
Received 1 October 2022, accepted 19 October 2022, date of publication 26 October 2022, date of current version 4 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3217557

The State of Big Data Reference Architectures:
A Systematic Literature Review
POUYA ATAEI 1 AND ALAN LITCHFIELD2, (Member, IEEE)
1School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland 1010, New Zealand
2Service and Cloud Computing Research Laboratory, Auckland University of Technology, Auckland 1010, New Zealand

Corresponding author: Pouya Ataei (pouya.ataei@aut.ac.nz)

ABSTRACT Big Data (BD) is a nascent term emerged to describe large amount of data that comes in
different forms from various channels. In modern world, users are the ceaseless generators of structured,
semi-structured, and unstructured data that if gleaned and crunched precisely, will reveal game-changing
patterns. While the opportunities exist with BD, the unprecedented amount of data has brought traditional
approaches to a bottleneck, and the growth of data is outpacing technological and scientific advances
in data analytics. It is estimated that approximately 75% of the BD projects have failed within the last
decade according to multiple sources. Among the challenges, system development and data architecture are
prominent. This paper aims to facilitate BD system development and architecture by conducting a systematic
literature review on BD reference architectures (RA). The primary goal is to highlight the state of BD
RAs and how they can be helpful for BD system development. The secondary goal is to find all BD RAs,
describe the challenges of creating these RA, discuss the common architectural components of these RA
and the limitations of these RA. As a result of this work, firstly major concepts about RA are discussed
and their applicability to BD system development is depicted. Secondly, 22 BD reference architecture is
assessed from academia and practice and their commonalities, challenges, and limitations are identified.
The findings gained emerges the understanding that RAs can be an effective artefact to tackle complex BD
system development.

INDEX TERMS Big data, big data reference architectures, big data architectures, big data for business, data
analytics, data engineering, data-intensive applications, reference architectures.

I. INTRODUCTION
The rapid development of software technologies, the prolif-
eration of digital devices and networking infrastructure of
today, have by and large, augmented user’s capability to gen-
erate data [1]. In the age of information, users are unceasing
generators of structured, semi-structured, and unstructured
data that if collected and crunched correctly, may reveal
game-changing patterns [2].

The unprecedented proliferation of data have emerged a
new ecosystem of technologies; one of these ecosystems is
BD [3]. BD is a term emerged to describe large amount of
data that comes in various forms from different channels.
Within the years, BD has attained a lot of attention from
academia and industry, and many strive to benefit from this

The associate editor coordinating the review of this manuscript and

approving it for publication was Francisco J. Garcia-Penalvo .

new material. Howbeit, adopting BD requires the absorption
of great deal of complexity and many traditional systems
cannot cope with characteristics of this domain.

A recent survey published by Databricks in partnership
with MIT Technology Review Insights, stated that only 13%
of companies excel at delivering on their data strategy [4].
In the same vein, Vintage Partners highlighted that only 24%
of companies have successfully adopted BD [5]. Sigma com-
puting report presented that 1 in 4 business experts have given
up on getting insights they needed because the data process-
ing took too long [6]. Moreover, Gartner approximated that
only 20% of companies have successfully adopted BD.

Some of the most highlighted challenges of BD is ‘lack
of business context’, ‘organizational challenges’, ‘BD archi-
tecture’, ‘data engineering’, ‘rapid technology change’, and
‘lack of talent’ [7]. Whereas similar issues may exist in other
domains, it is exacerbated when it comes to BD systems.

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 113789

https://orcid.org/0000-0002-0993-3574
https://orcid.org/0000-0001-9987-5584

P. Ataei, A. Litchfield: State of Big Data Reference Architectures: A Systematic Literature Review

This is due the inherent complexity of BD engineering, the
need for real-time processing, the scalability requirement of
these systems, and the sensitivities around data.

Today, majority of BD systems are designed underlying
ad-hoc and complicated architectural solutions [8], that do
not seem to adhere to similar patterns. This will challenge
software architects to design a suitable solution for any given
context, creates a foundation for an immature architectural
decision, and does not promote the growth and development
of BD systems as a whole.

Therefore, since the approach of ad-hoc design to BD
systems is undesirable and leaves many engineers in the dark,
there is a need for more software engineering research for BD
systems. To this end, this study presents a systematic litera-
ture review (SLR) on BD (BD) reference architectures (RAs).

II. WHY REFERENCE ARCHITECTURES?
Conceptualization of the system as an RA, helps with under-
standing of the system’s key components, behavior, composi-
tion and evolution of it, which in turn affect quality attributes
such as maintainability, scalability and performance [9].
Therefore RAs can be a good standardization artefact and
a communication medium that not only results in concrete
architectures for BD systems, but also provide stakeholders
with unified elements and symbols to discuss and progress
BD projects.

This approach to system development is not new to prac-
titioners of complex system. In software product line (SPL)
development, RAs are utilized as generic artifacts that are
instantiated and configured for a particular domain of sys-
tems [10]. In software engineering, IT giants like IBM have
referred to RAs as the ‘best of best practices’ to address com-
plex and unique system design challenges [9]. In other inter-
national standardization, RAs have been repeatedly used to
standardize an emerging domain, a good example of this is BS
ISO/IEC 18384-1 RA for service oriented architectures [11].

III. REFERENCE ARCHITECTURES STATE OF THE ART
Despite the benefits of utilizing RAs, and their potential to
solve some of the complex issues of BD systems, we think
that this area is underdeveloped and needs more attention
from both academia and practice. This insight is derived from
our preliminary systematic review in academia, and search for
available big data RAs [2].

One of the most comprehensive BD RA published, is the
National Institute of Standards and Technology (NIST) BD
RA, which published by Big Data Public Working Group
(NBD-PWG) with large set of contributors from academia,
industry, non-profit organizations, and others. This RA was
an initiative from White house in March 2012, and was
published in October 2019 with considerable amount of
investment.

Given the substantial investment on BD RAs, one might
infer the value of these artifacts, and this can in turn highlights
the necessity for more research in this domain. Another factor
that came to light, is how vaguely the phrase ‘reference

architecture’ is defined and institutionalized. For instance, the
difference between a ‘concrete architecture’ and a ‘reference
architecture’ is hardly discussed, and different domains seem
to have defined the artifact slightly differently.

For instance, Cloutier et al. [9] presented that ‘Reference
Architectures capture the essence of existing architectures,
and the vision of future needs and evolution to provide guid-
ance to assist in developing new system architectures’. This
definition is derived from the system engineering domain and
by the means of collaborative forum from Steven’s institute
of technology. In another effort, Muller [12] defines RA as
‘artifacts that captures the essence of architecture of a collec-
tion of systems’. This definition is driven from the product
line engineering domain.

In the same vein, Angelov et al. [13] proposed that
‘A reference architecture is a generic architecture for a class
of information systems that is used as a foundation for the
design of concrete architectures in this class’. Another defini-
tion by Bass et al. [14] stated that ‘A reference architecture is
a reference model mapped onto software elements (that coop-
eratively implement the functionality defined in the reference
model) and the data flows between them’.

Although different authors may have defined RAs in differ-
ent ways, the essence remains the same: to reuse the software
engineering knowledge for a class of systems, particularly
in relation to architecture. Moreover, the difference between
RAs and concrete architectures is rarely discussed.

IV. OBJECTIVE OF THE STUDY
Given the failure rate of BD projects, we posit RAs as
potential solution to facilitate system development and BD
architecture, and aim to explore this area through a SLR.
Up to date, there’s only one SLR that explored this area [2],
which is outdated, suffers from methodological clarity, and is
published as a conference paper, which implies lack of detail.

Based on this, the objective of this review is to find and
collate the BD RAs available from the body of evidence,
highlight their architectural commonality and point out their
limitations. This study can be considered a useful primer for
practitioners or academics who are interested in adopting BD.

The research questions are formulated as the following;
1) RQ1: What are current BD RAs available in academia

and industry?
2) RQ2: What are major architectural components of

these BD RAs?
3) RQ3: What are the limitations of current BD RAs?
We found these questions relevant to our study firstly

because they address a gap in the body of knowledge
(BD RAs), secondly because they aim to capture the essence
of practice on architecting BD systems and lastly because
they shed lights on limitations of current BD RAs and com-
mon choke points.

V. REVIEW METHODOLOGY
This research follows the guidelines of PRISMA [15].
In addition, we adopted PRISMA-S [16] to improve our

113790 VOLUME 10, 2022

P. Ataei, A. Litchfield: State of Big Data Reference Architectures: A Systematic Literature Review

search strategy and lastly we have used Barbara et al’s guide-
lines for evidence based software engineering and system-
atic reviews [17]. Although PRISMA has comprehensive
guidelines on conducting a systematic literature review, it is
derived from the healthcare community and is driven by
assumptions that may not be thoroughly relevant to software
engineering and information system researchers. To this end,
Kitchenham et al. [17] has translated many of these assump-
tions to the domain of software engineering and included
many guidelines for lone researchers and projects with lim-
ited resources.

We have therefore utilized PRISMA as the underpinning
of our research design, with complementary studies to reduce
bias, improve transparency, and increase systematiticity. SLR
has been chosen because it is a qualitative research method-
ology that is aimed at driving knowledge and understanding
about an emerging topic and the elements surrounding it.
Besides, SLR provides a transparent and reproducible proce-
dure that elicits patterns, relationships, trends, and delineates
the overall picture of the subject [18].

The main objective of this study is to assess the current
state of BD RAs, identify their major architectural com-
ponents, point out theories and discuss limitations. This
objective is achieved in four phases. In first phase, research
questions are stated, exclusion and inclusion criteria are
defined, literature are identified and pooled, and the quality
framework is developed. In second phase, the title of the stud-
ies are assessed based on the inclusion and exclusion criteria.
After that, the filtered studies are once more assessed based
on their title, abstract, introduction and conclusion. After
this, full analysis of the studies took place by running each
study against the criteria defined in the quality framework.
Thirdly, selected pool of literature is coded based on research
questions. Lastly, findings are synthesized by the means of
thematic synthesis, and themes realized are depicted.

This study builds on the SLR conducted by Ataei and
Litchfield [2] and aims to improve it by covering the years
2020 to 2022. Unlike Ataei’s work, this paper aims to employ
thematic synthesis, and provide a more detailed view of BD
RAs and their properties.

A. IDENTIFICATION
The first phase of the SLR began, by adoption of
PRISMA-S [16] to develop a robust multi-database search
strategy. This extension of PRISMA provided us with a
framework of 12 items to increase transparency, systematitic-
ity, and reduce bias in our search strategy. For the purposes
of this study, following electronic databases were searched:
ScienceDirect, IEEE Explore, SpringerLink, AISeL, JSTOR
and ACM library. To pursue to goal of finding all literature
available on the topic, and to avoid overlooking valuable
research, abstract and citation databases and search engines
such as Google Scholar, and Research Gate were used.

Besides, we searched the grey literature on the topic,
using the search string ‘‘big data’’ AND ‘‘reference architec-
ture*’’ on Google (in June 2022). The first 40 results were

selected for screening. This was done in ‘incognito mode’ to
avoid any personal customization of the google search pages.
Reference lists of included studies were manually screened
to identify additional studies. This is to achieve the critical
component of ‘completeness’ for SLRs, as suggested by
Kitchenham et al. [17].

The platform search capabilities varied, but our search
strategy remained uniform for most parts. For instance, if a
platform did not support wildcards (like asterisk), we just
searched twice for the singular and plural version of the word.
The only exception that made the selection process longer
was SpringerLink, because it did not support bulk download
of references in BibTex format. The keywords for the chosen
databases are as following:

• (‘‘Document Title’’:big data) AND (‘‘Document
Title’’:reference architecture) OR (‘‘Document Title’’:
big data architecture)

The reason we included architecture is due to the fact
that, terms reference architecture and architecture may have
been used interchangeably, and an architecture that is at the
abstraction level of an RA, might have been called just an
architecture. Therefore it was critical for us to firmly define
these terms and then categorize studies based on these defi-
nitions. These definitions and our findings are depicted in the
findings section.

Our initial search was limited to year 2020 to year 2022,
as the work of Ataei and Litchfield [2] covered the years
2010-2020. Nevertheless, we still included the years 2010 to
2020 to make sure no research is left out or overlooked. This
implies that even though our work is derived from Ataei and
Litchfield [2] study, we still have done a complete SLR to
cover all the years on the topic. These years are chosen firstly
because more contemporary researches are focused on the
facilitation of BD system development, and secondly there’s
no SLR that has covered these years for BD RAs. To apply
year limits, we utilized databases features. All databases
supported the selection of year range, and the language limit
was automatically applied by doing an advanced search with
the aforementioned keywords.

Our approach to systematic collection of evidence was
to search databases using the keywords aforementioned
and then bulk download the BibTex files. Majority of the
databases supported bulk downloading of BibTex files except
for SpringerLink, Google Scholar, and Research Gate. For
SpringerLink we downloaded the studies in CSV format and
then converted them to BibTex using a custom script. For
Google Scholar and ResearchGate, unfortunately, we had to
take the manual path of creating a bib file for each study.

Once all the bib files have been created, we merged them
into one large bib file and imported it to a software called
JabRef for deduplication. 172 studies are pooled initially, out
of which 6 duplicates have been identified. We removed the
primary SLR that this study is based on, and also another
paper that we could not find the citation for. In the other
extreme, we found 5 white papers and 4 website blogs and

VOLUME 10, 2022 113791

P. Ataei, A. Litchfield: State of Big Data Reference Architectures: A Systematic Literature Review

added them to the selection pool. At the end of this phase,
173 studies have been pooled.

B. SCREENING AND ELIGIBILITY
Stage 1 of screening started with assessing the title, abstract,
and keywords of the pooled studies. For grey literatures sim-
ply the title. This was achieved based on our inclusion and
exclusion criteria. The inclusion criteria are as following;

• Primary and secondary studies (including grey litera-
ture) between Jan 1st 2010 and June 1st 2022 on the
topics of BD RA, BD architecture, and BD architectural
components were included.

• Research that indicates the current state of RAs in the
field of BD and demonstrates possible outcomes

• Studies that are scholarly publications, books, book
chapters, thesis, dissertations, or conference proceedings

• Grey literature such as white paper that includes exten-
sive information on BD RAs

And the studies with the following topics were excluded:
• Informal literature surveys without any clearly defined
research questions or research process

• Duplicate reports of the same study (a conference and
journal version of the same paper)

• Short papers (less than 5 pages)
• Studies that are not written in English
Disagreement among researchers were resolved using

Krippendorff’s alpha [19]. Our aim was not to get involved in
a very complicated statisticsmodel, sowe’ve donemost of the
computations using SPSS, specifically with Hayes’ macro.
We made sure that a separate file is created for each variable,
and inserted coders as variables and not a constant value.
Our α value was within the acceptable range (above 80),
and any disagreement was solved by inviting a third person
or a moderator. When α value was very low (indicating a
low reliability), we stopped the process, and tried to clarify
fundamental concepts and categories. The final computed α

value was 89.9%.
In stage 2, After excluding papers based on inclusion and

exclusion criteria, and as suggested byKitchenham et al. [17],
we assessed studies based on their quality. Quality of the
evidence collected as a result of this SLR has direct impact
on the quality of the findings, making quality assessment an
important undertaking.

However, this process comes with some well-known com-
plexities. The most fundamental ones are, perhaps defining
the term ‘quality’, and secondly trying to appraise the quality
of conference papers that rarely provide enough detail on
research methodology and evaluation. Generally, a quality of
a study is tightly associated to its research method and the
validity of its findings. From this perspective, and inspired
by the works of Noblit and Hare on meta-ethnography [20],
and Dybå and Dingsøyr [21], quality of studies is assessed
by the extent to which the conduct, design and analysis of a
research is susceptible to systematic errors or bias [22]. That
is, the more bias in the selected literature, the more chance to
create miss-leading conclusions.

Considering the rather heterogeneous nature of software
engineering and information systems (IS) papers, and dif-
ficulty of defining quality in studies with varying nature,
we first analyzed a few well-established checklists such
as Critical Appraisal Skills Programme (CASP [23]), and
I’s critical appraisal tool ([24]). Whereas these checklists
could potentially account for the requirements of this study,
we opted for something that is more specific to software
engineering and IS. We realized for example that, Runeson
et al. [25] provided a checklist designated to help researchers
reading and undertaking software engineering case studies.
In the same vein, Dybå and Dingsøyr [21] proposed a quality
criteria based on CASP checklist for qualitative studies in
software engineering systematic reviews.

Nevertheless, the challenge is that our study includes a
large number of different study types that needs to go through
a single checklist. To address this, we developed a criteria
made up of 7 elements. These criteria are informed by those
proposed by CASP for assessing the quality of qualitative
research [23] and by guidelines provided by Kitchenham [26]
on empirical research in software engineering. The 7 criteria
tested literature on 4 major areas that can critically affect the
quality of the studies. These categories and the corresponding
criteria are as following;

1) Minimum quality threshold:
a) Does the study report empirical research or is it

merely a ‘lesson learnt’ report based on expert
opinion?

b) The objectives and aims of the study is clearly
communicated, including the reasoning for why
the study was undertaken?

c) Does the study provide with adequate information
regarding the context in which the research was
carried out?

2) Rigour:
a) Is the research design appropriate to address the

objectives of the research?
b) Is there any data collection method used and is it

appropriate?
3) Credibility:

a) Does the study report findings in a clear and
unbiased manner?

4) Relevance:
a) Does the study provides value for practice or

research
Taken all together, these 7 criteria gave us a measure of

the extent to which a particular study’s findings could make
a valuable contribution to the review. These criteria were
disseminated as a checklist among researchers with value for
each property being dichotomous, that is ‘yes’ or ‘no’ in two
phases. In the first phase, researchers only assess the quality
based on the first major area (minimum quality threshold).
If the study passed the first phase, it would then go into the
second phase, where it was assessed for credibility, rigour
and relevance. The quality is agreed if 75% of the responses

113792 VOLUME 10, 2022

P. Ataei, A. Litchfield: State of Big Data Reference Architectures: A Systematic Literature Review

are positive for any given study with at least 75% inter-rater
reliability.

Disagreements regarding the quality was usually resolved
through a meeting. While, the meeting could not address the
disagreements, a moderator has been invited to the process.
Lastly, it is worth mentioning that this quality framework was
not used for grey literature. Grey literature were only assessed
through inclusion and exclusion criteria.

In the first phase (identification) of this SLR, a total of
138 literature has been pooled from academia, and 24 from
grey literature. Some of this literature has been added to the
pool by the process of forward and backward searching. For
instance, by reading NIST RA, we found out about Oracle,
Facebook, and Amazon RAs and included those in the pool
of the literature.

In the screening phase, the literature that were not in-line
with our inclusion and exclusion criteria have been elim-
inated. For example, if the paper was very short and was
not on the topic of BD RA, or its ecosystem or limitations,
it was excluded. As a result of this phase, 50 papers excluded.
In the next phase, by assessing studies against the quality
framework, 21 studies from academia, and 12 studies from
grey literature pool has been eliminated. The flowchart is
depicted in figure 1.

By the result of this work, 79 studies have been selected
comprising of proceedings, journal articles, book chapters,
and white papers. Out of the pool of articles, 33.3% are
from IEEE Explore, 5.2% from ScienceDirect, 24.5% from
SpringerLink, 15.7% fromACM, and 21% fromother sources
such as Google Scholar, Research Gate and gray literature.
30 journal articles, 29 conference proceedings, 12 book chap-
ters, 6 white papers, 1 Master’s Thesis and 1 PhD thesis were
selected. 55% of the articles were selected from the years
2016- 2022, 33% belonged to years 2013-2016, and the rest
to years 2010-2013. These stats are portrayed in figure 2

C. DATA EXTRACTION AND SYNTHESIS
By this stage, research questions have been set, inclusion
and exclusion criteria are defined and applied, the quality
assessment framework is developed and applied to the pool
of studies, and the research embarked on actual synthesis of
data. An integral element of this phase is data extraction,
in which the essence of the studies are obtained in an explicit
and consistent manner.

Precursor to synthesis of the actual data, we first followed
the guidelines proposed by Cruzes and Dyba [27] for data
extraction. Data extraction firstly began by reading the entire
pool of literature in order to get immersed with the data [28].
From there on, we followed a structured reading approach and
extracted three kind of data; 1) Publication Details (author,
title, year, etc), 2) Contextual descriptions (industry, set-
tings, technologies), and 3) Findings (results, the actual RA,
events, etc.)

This process was a bit challenging, as some studies did
not describe the method adequately, contextual information
were not detailed often, and evaluation methods varied.

To overcome this challenge, majority of this process took
place in a consensus meeting [29].

After data extraction, we began the coding process. For
this step, we’ve had several approaches ahead of us. Either
we could adopt a deductive or a prior approach [30] or an
inductive or grounded theory approach [31]. Neither of which
could be as rigorous as we desired, thus we opted for an
integrated approach [32]. We used the software Nvivo to
organize our files and created an initial set of a priori codes
based on research questions. These codes are as followings;

1) BD RAs (RQ1)
2) BD RAs Architectural components (RQ2)
3) BD RAs limitations (RQ3)

As the coding progressed, we realized that there is a need
to define some of the fundamental areas that seem to not have
been well established in academia and practice. For instance,
we’ve been looking for studies that discuss the fundamental
concepts of RAs. This was to further support our initiative,
but we soon realized that this area is not standardized, and
while there was mention of these concepts, they were usually
lacking or were very short. Furthermore, not many studies
discussed the benefits and relevance of RAs for BD systems.
We also could not find a study that thoroughly discusses com-
mon approaches to developing BD RAs, and the challenges
of developing a BD RA.

Based on these, therefore, we added the following extra
four codes;

1) Fundamental concepts of RAs
2) How can RAs help BD system development
3) Common approaches to creating BD RAs
4) Challenges of creating BD RAs

After having coded all the literature pooled, we began the
process of turning them into themes. Themes helped us pull
together segregated data into one meaningful whole that is
above the sum of its constituents. This was not a single step
process, and as we started to analyze codes, we have sub-
sumed some first-cycle codes into higher-order codes. This
also led to rearrangements and reclassification of the codes.
The end of this process was marked, when the emerging
themes saturated, and we could not derive a new theme.
Many of the themes emerged have been then categorized into
higher-order themes.

The last step of data synthesis, was creation of a model
based on the higher-order themes to explain relationships and
to answer original research questions. The final product of
this phase, is a theory, connection with prior theories, and
indication of relationships.

Of particular challenge we faced in this phase was the
influence of heterogeneity, specifically given the inclusion
of grey literature and cardinality of research methodolo-
gies in software engineering researches. Thus, to ensure the
robustness of the higher-order themes we identified the main
sources of variability as; 1) variability of outcomes (some
RAs well evaluated in practice, while some other are just
compared against other RAs), 2) variability in study designs

VOLUME 10, 2022 113793

P. Ataei, A. Litchfield: State of Big Data Reference Architectures: A Systematic Literature Review

FIGURE 1. PRISMA flowchart.

(methodological diversity that exists in software engineer-
ing and specifically in creation of RAs), and 3) variabil-
ity in study settings (contextual factors are often not well
reported).

Last, but not least, to increase the rigour, we assessed
the trustworthiness of the synthesis from three aspects;
1) Credibility: is the focus of the research in-line with
research questions, and does the thematic synthesis cover
data well? 2) Conformability: are data extracted and coded
in the correct way? do all researchers agree on this? would
readers agree with the approach? 3) Transferability: are the
findings generalizable, can the findings be applied in different
context?

VI. FINDINGS
In this section, we map our findings against the research
questions in a series of sub-sections. For increased clarity,
these sub sections are driven by the research questions and
models we created in the previous phase. We first begin by
explaining fundamental concepts such as RAs and how they
help BD system development (our inductive codes) and then
progressively worked towards more specific topics such as
current BD RAs and their limitations.

A. WHAT ARE THE FUNDAMENTAL CONCEPTS OF RAs?
As the complexity of man-made systems grow, proce-
dures, principles, and concepts of software architecture are
increasingly applied to address those complexity faced by
practitioners [2]. A system abstracted and expressed in terms

of architectural concepts, facilitates the understanding of
system’s essence, properties revolving around it, and evo-
lution of it, which in turn affects quality attributes such as
performance, maintainability, and scalability.

In recent years, IT architectures played a pivotal role in
the progress and evolution of system development and gained
acceptance in maintenance, planning, development, and cost
reduction of complex systems [33]. To address ambiguity
about what should be developed to address what needs,
an architecture can play an overarching role by portraying
the fundamental components of the system and the means
andways in which these components communicate to achieve
the overall goal of the system [34]. This in turn creates
manageable components that can be used to address different
aspect of the problem and provides stakeholders with an
abstract artefact to observe, reflect upon, contribute to, and
communicate with [35]

Many successful IT artefacts today stemmed from an
effective RA. A few good examples are the Open Systems
Interconnection model or OSI [36], Open Authentication or
OATH [37], Common Object Request Broker Architecture
or CORBA [38], and WMS or workflow management sys-
tems [39]. In fact, every system goes with an architecture,
either known or unknown, and it is in the architecture that the
overall qualities of the system are defined

Whereas there are various definitions to what constitutes
an RA, they all share the same principle that the con-
cept of patterns plays a significant role. Some studies have
defined RAs as ‘‘a predefined architectural pattern, or set

113794 VOLUME 10, 2022

P. Ataei, A. Litchfield: State of Big Data Reference Architectures: A Systematic Literature Review

FIGURE 2. SLR Statistics.

of patterns, possible, partially or completely instantiated,
designed, and proven for use in particular business and techni-
cal contexts, together with supporting artifacts to enable their
use’’ [9]. In Software Product Line (SPL) development, RAs
are defined as generic schema that can be instantiated and
configured for a particular class of systems [10].

In software engineering, RAs can be defined as an artefact
that transfers software engineering knowledge as a family
of solutions to a problem domain [40]. In another terms,
RAs are artefacts that embody domain relevant concepts
and qualities, break down solutions and create ubiquitous
language to facilitate effective communication, and inform
various stakeholders.

Taking all into consideration, and based on the model
derived from our thematic synthesis, five major concept of
RAs are identified as the following;

1) RAs are at the highest level of abstraction: RAs aim
to capture the essence of the practice as an abstraction
that portrays elements necessary for communica-
tion, standardization, implementation and maintenance
of certain class of systems. Hence, RAs aim to
inject software engineering knowledge as a set of
high-level architectural patterns and do not provide

implementation details such as specific frameworks,
vendors or environments. This makes RAs sit at a
higher level of abstraction comparing to concrete
architectures.

2) RAs emphasize heavily on architectural qualities:
RAs, sitting at a higher level of abstractions are artifacts
created for a wider audience and a bigger context, and
are usually used by solution architects to deduce a con-
crete architecture in a specific environment [41], [42].
As a result, RAs pay more attention to architectural
qualities.

3) In RAs, stakeholders are not clearly defined: Stake-
holders are usually people of the same company
involved in the actual design and implementation of
the system and do get involved in the product creation
in various phases. Different stakeholders have different
concerns and are crucial to the creation of the over-
all product [43]. A stakeholder can be a developer,
a designer, a product owner, a data scientist or a busi-
ness analyst. Notwithstanding, due to the generic nature
of the RAs, it is not feasible to include all stakeholders
a priori. RAs are at a higher level of abstraction and tend
to provide a generic solution for a class of problems, not

VOLUME 10, 2022 113795

P. Ataei, A. Litchfield: State of Big Data Reference Architectures: A Systematic Literature Review

a specific context. Therefore, defining and introducing
stakeholders into RAs can potentially decrease their
effectiveness [2], [44].

4) RAs promote adherence to common standards: The
design of an RA is usually guided by existing archi-
tectural patterns, common pitfalls in practice, the body
of literature and models. For this reason, RAs convey
standard approaches and patterns that avoid known
pitfalls, facilitate reuse, and decrease complexity.

5) 5. RAs are effective artefacts for system develop-
ment and communication: RAs are powerful artifacts
that can be used by architects to design, manage, and
utilize complex systems. Because RAs are created as
artifacts that codify the best practice and conventions of
the industry and often include architectural descriptions
and standards, they can be deemed effective artifacts for
system development and communication.

VII. HOW CAN RAs HELP BD SYSTEM DEVELOPMENT?
Despite the high failure rate of BD projects, IT giants such
as Google, Facebook or Amazon have developed exclusive
BD systems with complicated data pipelines, data manage-
ment, data procurement, batch and real-time analysis capa-
bilities [35]. Having the resources required, these companies
attract the best of talent from around the globe to manage
the complexity involved in development of BD systems.
Notwithstanding, that’s not the reality of majority of orga-
nizations that are trying to benefit from BD analytics.

BD systems sail away from traditional small data analyt-
ics paradigms and bring various challenges including rapid
technology change challenges [45], system development and
data architecture challenges [46], and organizational chal-
lenges [3]. Moreover, BD systems are distributed in nature
and need to account for various kind of data processing
usually batch and stream processing. This combined with
the complexity of maintaining and scaling data quality,
metadata management, data catalogs, data dimension mod-
eling, and data evolvability, makes BD system design a
daunting task.

BD does not only mean ‘big’ amount of data, or just
volume; other characteristics of BD such as velocity, variety,
veracity and variability bring significant challenges to the
practice. Although these challenges do not only belong to
BD systems, BD exacerbates these challenges because of the
following reasons;

1) Distributed scaling is required to address batch and
stream processing demands

2) There is a need for real near-time performance (stream
processing)

3) Complex technology orchestration is required to cre-
ate effective communication channels between compo-
nents and data flow

4) Continuous delivery is required to continually dis-
seminate patterns and insights into various business
domains (DataOps)

5) Two different approaches are required for data process-
ing, stream and batch processing; or fast and delayed
processing

6) Metadata should be managed at scale
7) Dimensional modeling for a rapidly changing schema

is challenging
8) There is a need for data privacy engineering

To provide a solution to these challenges, one has to realize
the core fundamentals of BD systems. Academic and practi-
tioners of BD, describe BD as an interplay of methodology
(workflow, organization), software engineering (data engi-
neering, storage, etc.), and analysis (math, statistics) [7], [47].
Therefore, one can deduce that technology orchestration and
data architecture is a focal matter in BD system development
and maintenance.

Positioned on top of this rationale, and based on the result
of the SLR synthesis, RAs can be considered an effec-
tive artefact because they can help streamline component
delineation, interface definition, technology orchestration,
variability management, data architecture, scalability, and
maintenance of BD systems [44], [48]. The purpose of RAs
is to create an integrated environment in which fragmented
processes around the system are optimized, responsiveness
to change is assured, and delivery of architectural strategies
is supported.

Most authors and practitioners agree that issues around BD
software engineering and system development are severe and
that this justifies the use of RAs for BD systems. Starting
with a grounded RA means that the software architect can
refer to an already designed orchestration of components,
interfaces, inter-communications, and variability points and
map them against the organization’s capability framework,
desired quality attributes, and business drivers. This also
means that the software architect or the architectural group
is no longer challenged to model a new architecture from an
array of independent components that needs to be assembled.

Taking all into consideration, one can deduce that RAs are
artifacts that facilitates development and homogenization of
BD systems. Using RA to address complex problems have
been successfully applied for DatabaseManagement Systems
(DBMS) [49] and Distributed Database Management Sys-
tems (DDBMS) [50].

VIII. WHAT ARE SOME COMMON APPROACHES
TO CREATING BD RAs?
The findings gained from this study led to the understanding
that there are not many frameworks available for design
and development of RAs. One of the most commonly used
approaches for developing RAs is ‘Empirically grounded
Reference Architectures’ by Galster and Avgeriou [51]. The
research methodology is well-received because of its empha-
sis on empirical validity and empirical foundation. This
methodology is comprising of 6 step process which are
respectively 1) Selecting the type of the RA, 2) Selection
of the design strategy, 3) Empirical acquisition of data,

113796 VOLUME 10, 2022

P. Ataei, A. Litchfield: State of Big Data Reference Architectures: A Systematic Literature Review

4) Construction of the RA, 5) Enabling RA with variability,
6) Evaluation of the RA.

Another seminal work in this area is a framework for
analysis and design of software RAs created by Angelov
et al. [52]. The framework utilizes a multi-dimensional clas-
sification space to classify RAs and as a result presents
5 major types. It is developed with the objective of supporting
analysis of RAs in regards to their architectural specifica-
tion/design, goal, and context. This is achieved through three
major dimensions, each having their own corresponding sub-
dimensions of design, goal, and context.

These dimensions and sub-dimensions are derived by inter-
rogatives of ‘why’, ‘where’, ‘who’, ‘when’, ‘what’, and
‘how’. The interrogative ‘why’ addresses the goal of the
RA, ‘who’, ‘when’, ‘where’ address the context, and ‘how’
and ‘what’ address the design dimensions. This framework
categorizes RAs in two major groups: facilitation RAs and
standardization RAs.

Volk et al. [53] utilized Software Architecture Compar-
ison Analysis Method (SCAM) to compare and examine
RAs based on their applicability. The result of this work
was a decision-support process for selection of BD RAs.
Along the lines, Two standards that have been observed the
most were ISO/IEC 25010 for choosing quality software
products for RAs [54], and ISO/IEC 42010 for architecture
description [55].

Surprisingly, based on the evidence gained from this SLR,
most researchers and practitioners use informal architectural
descriptionmethods like boxes and lines, except for the works
of Geerdink [43]. Geerdink used ArchiMate [56] as the archi-
tectural description language which is a formal and standard
language that is recommended in ISO/IEC 42010 as well.
Informal methods of modeling can introduce inconsistency
issues between system design and implementation of the
system [57], do not adhere to a well-established standard and
do not promote the development of modeling approaches.

Therefore, one can argue that there is a need for more
emphasis on usage of standard architectural description lan-
guages to discuss and portray ontologies. Lastly, Hevner’s
information systems research framework [58] has been used
for the development of RA presented byGeerdink [43], which
is a suitable research design, since a BD RA is an informa-
tion system artefact based on existing literature and business
needs.

IX. CHALLENGES OF CREATING BD RAs
Among the challenges of developing RAs, perhaps evalua-
tion is the most significant [59]. According to Galster and
Avgeriou [51], two fundamental pillars of the evaluation is
the correctness and the utility of the RA and how efficiently
it can be adapted and instantiated.

RAs and concrete architectures come with a different level
of abstraction and have divergent qualities. Whereas there
are many well-established evaluation methods for concrete
architectures such as Architecture Level Modifiability Anal-
ysis [60], Scenario-based Architecture AnalysisMethod [61],

Architecture Trade-off Analysis Method [62], and Perfor-
mance Assessment of Software Architecture [63], none of
these can really be directly applied to RAs.

For instance, ATAM is reliant on participation of stake-
holders in early stages for creation of utility tree, and RAs,
being highly abstract, do not have a clear group of stakehold-
ers at that stage. In addition, many of evaluation methodolo-
gies listed make use of scenarios, whereas RAs are highly
abstract and are potentially adopted for various contexts,
therefore making scenario creation difficult and sometimes
invalid. Either a few general scenarios are developed to cover
all aspects, or a large number of specific scenarios are devel-
oped to cover various aspects of the RA. Each of which can
pose threats to validity.

Based on three problems discussed above, available meth-
ods of architecture analysis are not sufficient for evaluating
RAs. Various researched tried to address this problem. In one
study, Angelov et al. [41] modified ATAM and extended it to
resonate well with RAs. This process took place by invitation
of representatives from leading industries for the evaluation
process which included selection of various contexts and
defined scenarios for these contexts. ATAM was extended to
evaluate completeness, buildability and applicability. How-
beit the selection of the right candidate and involving them
in the process is a daunting task and unfeasible at times. This
can also poses threats to validity and generalizability of the
theory generated.

In Another study by Maier et al. [59] as a postgraduate
dissertation in Eindhoven University of Technology, the eval-
uation of the RA has been conducted by mapping it against
existing reference and concrete architectures described in
industrial whitepapers and reports. Along the lines, Gal-
ster and Avgeriou [51] suggested reference implementations,
prototyping and incremental approach for the validation of
the RA.

By the virtue of the findings from this SLR, and by study-
ing the approaches from Bosch [64], Avgeriou [65], and
Derras et al. [10], an evaluation framework for a RA can
be done through architectural prototype evaluation, which
means a concrete architecture of the RA is generated and then
evaluated through a well-grounded method such as ATAM.

X. WHAT ARE CURRENT BD RAs AVAILABLE IN
ACADEMIA AND INDUSTRY?
As a result of this SLR and to answer RQ1, 22 BD RA has
been found, among which 14 RAS are from academia, 8 from
practice. These RA are listed in Table 1.

Within the past years, there has been a considerable atten-
tion to the BD domain, and in specific BD system develop-
ment. For instance, in March 2012, White House announced
an initiative for BD research and development [83]. The
goal of this initiative was to accelerate the speed of science
and engineering discovery, to improve national security, and
to improve the knowledge extraction from large and com-
plicated sets of data [84]. This project has been supported
by six federal departments and has been given more than

VOLUME 10, 2022 113797

P. Ataei, A. Litchfield: State of Big Data Reference Architectures: A Systematic Literature Review

$200 million USD with the goal of substantial progress in
the tools and techniques to handle BD.

A year later, in June 2013, National Institute of Standards
and Technology (NIST) Big Data Public Working Group
(NBD-PWG) was launched with considerable participation
from across the nation. Practitioners, researchers, agents,
government representatives, and none-profit organizations
joined in this momentum.

One of the results of this project was NIST BD Refer-
ence Architecture (NBDRA). According to US Department
of Defense, one of the main objectives of NBDRA was to
provide with an authoritative source of information on BD
that restraint and guides the overall practice. This is arguably
one of the most comprehensive and recent RAs available
in the fields of BD. NBDRA is made up of two fabrics
encompassing five functional logical components connected
by various interfaces, representing intertwined nature of secu-
rity and privacy and management.

Furthermore, other giant IT vendors published their own
RAs for BD. In this SLR, 8 BD RA has been collected from
the practice, and mostly through white papers. These white
papers are from IBM, Microsoft, Oracle, SAP, ISO, and a
conference in which Lambda was discussed. Among these
RAs, arguably Lambda architecture is the most commonly
discussed and studied. It is also worth mentioning that there
has been other BDRAs found in practice, but they were rather
too short or did not reflect the contemporary state of BD
analytics and has been eliminated as described in the research
methodology section. We are well aware that Lambda is
commonly perceived as an architecture and not an RA, but
we have grouped it as an RA as it sits at an abstraction level
close to RAs.

In the realm of academia, there has been numerous
efforts including a postgraduate master’s dissertation [59]
and PhD thesis [85] for creating BD RAs. In addition,
few universities have published their own RA. For instance,
university of Amsterdam published a BD architecture
framework [86].

Last but not least, there has been numerous reference
architectures developed recently for specific domains. These
studies have been usually published as short journal papers,
and many have promised future publication of the full refer-
ence architecture as a book. For instance, Klein et al. [40]
developed a BD RA in the national security domain, and
Weyrich and Ebert [87] worked on a BD RA in the domain of
internet of things (IOT).

Through the process of literature review for this SLR,
scarcity of BD reference architectures has been witnessed.
The studies listed above are prominent research, with great
potential to induce concrete architectures. But with all, they
are mostly published as short studies and provide with little
information about quality attributes, data quality, metadata
management, security, and privacy concerns. In another
terms, they are notion or brief discussions on reference archi-
tectures in very particular domains.

XI. WHAT ARE MAJOR ARCHITECTURAL
COMPONENTS OF BD RAs?
To address RQ2, RAs listed in table 1 was reviewed and
compared to highlight common architectural components of
BD RAs. Some of the RAs collected were in in the form of a
short paper and provided with not much detail, whereas some
of the other such as NIST were quite comprehensive.

Majority of RAs have been inspired or based on other RAs,
and this signified the notion that ‘‘RAs can be perceived more
effective when they are created from the body of available
knowledge rather than from scratch’’.

To answer this question in a systematic manner, and as a
result of our data extraction, we listed all the components
from all the BD RAs listed in the previous section. These
components are described in table 2.

Different studies have chosen different phrases to describe
their architectural components, and there seems to be no stan-
dard way of modeling BD RAs. The usage of architectural
definition languages such as Archimate is scarce, and most
studies have used boxes and lines with specifically defined
ontologies. Thismade understanding and comparison of these
RAs a difficult task that requires constant translation from one
ontology to another.

Initially we’ve done an automated text analysis on these
components’ names to try to highlight commonalities and
word usage. The word cloud of these components are por-
trayed in figure 3.

Among the names authors used to name their components,
‘big data application provider’ (5 occurrences), and ‘big data
framework provider’ (3 occurrences) seems to have been used
the most. This is due to the fact that some of the RAs are
built upon NIST BD RA (s17), and have therefore adopted
the terminology. One term that all studies seems to have
been using uniformly is ‘data consumer’ and ‘data provider’.
Moreover, most studies have chosen the phrase ‘layer’ to
logically group different components of the RA.

Taking all into consideration and to answer RQ2, we paid
clear attention to the description of these components and
categorized them based on their functions. These categories
are; 1) BDManagement and Storage, 2) Data Processing and
Application Interfaces, 3) BD Infrastructure.

A. BD MANAGEMENT AND STORAGE
One of the prominent characteristics of BD is ‘variety’, which
rises the need for distinct storage solutions. This is some-
times referred to as ‘polyglot persistence’ [88]. For instance,
when it comes to dynamic data, NoSQL databases such as
MongoDB is a suitable choice because of their non-tabular
nature, and when there is a need for complex relationship
between entities, graph databases such as Neo4J are more
suitable because of their tree traversal performance.

Choosing the right database or databases, is an important
architectural decision that can also include patterns for data
access, storage and caching. For example, the practitioners

113798 VOLUME 10, 2022

P. Ataei, A. Litchfield: State of Big Data Reference Architectures: A Systematic Literature Review

TABLE 1. BD RAs.

of distributed system that are specialized in micro-services
architecture may opt to use Command Query Responsibility
Segregation (CQRS) pattern for high performance event-
driven applications [89]. The type of storage and the access
pattern are two major architectural components of big data
systems.

The current landscape of BD RAs seems to revolve around
monolithic storage solutions such as data warehouse and data
lake. While the traditional practice of staging data, dimen-
sional modeling, storage in data warehouses, and data marts
as customized access layers, may seem ineffective in handling
BD loads, we’ve been surprised to still witness some varia-
tions of this approach being proposed.

Another architectural component that is popular in BD
RAs is data lake. Data lake can be perceived as an ingestion
framework that can be given various types of data including
internal and external data. The data stored in the data lake
is then usually retrieved for transformation. This is the LET
(load, extract, transform) approach, comparing to old ETL
(extract, transform, load) approaches.

Similar to the way that Business Intelligence (BI) and BD
differ in their source data types both in terms of granularity
and data structure of it, a data lake and data warehouse are
different. In the case of a data warehouse, usually a relational
database is used which decreases flexibility when it comes to
analysis and can potentially cause considerable costs. In the

case of data lake, data of different kind can be stored without
the engineer needing to define the schema in advance. This
increases the flexibility.

Howbeit, this flexibility itself has its own downside and
can be abused by data engineers. One can throw different
data sets in the data lake, without much regard for how
they’re structured and consumed, and this can in turn, result
in the creation of a data swamp. Data governance and active
metadata can alleviate some of these issues [90].

Based on the results of this synthesis, we posit that BD
RAs are driven by three main paradigms; 1) enterprise data
warehouse paradigm, 2) data lake paradigm, and 3) multi-
modal cloud based paradigm.

The first paradigm revolves around large monolithic enter-
prise data warehouses, with ETLs, staging environments and
a data processing pipeline. A good example of the first
paradigm is S5. The second paradigm is about monolithic
data lakes containing data that follows a similar data pro-
cessing pipelines as data warehouses, but happening at a later
stage. A good example of the second paradigm is S21. The
third paradigm is not that far away from the second, but aims
to incorporatemore elements of distributed systems and cloud
features. A good example of this paradigm is the S22.

Moreover, some RAs sit at a higher level of abstraction.
A good example is S20. For these kind of RAs, one cannot
assume the nature of the data pipelines and if the storage

VOLUME 10, 2022 113799

P. Ataei, A. Litchfield: State of Big Data Reference Architectures: A Systematic Literature Review

TABLE 2. BD RAs components.

would be monolithic or not. In S20, there’s a depiction of
various kinds of storage in the ‘Big Data Platform Layer’,
indicating that one may choose to opt in for polyglot persis-
tance. Therefore, only the resulting system can help us realize
what paradigm the RA may belong to.

When it comes to big data management, many of the
cross-cutting concerns seems to be overlooked. For instance,
we have realized that many BD RAs do not pay a clear
attention to security, privacy, metadata management and data
quality. While some RAs tend to revolve around security
such as S13, and some other tend to revolve around metadata
management such as S15, we could not find a comprehensive
explication of BD cross-cutting concerns.

We could not understand how some of the RAs could scale
to account for data source proliferation and how rapidly they
could react to regional data privacy changes. We could hardly
see a discussion on data architecture, data discoverability, and
data interoperability.

B. DATA PROCESSING AND APPLICATION INTERFACES
There are two major data processing activities that a BD sys-
tem encompasses. These processes generally fall into stream

processing and batch processing. Stream processing or fast
processing is required for sensitive operations and time crit-
ical processes such as checking a fraudulent credit card, and
batch processing required for a long-running continuum of
data analysis such as regression analysis.

The decision on required type of processing for a context-
specific architecture is determined by the characteristics of
the data being analyzed, that is primarily variety, volume and
velocity.

For instance, most algorithms for stream processing are
using in-memory stateful data structures such Hyperloglog
to compute values in real-time. A streaming component can
be tailored to adopt specific windowing approaches such
as tuple-at-a-time and a micro-batch processing. When in
fact, these techniques are not required for batch processing.
An architect may opt for MapReduce and Bulk Synchronous
Parallel (BSM) processing for batch-oriented requirements
or go for a streaming processing based on a specific perfor-
mance requirement set to handle velocity and volume of data.

Various studies have provided different level of abstraction
when it comes to describing data processing. While some
studies like S19 describe the processes in the data processing

113800 VOLUME 10, 2022

P. Ataei, A. Litchfield: State of Big Data Reference Architectures: A Systematic Literature Review

FIGURE 3. BD RA component names word cloud.

pipeline, some others like s15 have just abstracted it to ‘batch
processing’ or ‘stream processing’.

Moreover, we realized two category of data processing.
First category utilizes two different architectural constructs
for batch and stream processing, while the latter tends to
process both in one architectural component. That is, one cat-
egory processes both streaming and batch in one architectural
construct, while the other separates them. This is a difference
that can be seen between Lambda and Kappa, and the RAs
that have been derived from the two. Some RAs such as S17
have used three architectural constructs, namely batch node,
streaming node and interactive node.

BD interfaces are communicated in two different ways,
either the RA only presented a ‘serving or access layer’
(S21, S17), or several components that are each specific
to a different requirement (ML, BI, etc). The latter can be
witnessed in S16.

Some RAs tend to clearly distinguish to ingress and egress
interfaces and inter-node interfaces such as s22, while others
mostly annotated interfaces with just an arrow. Along the
lines, some studies have created terms for their interfaces
such as ‘provider-request interface’ in s15. While interfaces
are quite important architectural constructs, current RAs
don’t seem to be vested a lot of interest in clearly portraying
them.

C. BD INFRASTRUCTURE
Another major area that is discussed in the RAs is the con-
cept of infrastructure. Different authors have taken different
approaches to communicate this. Some have presented it
through a standard architectural description language such as
s6, which clearly defines the technology layer, and some have
not mentioned the concept of infrastructure, but it’s rather

implicitly conveyed such as s21 and s22. Some other have
presented with both infrastructure and platform layers such
as s20 and s17.

For instance, one major component of a NIST BD RA
(s17) is called big data framework provider which includes
‘computing and analytics’, ‘data organization and distribu-
tion’, and ‘infrastructures such as networking, computing and
storage’.

BD infrastructure is more of a layer than a component.
A layer in which the RA lays out a possible computing and
networking design of a BD system. This is crucial, as prac-
titioners of BD have been commonly architecting underlying
distributed paradigms and horizontal scaling.

Therefore, CAP theorem, ACID and BASE transactions,
data consistency, service discovery, and tail latency are poten-
tial architectural challenges one should consider. Should
a BD system adopt an event-driven approach through an
event backbone such as Kafka that is discussed in s22?
Or should it stick to REST based communication? What
is the overhead of context switch and networking among
services?

All and all, as a result of this SLR, a component of a
BD infrastructure has been witnessed as a common pattern,
in various forms and approaches. We consider platform layer
of BD as a major architectural component of these systems.
Whereas one might argue that infrastructure is an architec-
tural component of any system, the design challenge is more
significant in the case of BD systems as these systems are
usually distributed in nature.

Another area that seems to be neglected is DataOps. While
DataOps can play an important role in the automation and
delivery of data engineering workloads in an agile manner,
we could not find BD RAs that incorporate this aspect.

VOLUME 10, 2022 113801

P. Ataei, A. Litchfield: State of Big Data Reference Architectures: A Systematic Literature Review

Lastly, our findings depicts the fact that many of RA
presented are not designed underlying completely dis-
tributed architectures while BD systems can benefit from this
paradigm. An exception to this is S22, which is absorbing
many patterns from event-driven microservices architecture.

XII. WHAT ARE THE LIMITATIONS OF CURRENT BD RAs?
To answer the RQ3, RAS collected for this SLR have been
appraised to point out limitations. To arrive at this objective
systematically, we first described each RA with its limitation
briefly. This is portrayed in table 3.

Except for one case (S22), all the architectures and RAs
found as the result of this study, were designed underlying
monolithic data pipeline architecture with four major com-
ponents being data consumer, data processing, data infras-
tructure and data providers. To discuss the integral facets that
embroil these architectures, one must look at the characteris-
tics of these architectures and the ways in which they achieve
their ends.

The process of turning data into actionable insights in these
architectures usually follow a similar lifecycle;

1) Data Ingestion: system begins to ingest data from all
corners of the enterprise, including both transactional,
operational and external data.

2) DataTransformation: data captured from the previous
step is then cleansed for duplication, quality, and poten-
tially scrubbed for privacy policies (scrubbing is hardly
discussed in the studied RAs). This data then goes
through a multifaceted enrichment process to facilitate
data analysis.

3) Data Serving: at this stage, data is ready to be served
to diverse array of needs ranging from machine learn-
ing to marketing analytics, to business intelligence to
product analysis and customer journey optimization.

The lifecycle depicted is indeed a high-level abstract view
of prevalent BD systems. Howbeit, it highlights an important
matter; these systems are all operating underlying monolithic
data pipeline architecture that tends to account for all sorts
of data. This means, data that logically belong to different
domains are now all lumped together and crunched in one
architectural constructs, making maintainability and scalabil-
ity a daunting task.

While architectures in software engineering have gone
through series of evolution in the industry, adopting a more
decentralized and distributed approaches such as microser-
vice architecture, event-driven architectures, reactive sys-
tems, and domain driven design, data engineering and in
specific BD ecosystems do not seem to be adopting many of
these patterns. The whole idea of ‘monolithic data pipeline
architecture with no clearly defined domains and owner-
ship’ brings significant challenges to design, implementation,
maintenance and scaling of BD systems.

Architecture and system design if done underlying
these approaches, can result in hard to maintain systems
with high costs, and leave many managers disappointed.

Nevertheless, we don’t claim that all these architectures will
fail, perhaps some have proven to be successful in a specific
context. There are two threats to maintainability and scalabil-
ity of these systems;

• Data source proliferation: as the BD system grows
and more data sources are added, the ability to ingest,
process, and harmonize all these data in one place
diminishes.

• Data consumer proliferation: organizations that uti-
lize rapid experimentation approaches such Hypothesis-
Driven Development and Continuos Delivery constantly
introduce new use cases for data to be consumed in
different domains. This means that variability of the
data rises, and the sum of aggregations, projections, and
slices increases, which in turn adds more work to the
backlog of the data engineering team, slowing down the
process of serving the data to consumers.

Another limitation that we came across was that the con-
cept of metadata has been poorly discussed. For instance,
s5 discussed the limitation of metadata management sys-
tems, stating that most metadata solutions are ad-hoc. The
researcher then went ahead and introduced a layer for meta-
data management in the RA, but as a non-integrated com-
ponent. For instance, the author did not discuss how data
provenance can be achieved through the RA and underlying
which logical flow one can do linear analysis.

In another case, NIST BD RA only discusses metadata in a
sentence, and in sub-activity named ‘metadata management’.
The RA only states what are essential metadata information
and how they are used. Except for s15 and s22, metadata
has not been accentuated enough and metadata layer is not
thoroughly discussed. This is a noticeable limitation in cur-
rent BD RAs, as metadata plays an important role in BD
systems, addressing wide range of challenges such as privacy,
security, data provenance, data lineage and linear analysis.
Practitioners of BD systems are now working on large-scale
metadata systems such as metadata lake.

Based on that, one can argue that any BD system can bene-
fit from a well-definedmetadata layer as a means for bridging
data stored in different platforms such as on-premise or on
cloud, reducing complexity, facilitating access management,
facilitating data governance, and potentially the creation of
data mesh.

Furthermore, white papers collected from IT giants tend
to pivot the RA around their services, which can potentially
reduce its applicability, hinder RAs openness, and even affect
architectural qualities. In these white papers, alternative tech-
nologies or vendors are typically not discussed which leaves
the architect with a small pool of options.

Lastly, privacy and security do not seem to have been
discussed enough, or it has been mostly marginalized. For
instance, we have not found an architectural component that
allows for data scrubbing, or we did not understand how
one can achieve security in-between data pipelines. Specially,
in regard to privacy and with recent global movements

113802 VOLUME 10, 2022

P. Ataei, A. Litchfield: State of Big Data Reference Architectures: A Systematic Literature Review

TABLE 3. BD RAs and their limitations.

VOLUME 10, 2022 113803

P. Ataei, A. Litchfield: State of Big Data Reference Architectures: A Systematic Literature Review

TABLE 3. (Continued.) BD RAs and their limitations.

towards increased privacy, BD architects are now increas-
ingly challenged to design under the shadow of regional data
privacy policies such as GDPR. Placing this challenge next to
security challenges of package management, endpoint prolif-
eration and DDOS handling can further signify the necessity
for more research on BD RAs.

Many of core architectural decisions revolving around
security and privacy, if not addressed in an initial phase, can
result in massive losses and potential bottlenecks.

XIII. DISCUSSION
In this section, we provide a summary of main findings and
the potential implications for both industry and academia.

In this study, by adopting a rigorous research methodology,
we aimed to understand the state of the art in BD RAs. To the
best of our knowledge, there is no study in academia that has
conducted a SLR on BD RAs, nor there is a systematic map-
ping study. While RAs can play a pivotal role in development
and maintenance of BD systems, there does not seem to be
enough attention on this topic.

The closest study we could find to comparing and analyz-
ing BD architectures was the work of Volk et al. ([53]), which
does not revolve around BD RAs, but attempts to develop a
decision support system for selecting BD RAs. However, this
study stays fairly light on BD architectures and does not aim
to systematically collect them.

The researchers of NIST BD RA (S17) have collected a
series of white paper from the big data public working group,
and used it as a foundation study. Howbeit, these white papers
are not detailed BD RAs, and are mostly proof of concepts
that different members of the group have put together for the
purposes of contrast and comparison.

Our findings from this study yielded the fact that progress
is uneven in the area of BD RAs. While there are many
researches in the area of data warehousing, artificial intel-
ligence, data science, and IOT, data engineering seems to
be needing more research. While, there are many well
established approaches for crunching large volume of data,
or handling dimensionality of complex data sets, the overall
organization of BD technologies, which is the architecture,
needs more attention from academia and industry.

Majority of the BD RAs that we have analyzed were run-
ning underlying some sort of a monolithic data pipeline with

a central storage. This is a challenging architecture to scale
and maintain. How does one takes preventive measures to
stop a data lake from turning into a data swamp? How a team
of hyper-specialized siloed data engineers that are running the
data pipelines, will be aware of the actual consumption of the
data and therefore keep a certain level of quality of that data?
how data interoperability is achieved? how data ownership is
institutionalized?

If a software engineer decides to, for instance, manipulate
a certain field in certain entity’s schema for the development
of a new feature, how will this affect the data engineering
process and how is this communicated? as data becomesmore
and more available to the company, the ability to consume it
all in one place diminishes.

On the other hand, the current state of BD RAs do not
seem to be very far away from traditional data warehousing
approaches. In fact, some of them have adopted the idea of
data marts and propose them as BD solution, but using newer
technologies. Moreover, some architectures have attempted
to utilized data lake to serve data analysts and business
intelligence.

We posit that neither the attempt to onboard BD analytics
workloads to data warehouses, nor the attempt to serve busi-
ness intelligence with data lakes is gonna result in a scalable
and maintainable system. We therefore propose the need for
future research directions in the area of decentralized and
distributed BD RAs.

We also realized that quality of many of BD RAs pub-
lished does not seems to be enough to meet the industrial
expectations. This is due to the challenges of developing BD
RAs and the cost and resources required to evaluate these
artifacts. It is also worth mentioning that a rigorous method-
ology for evaluating reference architectures are quite rare,
and while there are studies that have attempted to address
these issues ([41]), there is a need for more research in
this area.

Given all, we posit that RAs can be considered an effective
initial point to design and development of BD systems. These
artifacts helps facilitating communication, capture require-
ments from various stakeholders, and catch design issues
while they are still cheap. Based on this, therefore, more
and more attention needs to be given to this area and its
foundational methodological needs.

113804 VOLUME 10, 2022

P. Ataei, A. Litchfield: State of Big Data Reference Architectures: A Systematic Literature Review

XIV. THREATS TO VALIDITY
Just like any rigorous SLR, and based on our research
methodology, it is essential to conduct a ‘threats to validity’
assessment to transparently communicate any bias or flaws
that research may suffer from. Therefore, the threats to valid-
ity for this study are as following;

1) Construct Validity: This SLR is as good as the quality of
the evidence collected and the synthesis of it. Therefor
we have taken extensive measures to maximize the
rigour in this study. By following some of the most
prominent guidelines for SLRs, and a few complemen-
tary studies for search strategy, inter-rate reliability,
data synthesis, and quality assessment, we ensured that
at every step we are removing bias, and increase trans-
parency and systematicity of our study. We also opted
for thematic synthesis, and followed a well established
approach to create themes and models.

2) Internal Validity: To avoid losing on valuable informa-
tion, we augmented our SLR with grey literature, and
used a rigorous method to incorporate those literature
into the main pool of literature. We snowballed papers,
looked for references, and even searched the works of
well-known researchers in the field.

3) Conclusion Validity: One potential threat to validity
might be that some of the studies we collected may
not have been mature enough, and that in turn might
have impacted the generalizability of our conclusions.
To mitigate this threat, we have developed a rigorous
quality framework and assessed each pooled literature
based on it. We made sure that this process is con-
ducted by different individuals so to achieve the quality
desired.

XV. CONCLUSION
This study sought to find all BD RAs available in practice
and academia. The findings gained emerges the understand-
ing that RAs can be an effective artefact to tackle complex
BD system development. RAs at their core bring software
engineering knowledge as a collection of patterns designed
to address a class of problems with attention to specific
requirements and context and do solve many of the prevalent
architectural challenges that an architect might face.

As data proliferates further, there will be more BD systems
created which in turn means more technology orchestration
is required around data that can be effectively done through a
well-established RA. RAs guide the evolution of the system
both in terms of functional and non-functional requirements,
and pinpoint variability points that can result in more success-
ful BD projects and avoidance of common pitfalls.

Withal, BDRAs have yet to mature and become ubiquitous
in industry and there is further research required in this area.
These researches can be done in the area of micro-services
RA for BD systems, event-driven paradigms for BD systems,
security and privacy issues in BD systems, and metadata
management.

REFERENCES
[1] B. B. Rad, N. Akbarzadeh, P. Ataei, and Y. Khakbiz, ‘‘Security and privacy

challenges in big data era,’’ Int. J. Control Theory Appl., vol. 9, no. 43,
pp. 437–448, 2016.

[2] P. Ataei and A. T. Litchfield, ‘‘Big data reference architectures, a system-
atic literature review,’’ in Proc. ACIS, 2020, pp. 1–11.

[3] B. B. Rada, P. Ataeib, Y. Khakbizc, and N. Akbarzadehd, ‘‘The hype of
emerging technologies: Big data as a service,’’ Int. J. Control Theory Appl.,
vol. 9, no. 43, pp. 1–18, 2017.

[4] MIT Technology Review Insights in Partnership With Databricks, Build-
ing a High-Performance Data Organization, MIT Partnership With
Databricks, USA, 2021.

[5] Big Data and AI Executive Survey 2021, NewVantage Partners, Boston,
MA, USA, 2021.

[6] Bridging the Gap Between Data and Business Teams, Sigma Computing,
San Francisco, CA, USA, 2020.

[7] B. B. Rad and P. Ataei, ‘‘The big data ecosystem and its environs,’’ Int. J.
Comput. Sci. Netw. Secur., vol. 17, no. 3, p. 38, 2017.

[8] I. Gorton and J. Klein, ‘‘Distribution, data, deployment,’’ STC, vol. 32,
no. 3, p. 78, May 2015.

[9] R. Cloutier, G. Müller, D. Verma, R. Nilchiani, E. Hole, and M. Bone,
‘‘The concept of reference architectures,’’ Syst. Eng., vol. 13, no. 1,
pp. 14–27, 2010.

[10] M. Derras, L. Deruelle, J. M. Douin, N. Levy, F. Losavio, Y. Pollet, and
V. Reiner, ‘‘Reference architecture design: A practical approach,’’ in Proc.
13th Int. Conf. Softw. Technol., 2018, pp. 633–640.

[11] ISO, Information Technology—Reference Architecture for Service Ori-
ented Architecture (SOA RA)—Part 1: Terminology and Concepts For
SOA, International Organization for Standardization, Geneva, Switzerland,
2016, p. 51.

[12] G. Müller, ‘‘A reference architecture primer,’’ Fac. Technol., Natural Sci.
Maritime Sci., 2008.

[13] S. Angelov, P. Grefen, and D. Greefhorst, ‘‘A classification of software
reference architectures: Analyzing their success and effectiveness,’’ in
Proc. Joint Work. IEEE/IFIP Conf. Softw. Archit. Eur. Conf. Softw. Archit.,
Sep. 2009, pp. 141–150.

[14] L. Bass, I. Weber, and L. Zhu,DevOps: A Software Architect’s Perspective,
Boston, MA, USA: Addison-Wesley, 2015.

[15] M. J. Page, D. Moher, P. M. Bossuyt, I. Boutron, T. C. Hoffmann,
C. D. Mulrow, L. Shamseer, J. M. Tetzlaff, E. A. Akl, S. E. Brennan,
and R. Chou, ‘‘PRISMA 2020 explanation and elaboration: Updated guid-
ance and exemplars for reporting systematic reviews,’’ Bmj, vol. 372,
Mar. 2021.

[16] M. L. Rethlefsen, P.-S. Group, S. Kirtley, S. Waffenschmidt, A. P. Ayala,
D. Moher, M. J. Page, and J. B. Koffel, ‘‘PRISMA-S: An extension to
the PRISMA statement for reporting literature searches in systematic
reviews,’’ Systematic Rev., vol. 10, no. 1, pp. 1–19, Dec. 2021.

[17] B. A. Kitchenham, D. Budgen, and P. Brereton, Evidencebased Software
Engineering and Systematic Reviews, vol. 4. Boca Raton, FL, USA: CRC
Press, 2015.

[18] M. Borrego, M. J. Foster, and J. E. Froyd, ‘‘Systematic literature reviews
in engineering education and other developing interdisciplinary fields,’’
J. Eng. Educ., vol. 103, no. 1, pp. 45–76, Jan. 2014.

[19] K. Krippendorff, Computing Krippendorff’s Alpha-Reliability. USA:
Sage, 2011.

[20] G.W. Noblit, R. D. Hare, and R. D. Hare,Meta-Ethnography: Synthesizing
Qualitative Studies, vol. 11. Thousand Oaks, CA, USA: SAGE, 1988.

[21] T. Dybå and T. Dingsøyr, ‘‘Empirical studies of agile software devel-
opment: A systematic review,’’ Inf. Softw. Technol., vol. 50, nos. 9–10,
pp. 833–859, 2008.

[22] M. Cumpston, T. Li, M. J. Page, J. Chandler, V. A. Welch, J. P. Hig-
gins, and J. Thomas, ‘‘Updated guidance for trusted systematic reviews:
A new edition of the cochrane handbook for systematic reviews of
interventions,’’ Cochrane Database Systematic Rev., vol. 10, Oct. 2019,
Art. no. 14651858.

[23] Checklists, Critical Appraisal Skills Programme (CASP), CASP, U.K.,
2018.

[24] Z. Munn, T. H. Barker, S. Moola, C. Tufanaru, C. Stern, A. McArthur,
M. Stephenson, and E. Aromataris, ‘‘Methodological quality of case
series studies: An introduction to the JBI critical appraisal tool,’’ JBI
Database Systematic Rev. Implement. Rep., vol. 18, no. 10, pp. 2127–2133,
2020.

VOLUME 10, 2022 113805

P. Ataei, A. Litchfield: State of Big Data Reference Architectures: A Systematic Literature Review

[25] P. Runeson, C. Andersson, T. Thelin, A. Andrews, and T. Berling,
‘‘What do we know about defect detection methods? [software testing],’’
IEEE Softw., vol. 23, no. 3, pp. 82–90, May 2006.

[26] B. A.Kitchenham, S. L. Pfleeger, L.M. Pickard, P.W. Jones, C. D.Hoaglin,
K. E. Emam, and J. Rosenberg, ‘‘Preliminary guidelines for empirical
research in software engineering,’’ IEEE Trans. Softw. Eng., vol. 28, no. 8,
pp. 721–734, Aug. 2002.

[27] D. S. Cruzes and T. Dyba, ‘‘Recommended steps for thematic synthesis in
software engineering,’’ in Proc. Int. Symp. Empirical Softw. Eng. Meas.,
Sep. 2011, pp. 275–284.

[28] V. Braun and V. Clarke, ‘‘Using thematic analysis in psychology,’’ Quali-
tative Res. Psychol., vol. 3, no. 2, pp. 77–101, 2006.

[29] T. Dyba, T. Dingsoyr, and G. K. Hanssen, ‘‘Applying systematic reviews
to diverse study types: An experience report,’’ in Proc. 1st Int. Symp.
Empirical Softw. Eng. Meas. (ESEM), Sep. 2007, pp. 225–234.

[30] M. B. Miles and A. M. Huberman, Qualitative Data Analysis:
An Expanded Sourcebook. Thousand Oaks, CA, USA: SAGE, 1994.

[31] J. Corbin and A. Strauss, Basics of Qualitative Research: Techniques and
Procedures for Developing Grounded Theory. Thousand Oaks, CA, USA:
SAGE, 2014.

[32] J. Lofland and L. H. Lofland, Analyzing Social Settings. CA, USA:
Wadsworth Publishing Company, 1971.

[33] M. A. Martínez-Prieto, C. E. Cuesta, M. Arias, and J. D. Fernández,
‘‘The solid architecture for real-time management of big semantic data,’’
Future Gener. Comput. Syst., vol. 47, pp. 62–79, Jun. 2015.

[34] O. Sievi-Korte, I. Richardson, and S. Beecham, ‘‘Software architecture
design in global software development: An empirical study,’’ J. Syst. Softw.,
vol. 158, Dec. 2019, Art. no. 110400.

[35] J. Kohler and T. Specht, ‘‘Towards a secure, distributed, and reliable cloud-
based reference architecture for big data in smart cities,’’ in Big Data
Analytics for Smart Connected Cities, Pennsylvania: IGI Global, 2019,
pp. 38–70.

[36] H. Zimmermann, ‘‘OSI reference model—The ISO model of architecture
for open systems interconnection,’’ IEEETrans. Commun., vol. C-28, no. 4,
pp. 425–432, Apr. 1980.

[37] OATH, Oath Reference Architecture, Release 2.0 Initiative for Open
Authentication, Open Group, USA, 2007.

[38] A. L. Pope, The CORBA Reference Guide: Understanding the Common
Object Request Broker Architecture. Boston, MA, USA: Addison-Wesley,
1998.

[39] D. Greefhorst, ‘‘Een applicatie-architectuur voor het web bij de bank—De
pro’s en contra’s van toestandsloosheid,’’ Softw. Release Mag., ArchiXL,
Amersfoort, The Netherlands, 1999, pp. 14–17, vol. 2.

[40] J. Klein, R. Buglak, D. Blockow, T. Wuttke, and B. Cooper, ‘‘A refer-
ence architecture for big data systems in the national security domain,’’
in Proc. 2nd Int. Workshop BIG Data Softw. Eng. (BIGDSE), 2016,
pp. 51–57.

[41] S. Angelov, J. J. Trienekens, and P. Grefen, ‘‘Towards a method for
the evaluation of reference architectures: Experiences from a case,’’
in Proc. Eur. Conf. Softw. Archit. Cham, Switzerland: Springer, 2008,
pp. 225–240.

[42] V. Stricker, K. Lauenroth, P. Corte, F. Gittler, S. D. Panfilis, and K. Pohl,
‘‘Creating a reference architecture for service-based systems—A pattern-
based approach,’’ in Towards Future Internet. Amsterdam, Netherlands:
IOS Press, 2010, pp. 149–160.

[43] B. Geerdink, ‘‘A reference architecture for big data solutions introducing
a model to perform predictive analytics using big data technology,’’ in
Proc. 8th Int. Conf. Internet Technol. Secured Trans. (ICITST), Dec. 2013,
pp. 71–76.

[44] W. L. Chang and D. Boyd, ‘‘Nist big data interoperability framework:
Volume 6, big data reference architecture,’’ Nat. Inst. Standards Technol.,
USA, Tech. Rep., 2018.

[45] H.-M. Chen, R. Kazman, J. Garbajosa, and E. Gonzalez, ‘‘Big data value
engineering for business model innovation,’’ in Proc. 50th Hawaii Int.
Conf. Syst. Sci., 2017, pp. 1–10.

[46] H. V. Jagadish, J. Gehrke, A. Labrinidis, Y. Papakonstantinou, J. M. Patel,
R. Ramakrishnan, and C. Shahabi, ‘‘Big data and its technical challenges,’’
Commun. ACM, vol. 57, no. 7, pp. 86–94, 2014.

[47] P. Akhtar, J. G. Frynas, K. Mellahi, and S. Ullah, ‘‘Big data-savvy teams
skills, big data-driven actions and business performance,’’ Brit. J. Manag.,
vol. 30, no. 2, pp. 252–271, Apr. 2019.

[48] S. Nadal, ‘‘A software reference architecture for semantic-aware big data
systems,’’ Inf. Softw. Technol., vol. 90, pp. 75–92, Oct. 2017.

[49] C. Piñeiro, J. Morales, M. Rodríguez, M. Aparicio, E. G. Manzanilla,
and Y. Koketsu, ‘‘Big (pig) data and the internet of the swine things:
A new paradigm in the industry,’’ Animal Frontiers, vol. 9, no. 2, pp. 6–15,
Apr. 2019.

[50] S. K. Rahimi and F. S. Haug, Distributed Database Management Systems:
A Practical Approach. Hoboken, NJ, USA: Wiley, 2010.

[51] M. Galster and P. Avgeriou, ‘‘Empirically-grounded reference architec-
tures: A proposal,’’ in Proc. Joint ACM SIGSOFT Conf. (QoSA) ACM
SIGSOFT Symp. (ISARCS)Quality Softw. Archit. (QoSA) Architecting Crit.
Syst. (ISARCS), 2011, pp. 153–158.

[52] S. Angelov, P. Grefen, and D. Greefhorst, ‘‘A framework for analysis and
design of software reference architectures,’’ Inf. Softw. Technol., vol. 54,
no. 4, pp. 417–431, Apr. 2012.

[53] M. Volk, S. Bosse, D. Bischoff, and K. Turowski, ‘‘Decision-support for
selecting big data reference architectures,’’ inProc. Int. Conf. Bus. Inf. Syst.
Cham, Switzerland: Springer, 2019, pp. 3–17.

[54] Systems and Software Engineering—Systems and Software Quality
Requirements and Evaluation (Square)—System and Software Quality
Models. Int. Org. Standardization, Standard IEC25010:2011, 2011.

[55] IEEE International Organization for Standardization (ISO/IEC),
Standard ISO/IEC/IEEE 42010:2011, 2017.

[56] A. Josey, M. Lankhorst, I. Band, H. Jonkers, and D. Quartel, ‘‘An
introduction to the archimate 3.0 specification,’’ Van Haren Publishing,
s-Hertogenbosch, The Netherlands, White Paper W168, 2016.

[57] H. Zhu, Software Design Methodology: From Principles to Architectural
Styles. Amsterdam, The Netherlands: Elsevier, 2005.

[58] A. R. Hevner, S. T. March, J. Park, and S. Ram, ‘‘Design science in infor-
mation systems research,’’MIS Quart., vol. 28, pp. 75–105, Mar. 2004.

[59] M. Maier, A. Serebrenik, and I. Vanderfeesten, ‘‘Towards a big data
reference architecture,’’ M.S. thesis, Dept. Math. Comput. Sci., Univ.
Eindhoven, Eindhoven, The Netherlands, 2013.

[60] P. Bengtsson, N. Lassing, J. Bosch, and H. van Vliet, ‘‘Architecture-
level modifiability analysis (ALMA),’’ J. Syst. Softw., vol. 69, nos. 1–2,
pp. 129–147, Jan. 2004.

[61] R. Kazman, L. Bass, G. Abowd, and M. Webb, ‘‘SAAM: A method for
analyzing the properties of software architectures,’’ in Proc. 16th Int. Conf.
Softw. Eng., 1994, pp. 81–90.

[62] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and
J. Carriere, ‘‘The architecture tradeoff analysis method,’’ in Proc. 4th IEEE
Int. Conf. Eng. Complex Comput. Syst., Aug. 1998, pp. 68–78.

[63] L. G.Williams and C. U. Smith, ‘‘PASASM:Amethod for the performance
assessment of software architectures,’’ in Proc. 3rd Int. Workshop Softw.
Perform. (WOSP), 2002, pp. 179–189.

[64] J. Bosch, Design and Use of Software Architectures: Adopting and Evolv-
ing a Product-Line Approach. London, U.K.: Pearson, 2000.

[65] P. Avgeriou, ‘‘Describing, instantiating and evaluating a reference archi-
tecture: A case study,’’ Default J., vol. 342, pp. 1–24, Jun. 2003.

[66] M. Kiran, P. Murphy, I. Monga, J. Dugan, and S. S. Baveja, ‘‘Lambda
architecture for cost-effective batch and speed big data processing,’’ in
Proc. IEEE Int. Conf. Big Data (Big Data), Oct. 2015, pp. 2785–2792.

[67] D. Quintero, IBM Reference Architecture for High Performance Data and
AI in Healthcare and Life Sciences. Armonk, NY, USA, IBM, 2019.

[68] B. Levin, Big Data Ecosystem Reference Architecture. Redmond, WAS,
USA: Microsoft Corporation, 2013.

[69] D. Cackett, Information Management and Big Data, a Reference Architec-
ture. Redwood City, CA, USA: Oracle, 2013.

[70] P. Viana and L. Sato, ‘‘A proposal for a reference architecture for long-term
archiving, preservation, and retrieval of big data,’’ in Proc. IEEE 13th Int.
Conf. Trust, Secur. Privacy Comput. Commun., Sep. 2014, pp. 622–629.

[71] J. Kreps, ‘‘Questioning the lambda architecture,’’ O’Reilly Media, USA,
Tech. Rep., 2014.

[72] W. Sikora-Wohlfeld, A. Basu, A. Butte, andM.Martinez-Canales, ‘‘Accel-
erating secondary genome analysis using Intel big data reference architec-
ture,’’ Intel, USA, Tech. Rep., Sep. 2014.

[73] P. Pääkkönen and D. Pakkala, ‘‘Reference architecture and classification of
technologies, products and services for big data systems,’’ Big Data Res.,
vol. 2, no. 4, pp. 166–186, Dec. 2015.

[74] Sap-Nec Reference Architecture for Sap Hana & Hadoop, SAP, USA,
2016.

[75] M. Bilal, L. O. Oyedele, O. O. Akinade, S. O. Ajayi, H. A. Alaka,
H. A. Owolabi, J. Qadir, M. Pasha, and S. A. Bello, ‘‘Big data architec-
ture for construction waste analytics (CWA): A conceptual framework,’’
J. Building Eng., vol. 6, pp. 144–156, Jun. 2016.

113806 VOLUME 10, 2022

P. Ataei, A. Litchfield: State of Big Data Reference Architectures: A Systematic Literature Review

[76] L. Heilig and S. Voß, ‘‘Managing cloud-based big data platforms: A refer-
ence architecture and cost perspective,’’ in Big Data Management. Cham,
Switzerland: Springer, 2017, pp. 29–45.

[77] G. M. Sang, L. Xu, and P. D. Vrieze, ‘‘Simplifying big data analytics
systems with a reference architecture,’’ in Proc. Work. Conf. Virtual Enter-
prises. Cham, Switzerland: Springer, 2017, pp. 242–249.

[78] P. Pääkkönen and D. Pakkala, ‘‘Extending reference architecture of big
data systems towards machine learning in edge computing environments,’’
J. Big Data, vol. 7, no. 1, pp. 1–29, Dec. 2020.

[79] C. A. Iglesias, A. Favenza, and A. Carrera, ‘‘A big data reference archi-
tecture for emergency management,’’ Information, vol. 11, no. 12, p. 569,
2020.

[80] International Organization for Standardization (ISO/IEC),
Standard ISO/IEC TR 20547-1:2020, 2020.

[81] A. Maamouri, L. Sfaxi, and R. Robbana, ‘‘Phi: A generic microservices-
based big data architecture,’’ in Proc. Eur., Medit., Middle Eastern Conf.
Inf. Syst. Cham, Switzerland: Springer, 2021, pp. 3–16.

[82] P. Ataei and A. Litchfield, ‘‘NeoMycelia: A software reference architec-
turefor big data systems,’’ in Proc. 28th Asia–Pacific Softw. Eng. Conf.
(APSEC), Los Alamitos, CA, USA, Dec. 2021, pp. 452–462.

[83] ‘‘Big data is a big deal,’’ J. Petroleum Technol., pp. 18–21, 2013.
[84] W. L. Chang and N. Grady, ‘‘NIST big data interoperability framework:

Volume 1, big data definitions,’’ Nat. Inst. Standards Technol., USA,
Tech. Rep., 2015.

[85] U. Suthakar, ‘‘A scalable data store and analytic platform for real-time
monitoring of data-intensive scientific infrastructure,’’ Ph.D. thesis, Brunel
Univ. London, Uxbridge, U.K., 2017.

[86] DRAFT NIST Big Data Interoperability Framework, Draft NIST Big Data
Interoperability Framework: Volume 5, Architectures White Paper Survey,
NIST, Gaithersburg, MD, USA, 2015.

[87] M. Weyrich and C. Ebert, ‘‘Reference architectures for the Internet of
Things,’’ IEEE Softw., vol. 33, no. 1, pp. 112–116, Jan. 2016.

[88] P. P. Khine and Z. Wang, ‘‘A review of polyglot persistence in the big data
world,’’ Information, vol. 10, no. 4, p. 141, Apr. 2019.

[89] G. Marquez and H. Astudillo, ‘‘Actual use of architectural patterns in
microservices-based open source projects,’’ in Proc. 25th Asia–Pacific
Softw. Eng. Conf. (APSEC), Dec. 2018, pp. 31–40.

[90] Z. Dehghani, ‘‘How to move beyond a monolithic data lake to a distributed
data mesh,’’ Thoughtworks, USA, Tech. Rep., 2019.

POUYA ATAEI received the dual bachelor’s degree
in software engineering fromAsia–Pacific Univer-
sity, Kuala Lumpure, Malaysia, and Staffordshire
University, Stoke-on-Trent, U.K., and the master’s
degree in software engineering from Staffordshire
University. He is currently pursuing the Ph.D.
degree with the Auckland University of Technol-
ogy, Auckland, New Zealand, working on decen-
tralized and distributed big data architectures.
He has been an active researcher in the domain

of big data for the past five years, having created the Nexus methodology
for big data system development and NeoMycelia, a decentralized software
reference architecture for big data systems. His research interests include
distributed systems, in specific event-driven microservices, reactive systems,
software architecture, and data engineering.

ALAN LITCHFIELD (Member, IEEE) is the Direc-
tor of the Service and Cloud Computing Research
Laboratory (SCCRL) at Auckland University of
Technology (AUT). He is a partner in a con-
sulting firm that provides specialized services to
corporates, government departments, and military.
He is the President of the Association for Infor-
mation Systems (AIS) Special Interest Group on
Philosophy in Information Systems, a founding
Programme Leader for the Master of Service Ori-

ented Computing (MSOC), and a member of the AUT Programmes and
the Academic Review Committee (PARC). His research interest includes
information systems. In addition, he is a member of the Institute of IT
Professionals (MIITP), the Association for Computing Machinery (ACM),
and the International Institute for Information Design (IIID).

VOLUME 10, 2022 113807

