂

−
as

îp−t =
îpt−1−1ptand

ipP̂
−
= ∀i= 1, · · · ,n , (3)

where 1pt = pt − pt−1 is the change in drone position p
between time step t − 1 and t , obtained from the flight con-
troller. Here, the îpt−1 is either the previous a priori powerline
position estimates îpt−1 or the previous a posteriori powerline
position estimates îp+t−1 if the mmWave update step has been
executed, as explained below.

The vision update step will execute at time step t if the
observed yaw angle Pvψt between the drone and the pow-
erlines at time step t is received from the image processing
pipeline, triggering an update of the powerline direction esti-
mate, referring to Fig. 8. Here, the a posteriori angle estimate
Pψ̂+t and angle variance estimate ψP̂+t are obtained as

ψ ȳt = Pvψt −P ψ̂−t ,

ψSt = ψP̂−t +ψR ,

ψKt =
ψP̂−t
ψSt

,

Pψ̂+t = ψKt ·ψ ȳt , and

ψP̂+t = (1−ψKt ) ·ψP̂−t , (4)

where Pψ̂−t is the a priori powerline angle estimate at time
step t , ψP̂−t is the a priori estimate of the powerline angle esti-
mate at time step t , ψ ȳt is the powerline direction measure-
ment residual, ψSt is the powerline direction measurement
residual variance, ψR is the powerline directionmeasurement
noise variance, and ψKt is the powerline direction Kalman

gain. From the a posteriori powerline yaw angle estimate, the
projection planeA description is updated by again computing
the powerline direction estimate d̂ t using Eq. 2.
The mmWave update step is triggered at time step t if

a mmWave pointcloud is received containing m measured
points jmpt , j = 1, · · · ,m. Based on the powerline direction
estimate d̂ t , the received points are projected ontoA to obtain
the projected points jmpAt , j= 1, · · · ,m:

jmpAt =
j mpt −

([̂
d t
]T
·
jmpt[̂

d t
]T
· d̂ t

)
· d̂ t , j= 1, · · · ,m , (5)

following standard procedure for projecting a point on a plane
given the plane normal. Then, for each currently tracked
powerline i = 1, · · · ,n given the existence of a point kmpAt
in the set of projected measured points jmpAt , j = 1, · · · ,m,
satisfying

|
kmpAt −

i p̂t | ≤ distmax and

k = argmin
j

(
|
jmpAt −

i p̂t |
)
, (6)

the position update step is executed, obtaining the a posteriori
powerline position estimate îp+t and variance estimate ipP̂+t
at time step t . The following formulation describes the x-axis
computation but is similarly computed for the y- and z-axis,
as

ipȳx,t = kmpAx,t −
i p̂−x,t

ipSx,t = ipP̂−x,t + pR

ipKx,t =

ipP̂−x,t
ipSx,t

îp+x,t =
ipKx,t ·

i pȳx,t
ipP̂+x,t = (1−i pKx,t ) ·i pP̂−x,t . (7)

Here, k is the index of the point in the set of points
jmpAt , j = 1, · · · ,m closest to the current estimate îpt of the
position of powerline i, distmax is the maximum distance
threshold for considering a measured point as belonging to
a currently tracked powerline, îp−t is the a priori powerline i
position estimate at time step t , ipP̂−x,t is the estimate of the
variance of the a priori powerline i position x-axis estimate
at time step t , ipȳx,t is the powerline i position measurement
x-axis residual, ipSx,t is the powerline i positionmeasurement
x-axis residual variance, pR is the powerline position mea-
surement noise variance assumed to be equal across all axes,
and ipKx,t is the powerline i position x-axis Kalman gain.

C. MATCHING AND TRACKING
In order to match received mmWave points to existing pow-
erline cable position estimates, the projected points (in light
grey in Fig. 9) onto A are clustered based on a threshold for
Euclidean distance. If the point is within the distance thresh-
old from an already registered point, it will be considered as
a measurement of the position of the corresponding cable.

Once a set of estimated closest powerline points has been
produced, they must be merged with the previous estimates to
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update the current best estimate. If the current best estimate
does not have a point in the same approximate location as a
point in the latest set of projection estimates, a new point in
the best estimate is spawned at that location. Each new point
in the best estimate is assigned a unique ID such that they can
later be selected when choosing a cable to align beneath.

If the current best estimate already has a point in the same
approximate location as a point in the latest set of projection
estimates, the Kalman filter update step is triggered for that
particular best estimate point with the projection estimate
point as corrective input.

If no new projection estimate point matches an existing
current best estimate point, a new position for the best esti-
mate point is instead predicted based on the observed vehi-
cle movement derived from the flight controller odometry,
as resulting from the Kalman filter functionality.

Each new point in the current best estimate is assigned
an alive-counter. If a best estimate point is updated with
new mmWave radar data, the counter is incremented. If the
counter is above a threshold, the point becomes a valid pow-
erline estimate which can for example be selected as a point
to align beneath during an autonomous mission. If no new
mmWave data matches a best estimate, and a new position
is instead predicted based on odometry data, the counter is
decremented if its point’s new position is within the sen-
sor’s field of view. Once the counter of a best estimate point
reaches 0, it is deleted. If the point is outside the sensor’s field
of view, it will continuously have new positions predicted via
odometry data until it comes back into field of view. Using a
counter like this means that points that get less frequent but
regular data have a chance of becoming powerline estimates.
Similar for points that for some reason receive no new data
for a few cycles. And points that move outside the sensor’s
field of view are still tracked, though only with odometry
predictions which make them prone to drift over time.

Algorithm 1 outlines the powerline tracking implementa-
tion where planeA, vector d̂ , and point pwere explained with
the perception model, D is a matrix holding new mmWave
points, and C is a matrix holding the current powerline posi-
tion estimates.

VII. SYSTEM AUTONOMY
As seen in Fig. 6 the section responsible for autonomous
flight is only a small part of the overall system and has no
impact on the perception system itself. This section briefly
outlines how the implemented flight autonomy works.

The main node for the autonomy part of the system is
the Offboard Controller. This node issues desired trajectory
setpoints to the flight controller based on two inputs. The
first input is the current powerline estimates which holds
both the closest points of each detected powerline as well as
the direction of the powerlines. The second input is used to
determine which powerline the UAV should align beneath.
As mentioned in Sec. VI, each powerline estimate has a
unique ID. If a valid ID (i.e. a powerline estimate with this
ID exists) is published, the Offboard Controller accepts it

Algorithm 1 Powerline Tracking Algorithm

Require: d̂ , p, D, C

1: while tracking powerlines do

2: if received D then
3: A← createPlane(p,d̂)
4: Dproj← projectOnPlane(D,A)

5: for i= 0 to sizeOf(Dproj) do
6: index← findMatch(C[:],Dproj[i])
7: if match found then
8: update(C[index],Dproj[i])
9: incrementAliveCounter(index)

10: else
11: pl← createPowerline(Dproj[i])
12: append(C,pl)
13: end if
14: end for

15: else if received p then
16: for j= 0 to sizeOf(C) do
17: predict(C[j],1p)
18: decrementAliveCount(j)
19: if getAliveCount(j) is 0 then
20: deleteElement(C,j)
21: end if
22: end for
23: end if

24: end while

as the goal powerline. For the sake of demonstration, this
ID can be entered from the ground station, but other sensors
like magnetometers could be used to identify and determine
which cable to go to in a dynamic setting.

Once the drone is switched to offboard mode and a valid
ID has been issued, the drone will arm itself, take-off to a
set altitude, and then begin alignment beneath the selected
powerline point. Originally, the Offboard Controller would
send a setpoint 1 meter below the selected powerline with
a desired final yaw as well. This implementation resulted in
significant overshooting of both the position in XY and yaw.
To correct this, intermediary position and yaw setpoints are
calculated and issued instead. These intermediary setpoints
are simply calculated as being a fraction towards the desired
position and yawwith a configuration parameter to determine
the size of the fraction.

VIII. EXPERIMENTAL RESULTS
This section describes the tests performed to validate the
system and the results of the tests are presented. This
includes static and autonomous flight tests in a real powerline
environment.
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FIGURE 10. Raw mmWave data and estimated powerline positions after
sensor fusion over a 30 second period. Drone positioned at (0,0,0).

A. PERCEPTION SYSTEM
Fig. 10 shows the raw mmWave data points (blue) and result-
ing powerline estimates (green) over a period of around
30 seconds. The data is collected with the system standing
on the ground and remaining in the same position through-
out the test duration. The red arrow on the bottom of each
plot shows the direction of the powerline relative to the
data.

As previously mentioned, the mmWave data exhibits a cer-
tain unpredictability as to where a point is produced along
the direction of an observed powerline. This effect can also
be observed here, where raw data points are spread out more
along the powerline direction (Fig. 14 in Sec. IX shows a very
pronounced example of this behavior as well).

The job of the perception system is to estimate the closest
point on each powerline and to reduce noise in the data. The
output of the system shown as green points have less spread
in all directions compared to the raw data. Additionally, they
are all in the plane that is perpendicular to the powerline
direction. This is especially clear in the XZ and XY plots
where all the green points appear to all share the same X
value. The larger variance in the Y-direction of the powerline
estimate of the highest cable compared to the three lower ones
may be explained by a more pronounced sway induced by
the wind since this cable is significantly lighter than the three
lower ones.

The depth accuracy of the perception system is mostly
dependent on the accuracy of the incoming mmWave radar
data. We have compared the accuracy of mmWave radar data
with other sensors such as LiDAR and stereo cameras in
our previous work on sensors for powerline detection [16].
A simple indoor ground truth measurement was conducted
by placing the perception system equipped drone beneath a
section of suspended powerline cable. The distance between
the mmWave radar and the 40mm diameter cable was mea-
sured to be 100cm, and the mmWave radar sensor was placed
directly beneath the cable. In this situation, the output of the

TABLE 4. Result of static perception 1m below cable.

FIGURE 11. System load differences between the software and
accelerated Hough Lines algorithm implementations.

perception system should be a single point at XYZ(0m, 0m,
1m).

The actual outputs of the 10 second static measurement can
be seen in Tab. 4. The error in any axis is below 3% of the
distance to the target.

Fig. 11 compares typical CPU and memory loads when
running the Hough Lines algorithm in software and in the
hardware accelerator.

The left column compares the loads when running only
image pre-processing and Hough Lines, and the right
columns compares the loads when the full perception sys-
tem is running. In both situations the loads are lower when
running the accelerated algorithm which makes sense since
the accelerator removes part of the workload off the CPU.
Comparing the throughput of the two implementations also
shows that the accelerator has an advantage; processing
1000 images, the software implementation takes on average
50.5ms to compute a result while the accelerator takes just
38.8ms with a clock frequency of 100 MHz - the software
implementation takes 29% more time to produce the same
output. Additionally, the variance in the execution times is
much greater in the software implementation, and additional
system load would likely impact the software implementation
to a greater degree than the accelerator, since only data load-
ing is CPU reliant with the accelerator. The HLS tool used to
build the accelerator reports a total estimated latency of just
4.9ms with a 100 MHz clock frequency. These estimates are
quite accurate, and the remaining 33.7ms are caused by inef-
ficiencies in the way data is written to the acceleration kernel
in the custom data-loader implementation. The data-loader
utilizes AXI-Lite which is meant for simple memory-mapped
communication with low expected throughput. Given the
relatively high throughput of the application, the protocol
causes large delays. For future work we are moving to AXI,
AXI-Stream, or AXI-DMA. However, despite the delays, the
image processing meets the aforementioned 100 millisecond
execution time requirement and is therefore not negatively
impacted by the significant data loading wait times.
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B. FLIGHT TESTS
After verifying the system’s functionality in simulation, the
testing ismoved to the real powerline environment at theHans
Christian Andersen Airport in Odense as seen in Fig. 7 on
the right. Prior to testing, the drone is placed on the ground
approximately halfway between the pylons. Here it is pow-
ered on and the ground station initiates an SSH connection
with the onboard computer over WiFi. From the ground sta-
tion, the microRTPS agent for PX4 communications as well
as the whole perception system is launched on the drone.
Once all nodes are confirmed healthy, the drone is ready for
autonomous flight demonstrations.

The test procedure is as follows:

• From the ground station, the drone is put in the Offboard
mode which means it is now in control of its own flight.

• From the ground station, a detected powerline ID is
chosen for the drone to align beneath.

• The drone will arm itself, takeoff to a specified height,
and then align at 1 meter below the selected powerline.

• New powerline IDs can be chosen to have the drone fly
between the powerlines.

• From the ground station, a landing can be commanded
which will make the drone land at the current XY posi-
tion and disarm itself.

A video of such a test flight demonstration can be found
on our YouTube channel [9], and Fig. 1 shows a time-lapse
of the flight.

An autonomous flight demonstration is analyzed in the
following paragraphs. The test procedure is as outlined pre-
viously, and the UAV is asked to align beneath a sequence
of cables: cable 1, cable 2, cable 1, cable 2, and finally
cable 3 (refer to Fig. 2 for cable numbering). Going from
a lower number to a higher number cable means the drone
likely has the cable in its field of view, but when going from
a higher number to a lower number this is usually not the
case. Therefore, going from cable 2 to cable 1 in the above
sequence showcases the system’s ability to successfully track,
re-acquire, and finally align beneath powerlines that have
moved outside field of view.

Figure 12 shows the path of the drone when completing
the mentioned sequence of powerline alignments. The first
part of the path in yellow shows the takeoff and alignment
at cable 1. When looking at the YZ plot, there is a large
deviation from the closest path. This happens because the
drone is unbalanced and the thrust at takeoff is too low, which
results in the drone dragging along the ground until more
height is gained. This is also evident when watching the video
of the flight. The next part of the path in green is the drone’s
alignment below cable 2. Then the drone is commanded to
again align with cable 1, and this path is shown in blue and
looks as smooth as the previous alignment despite the fact that
this powerline is outside the field of view of the perception
system for most of the maneuver. The next section in red is
the second alignment at cable 2, followed by alignment at the
top cable, number 3.

FIGURE 12. Path of drone during powerline alignment derived from
inertial odometry.

FIGURE 13. X, Y, Z, Yaw errors during autonomous cable alignment
mission.

Fig. 13 shows the X, Y, Z, and yaw difference between
the desired and actual drone pose over the course of the
same flight as covered in Fig. 12. A difference, or error, of
0 means that the drone has aligned perfectly under the cable
with respect to that parameter. From the figure it can be seen
that alignment takes about 6 seconds in yaw as well as the
XY plane while being completed in around just 3 seconds
in the Z direction - despite the fact that Z velocity is limited
to 1m/s while 2m/s is allowed in the XY plane. Besides the
faster completion, the Z direction alignment also shows less
overshoot and deviation over time.

The test flight shows that the perception system can enable
safe and simple navigation within the powerline environment.
On the day of testing, winds of around 20km/h were blow-
ing at the test facility, which is at the upper limit of what
the system is designed to withstand. While the tests show
no significant performance degradation in 20km/h winds,
the system is not meant to fly in precipitation and stronger
winds.
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FIGURE 14. Result when concatenating mmWave radar point clouds of
the powerline environment overtime. Notice that there seems to be
significantly more spread along the powerline direction (indicated by
black arrow). Colors indicate distance in Z direction.

IX. DISCUSSION AND FUTURE WORK
As seen in the autonomous flight test demonstration, the pow-
erline perception systemworks as intended. However, several
points of interest are being investigated for the next iteration
of the system.

The first point on the future work agenda is the removal of
the camera dependency. While the powerline direction esti-
mation is currently robust to different weather and lighting,
it will not work in darkness, in environments with fog or
smoke, or if rain or snow obstructs the lens. The mmWave
radar is mostly free of these shortcomings and therefore it
would be ideal to be able to rely only on that sensor. Addi-
tionally, this would lower the weight and cost of the overall
system.

Fig. 14 shows the result of concatenating mmWave radar
point clouds of the powerline environment over a period of
several seconds while not moving the sensor. The plots sug-
gest that the points are significantly more spread out along the
powerline direction (indicated by the black arrow) compared
to any other direction. This behavior may be exploited to
extract the powerline direction purely from mmWave data,
but a method must be developed for doing it dynamically
without having to concatenate several seconds’ worth of point
clouds without moving.

The second point of interest for future investigations is
the potential for combining the perception system with more
advanced trajectory planning. The current method works but
is simply a crude demonstration. For missions where more
complex paths are required, e.g. for landing the drone on a
powerline, techniques like model predictive control may be
used to generate more fitting trajectories.

A third opportunity for future investigations is to reduce
the resource utilization of the Hough Lines accelerator on
the FPGA as well as optimize the AXI interface. Currently,
most of the chip area is used for just the one algorithm. With
FPGAs, high throughput means higher resource utilization.
Since the images are fetched from the camera at just 10 Hz,
the higher throughput capability of 25.8 FPS (or even 204 FPS
if considering the HLS tool’s throughput estimate), and
consequently higher resource utilization, of the current
accelerator is wasted. Reducing the throughput to match the

image feed rate would likely allow for additional hardware
accelerators to run simultaneously.

The fourth point of interest for future work is to improve
the tracking of powerlines when outside the sensors’ field
of view. One approach is to save the transforms between all
the estimated powerlines. If a powerline leaves the field of
view, its position can be calculated relatively accurately based
on previously saved transforms between the powerline and
other powerlines that are still in field of view. As long as one
powerline remains in field of view, this method will be able
to calculate the position of any previously seen powerline
if the respective transform has been saved. In a worst case
scenario where all powerlines are outside the field of view,
the currently implemented method would still perform the
tracking, although only with the accuracy provided by the
flight controller’s vehicle odometry.

Finally, research from our group suggests that the magnetic
field may be another source of data with which to perform
even more accurate and robust powerline pose estimations.
The same magnetometers could also be used to select a
cable with the optimal current when performing a landing
and recharging mission. Additionally, the magnetic field in
a powerline environment can induce unexpected behavior in
the flight controller, and this particular issue is another topic
worth investigating.

X. CONCLUSION
The autonomous flight demonstrates that the perception sys-
tem works as intended. Given a desired goal powerline, the
drone is able to align below it within seconds. A system
demonstration can be viewed on YouTube [9].

Several points of interest for future investigations have
been suggested, most notably ability to extract the power-
line direction from mmWave radar data, thus removing the
camera dependency of the system. The perception system is
applicable in many use cases that require operations in close
proximity to powerlines. It could serve as a navigational aid or
semi-autonomous flight assistance during manual inspection
flights. Currently, much research is devoted to aerial manip-
ulation and inspection of infrastructure, and a powerline per-
ception system would greatly ease autonomous navigation in
powerline clusters. Another application is powerline landings
where a drone latches onto the powered cable and recharges
itself.

Finally, the code developed for the perception system as
well as the tools used to configure the onboard computer
with required software and drivers are fully available on the
Drone Infrastructure Inspection and Interaction (DIII) Group
GitHub page [55].
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