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ABSTRACT In the field of speaker verification (SV), the development of noise-robust systems is a challenge
for their deployment in real-world environments. Noise variability compensation is a common strategy for
increasing the robustness to noise variations. The performance of noise compensation depends on how well
the noise variability, which is inherent in within-class variability, is estimated. However, to date, there is
no information about the true noise variability that could reduce the gap between the empirical and true
statistics. Most studies assume that true noise covariates are independent. This study aims to demonstrate the
assumption that true noise variability has a conditional independence structure rather than an independence
structure. This assumption was motivated by our previous findings, which revealed that optimal within-
class variability has a conditional independence structure in text-dependent speaker verification (TD-SV) in
clean environments. This indicates that the optima of all the variabilities in within-class variability, except
noise variability, has a conditional independence structure; however, it is unknown whether this is also true
for optimal noise variability. Our assumption was supported by the experimental results obtained under
noisy TD-SV trials using systems built with graphical least absolute shrinking and selection operator-based
probabilistic linear discriminant analysis, which achieved up to 10% relative equal error rate improvements.

INDEX TERMS Background noise, conditional independence, graphical least absolute shrinking and
selection operator (GLASSO), probabilistic linear discriminant analysis (PLDA), text-dependent speaker
verification.

I. INTRODUCTION
Automatic speaker verification (ASV) is a biometric tech-
nique that is used to verify the identity of a user by voice.
When a user speaks with the claim that he/she is the same
person as a known target speaker (whose reference utterance
is pre-enrolled), the ASV compares the user’s utterance (cor-
responding to the test utterance) with the target speaker’s ref-
erence utterance (corresponding to the enrollment utterance).
An identity claim is accepted if the similarity between the
enrollment and test utterances exceeds a pre-defined thresh-
old; otherwise, it is rejected.

The associate editor coordinating the review of this manuscript and
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Depending on whether the phrase of utterance is con-
strained, there are two categories of ASV systems: text-
independent speaker verification (TI-SV) and text-dependent
speaker verification (TD-SV). This study focuses on TD-SV.
In contrast to TI-SV, where no constraint exists for the phrase,
TD-SV restricts speakers to the phrases in a fixed lexicon.
speaking exactly the same phrase as one of those in a fixed
lexicon. The identity claim is rejected if the enrollment and
test utterances have different phrases, even if both are from
the same speaker. This phrase constraint makes TD-SV less
flexible than TI-SV. Nonetheless, TD-SV can achieve higher
verification accuracy than TI-SV even with short utterances
because the uncertainty of the phrase, which is a factor that
degrades the accuracy of TI-SV, is suppressed and thus easier
to handle. In addition, users do not need to speak at length
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with TD-SV, which makes it more convenient to use. Owing
to the above advantages, TD-SV has been widely used in
various authentic applications that require both high accuracy
and convenience, such as voice assistants [1], [2].

We focus on clean-enrollment and noisy-test conditions
for TD-SV, which is the most common condition in real
environments. Throughout this paper, we use the term ‘noise’
is used tomean ‘background noise in utterance, not ‘statistical
uncertainty’, unless otherwise noted. In real environments,
there are various types of background noise, which is one of
the major factors that degrades the verification accuracy. TD-
SV is generally more sensitive to background noise because
of its shorter length. However, it is impossible to completely
remove the noise from a noisy utterance [3]. Furthermore,
it is unrealistic to constrain users to use ASV systems only
in clean environments during the test phase. Consequently,
noise-robust ASV systems have gained considerable impor-
tance.

Recently, many studies have been conducted to develop
various types of noise-robust ASV systems [4], [5], [6], [7],
[8]. We address noise robustness based on probabilistic linear
discriminant analysis (PLDA) [9], [10]. PLDA determines a
more discriminative subspace by probabilistically modeling
between- and within-class variabilities. The similarity score
between two embeddings (e.g., feature vector from utterance)
is computed on the PLDA subspace rather than the original
embedding space. End-to-end approaches, where the front-
end embedding extraction and back-end scoring modules are
jointly optimized as a single module, have emerged as one
of the noteworthy methods in ASV over the last several
years [11], [12], [13], [14]. However, separate modeling of
the front- and back-end modules, especially with the PLDA
backend [15], [16], [17], [18], [19], [20], [21], has achieved
compelling performances. Thus, PLDA has become a popular
back-end scoring method for ASV.

Because the true statistics (e.g., the between- and within-
class variabilities in the PLDA) are unknown, we use
empirical statistics from the training dataset instead. It is
reasonable that better performances are achieved if the empir-
ical statistics are closer to the true statistics. In our previous
work [23], we extended PLDA by applying the graphical least
absolute shrinking and selection operator (GLASSO) [24],
[25], [26], dubbed GLASSO-PLDA. The GLASSO-PLDA is
based on the following statements: (i) the empirical statistics
contain estimation errors that should be reduced and (ii) the
true within-class variability is assumed to have a conditional
independence structure (i.e., the true within-class precision
matrix is sparse, but not diagonal) in TD-SV. GLASSO-
PLDA addresses these by making a within-class precision
matrix (namely, the inverse of the covariance matrix) sparse
using GLASSO. Using GLASSO-PLDA, we achieved sig-
nificant performance improvements in TD-SV under clean
conditions and confirmed that our assumption holds.

In [23], we considered only clean conditions for both the
enrollment and test phases. It is not yet clear whether the true
noise variability has a conditional independence structure.

Building noise-robust ASV systems would become easier if
the true noise variability had a certain structure and the bias
toward the true structure could be utilized during the training
step. However, no prior information about noise variability
is available, which makes their construction difficult [8],
[27]. Typically, noise covariance is assumed to be isotropic
(i.e., true covariates are independent and the true covariance
matrix is diagonal) to simplify the development, as in [28].
However, the isotropic assumption is extremely restrictive.
Moreover, to the best of our knowledge, no studies on ASV
have considered any specific structure beyond simple inde-
pendence for noise variability. In this study, we assumed
that the true noise variability has a conditional indepen-
dence structure (i.e., the true precision matrix is sparse but
not diagonal). We confirmed this assumption by evaluating
GLASSO-PLDA in noisy test environments. If our assump-
tion is valid, GLASSO-PLDA would result in performance
improvements under noisy conditions. The contributions of
this study are threefold.

1) We formulate the assumption of true noise variability
with a conditional independence structure (i.e., sparse
structure in the true noise precision matrix).

2) We propose a method to reflect the conditional inde-
pendence structure to noise variability using the pro-
posed GLASSO-PLDA.

3) We demonstrate that the true noise variability has a
conditional independence structure by evaluating the
performance of the proposed method under various
noisy conditions.

The remainder of this paper is organized as follows.
Section II outlines the background of this study. Section III
introduces the proposed method. Section IV describes the
experiments and discusses their results. Finally, Section V
concludes the paper.

II. BACKGROUND
A. VARIABILITIES IN TD-SV
In this section, we describe TD-SV in terms of variabil-
ity. In TD-SV, the class (i.e., speaker-phrase pair) identity
depends on both the speaker information and the phrase
information, owing to the restriction on the available lexicon.
Therefore, the between-class variability 6b, which explains
the variations across different classes, consists of the speaker
variability 6spk and phrase variability 6phr , namely 6b =

6spk + 6phr . The within-class variability 6w describes the
uncertainty within a class. Under clean conditions, 6w can
be decomposed into the session variability 6sess and residual
variability (i.e., all the other unexplained variabilities) 6ε ,
i.e., 6w = 6sess + 6ε . Note that we use the term session
variability to describe all possible variabilities within a class
in clean condition, such as the variabilities of transmission
channel, reverberation, and distance from the microphone.
Under noisy conditions, where the noise variability 6noise is
inherent in 6w, 6w can be decomposed as 6w = 6sess +

6noise +6ε .
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Themain purpose of this study is to confirm the conditional
independence structure of the optimum of6noise. However, it
is unrealistic to directly treat 6noise because it is difficult to
perfectly disentangle 6noise from 6w = 6sess+6noise+6ε .
Therefore, we treat 6w instead. Reflecting the conditional
independence structure to 6w corresponds to reflecting the
structure to all the variabilities in 6w, namely 6sess, 6noise,
and 6ε . In our previous work [23], we confirmed that the
optima of 6ch and 6ε possess the conditional independence
structure. Therefore, it can be inferred that the optimum of
6noise also possess the conditional independence structure
if the performance under noisy conditions improves when
reflecting the structure to 6w = 6sess +6noise +6ε .
The above approach (i.e., reflecting the structure to 6w to

confirm the true structure of 6noise) is reasonable only when
6noise comprises a sufficient proportion of 6w. When the
scale of 6noise is negligible compared to that of 6sess + 6ε ,
it is difficult to claim that the true 6noise has a conditional
independence structure, even if reflecting the structure to
6w improves the performance. Therefore, the scale of 6noise
relative to6w = 6sess+6noise+6ε should be checked first.

B. PLDA
PLDA [9], [10], [29], [30], [31] is a generative probabilistic
model in which the between- and within-class variabilities
are modeled using latent variables. The PLDA aims to find a
discriminative subspace where the between-class variability
ismaximized, and simultaneously, thewithin-class variability
is minimized. Among some variants of PLDA, we used the
two-covariance PLDA [30] based on [9] (i.e., Kaldi [32]
PLDA).
Let x ∈ RD be speaker-phrase embedding. PLDA models

x as follows:

x = µ+ Au (1)

u|v ∼ N (v, I) (2)

v ∼ N (0,9) (3)

where µ ∈ RD is the mean embedding in the original space,
A ∈ RD×D is the PLDA projection matrix, v ∈ RD and
u ∈ RD represent the class and an example of that class in
the projected space, respectively, N (·) denotes the normal
distribution, and 9 ∈ RD×D is the between-class diagonal
covariance in the projected space. The dimensionality of the
subspace was the same as that of the original space. The
three parameters of the PLDA model, µ, A, and 9, can be
computed using the following eigenproblem:

8−1w 8bA = A9 (4)

where 8b ∈ RD×D and 8−1w ∈ RD×D represent the
between-class covariance and within-class precision matri-
ces, respectively. In PLDA, 8b and 8−1w are estimated using
the expectation-maximization (EM) algorithm [33] starting
from the initial between-class covariance matrix 8

(0)
b ∈

RD×D and within-class covariance matrix 8(0)
w ∈ RD×D,

respectively. Both 8(0)
b and 8(0)

w are directly computed from
the training dataset as follows:

8
(0)
b =

∑C

c=1

(
µc − µ

) (
µc − µ

)T (5)

8(0)w =
∑C

c=1

1
Nc

∑Nc

n=1

(
xc,i − µc

) (
xc,i − µc

)T (6)

whereC is the number of classes (i.e., the number of different
speaker-phrase pairs), and µc ∈ RD, Nc, and xc,i ∈ RD

represent the mean embedding, number of embeddings, and
i-th embedding, respectively, for the class c.

Using the PLDA model, the log-likelihood ratio between
two embeddings xe ∈ RD and xt ∈ RD (i.e., from the
enrollment and test utterances, respectively) is computed as
follows:

logN
(
ue|

9

9 + I
ut , I +

9

9 + I

)
− logN (ue|0, I +9)

(7)

where ue ∈ RD and ut ∈ RD are the projected embeddings
obtained using the transform of u = AT (x− µ) from xe and
xt , respectively.

C. GLASSO
1) GAUSSIAN MARKOV RANDOM FIELD
Let x = [x1, . . . , xD]T be a D-dimensional random vector
(e.g., an embedding) that follows a multivariate normal dis-
tributionN (µ,2−1) with meanµ ∈ RD and precision matrix
2 ∈ RD×D. The random vector x is a Gaussian Markov ran-
dom field (GMRF) if it satisfies Markov properties, related to
conditional independence [34].

GMRF is an undirected graphical model. Let G = (V ,E)
be an undirected graph, where V and E represent a set of
vertices and set of edges, respectively. Each vertex xi ∈ V
corresponds to a variable in x. Each edge ei,j = ej,i ∈ E rep-
resents the connection between distinct vertices (variables)
xi and xj such that i 6= j. The set of edges E define the
conditional dependencies of the vertices V . There is no edge
ei,j /∈ E if and only if variables xi and xj are conditionally
independent xi⊥xj|x−ij given all other variables x−ij, known
as the pairwise Markov property [35].

In GMRF, E can be represented as 2. The element 2ij in
row i and column j of 2 corresponds to ei,j. The zero value
2ij = 0 corresponds to the absence of edge ei,j /∈ E , which
means xi⊥xj|x−ij. It means that 2 contains the information
about the covariances between xi and xj, conditioned on all
other variables, called the partial covariances [36]. There-
fore, the sparsity of 2 implies conditional independence of
the variables. In other words, it is able to reflect the con-
ditional independence structure to the variables by making
2 sparse [34].

2) GLASSO
GLASSO is a variable selection method based on LASSO
L1 regularization. Let 2 = 6−1 ∈ RD×D be the true
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precision matrix and S ∈ RD×D be the empirical covari-
ance matrix estimated from samples (e.g., embeddings from
the training dataset) that follow a multivariate normal dis-
tribution N (µ,2−1). GLASSO estimates the sparse pre-
cision matrix 2̂ by iteratively maximizing the following
L1-penalized Gaussian log-likelihood [25]:

2̂ = argmax
2

log det2− trS2− ρ ‖2‖1 (8)

where det (·) and tr (·) are the determinant and trace, respec-
tively, ρ ∈ R+ is a hyperparameter for regularization, and
‖·‖1 is the L1 norm (i.e., the sum of the absolute values of
the elements). As ρ is higher (i.e., more regularization), 2̂ is
sparser, which means a lower variance (i.e., estimation error)
and simultaneously a higher bias toward zero in 2̂. To sum-
marize, besides reducing the estimation error, GLASSO can
reflect the conditional independence structure in the underly-
ing model.

To achieve the associated improvement with GLASSO
regularization, the following points must be noted: (i) the true
covariates have a conditional independence structure (i.e., the
true precision matrix is actually sparse), and (ii) the empir-
ical covariates are not severely dependent (i.e., the empir-
ical covariance matrix S and the accompanying precision
matrix S−1 should be close to diagonal). The first statement
is based on the fact that GLASSO pursues a sparse struc-
ture for the precision matrix. The second statement is based
on asymptotic properties such as selection consistency [37],
[38], which ensure stable convergence [39].

III. GLASSO-PLDA FOR CONDITIONALLY INDEPENDENT
NOISE VARIABILITY
We proposed GLASSO-PLDA in [23], which is an extension
of the conventional PLDA obtained by applying GLASSO.
The only difference between GLASSO-PLDA and conven-
tional PLDA is the within-class precision matrix. In con-
ventional PLDA, the model parameters are estimated using
the empirical within-class precision matrix 8−1w ∈ RD×D

and between-class covariance matrix 8b ∈ RD×D (see (4)).
In GLASSO-PLDA, the regularized within-class precision
matrix 8̂−1w ∈ RD×D is used to estimate the parameters,
rather than 8−1w , as follows:

8̂−1w 8bA = A9 (9)

where 8̂−1w is the GLASSO regularization of 8−1w , obtained
as follows (see (8)):

8̂−1w = argmax
2

log det2− tr8w2− ρ ‖2‖1. (10)

Here, 8w is the within-class covariance matrix estimated
from the initial within-class covariance matrix8(0)

w (see (6)).
By converting 8−1w into sparse 8̂−1w , GLASSO-PLDA
reduces the estimation error in 8−1w and reflects the condi-
tional independence structure to within-class variability.

To achieve better discriminative power with GLASSO-
PLDA, two preconditions, which stem from those for
GLASSO (see Section II-C-2), must be satisfied. The first

is the sparse assumption of the true within-class precision
matrix. GLASSO-PLDA regularizes8−1w to be sparse, based
on the assumption that the true within-class precision matrix
is sparse (corresponding to the true within-class variability
with the conditional independence structure). This means
that the performance of TD-SV in noisy environments would
be improved with GLASSO-PLDA if the optima of all the
variabilities (i.e., the session variability 6sess, noise vari-
ability 6noise, and residual variability 6ε ; see Section II-A)
in the within-class variability 6w have a conditional inde-
pendence structure. As confirmed in [23], the optima of
6ch and 6ε have the conditional independence structure.
Therefore, we can determine whether the optimum of 6noise
has a conditional independence structure based on whether
GLASSO-PLDA improves the performance of TD-SV in
noisy conditions.

The other precondition is that 8w and the accompanying
8−1w are close to the diagonal, which is consistent with the
empirical covariates not being significantly dependent. Some
types of embeddings, such as the i-vector [40] designed with
the assumption of standard normality, satisfied the precondi-
tion, although most neural network-based embeddings (e.g.,
d-vector [11], r-vector [15], and x-vector [41]) do not. The
total covariancematrices of these embeddings are far from the
diagonal, and so are the corresponding8w and8−1w . Because
GLASSO is prone to failure in convergence with a far-from-
diagonal covariance matrix, GLASSO-PLDA cannot achieve
performance improvement with embeddings whose covari-
ates are quite dependent, even if the sparse assumption of
the true within-class precision matrix holds. The close-to-
diagonal precondition can be satisfied by orthogonalizing
embeddings using the principal component analysis (PCA)
transform. The PCA transform diagonalizes the total covari-
ance matrix, which makes 8w and 8−1w close to the diagonal
and facilitates the stable convergence of GLASSO.

IV. EXPERIMENTS
A. DATABASE
We used parts 1 and 2 of the robust speaker recognition
(RSR) 2015 dataset [42], designed for TD-SV. Parts 1 and
2 have 30 kinds of short sentences (3.2 s on average includ-
ing silence) and 30 kinds of keywords (1.99 s on average
including silence). Both parts comprise 300 speakers and are
divided into background (50 male and 47 female speakers),
development (50 male and 47 female speakers), and eval-
uation (57 male and 49 female speakers) subsets, without
speaker overlap. Each speaker spoke 30 sentences/keywords
in nine different sessions, so there are 81,000 utterances in
each part.

To simulate noisy conditions, we collected six types of
noise sounds from Freesound [43]: babble, metro, station,
subway, bus, and cafe. The noises of babble, metro, and
station were added to all utterances of the background subset
with signal-to-noise ratios (SNRs) of 0, 5, and 10 dB, which
provides nine variations for each utterance. The subway noise
with an SNR of 5 DB was added to the test utterances of the
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FIGURE 1. EERs of the PLDA (red dashed line), PLDA with diag
(
8−1

w
)

(green dotted line), and GLASSO-PLDA (blue solid line) on the
development trials according to ρ. The top and bottom correspond to the
d-vector and r-vector, respectively. The left and right correspond to the
parts 1 and 2, respectively.

development subset. The bus and cafe noises were added to
the test utterances of the evaluation subsets with SNRs of 0, 5,
and 10 dB, which constitute six variations for each utterance.

The experiments for each part were conducted individually.
The background subsets were used to train the gender-
independent TD-SV system (i.e., speaker-phrase embed-
ding extractor and the PLDA model). Development subsets
were used to validate the systems in gender-independent
trials. The performance of the systems was evaluated in
gender-dependent trials in the evaluation subsets.

B. EXPERIMENTAL SETUP
As an acoustic feature, a sequence of 40-dimensional log
mel filterbank coefficients was extracted from each utter-
ance, with a 25 ms Hamming window at an interval of
10 ms and 512-point fast Fourier transform (FFT). For each
sequence, we applied cepstral mean normalization (CMN)
with a 300-frame sliding window followed by energy-based
voice activity detection (VAD). A sequence of acoustic fea-
tures was used to extract speaker-and-phrase embedding.

We used the d-vector [11] and r-vector [15] for speaker-
and-phrase embedding. These were extracted from a model
that comprised a backbone network followed by a single layer
for multi-class classification. Since we empirically found
that margin-based softmax loss (e.g., AAM-softmax [44])
is inferior to conventional softmax loss in our task of TD-
SV, we used conventional softmax loss rather than margin-
based one. For the d-vector, a 2-layer long short-termmemory
(LSTM) [45] was used as the backbone. The variable-length
sequences in each mini-batch were handled using the method
proposed in [46]. The d-vector corresponded to the weighted
sum of the output sequence of the LSTM along the time
axis, where the weights were computed using a self-attention
mechanism [47]. For the r-vector, a 34-layer squeeze-and-
excitation [48] residual network [49] (SE-ResNet) was used
as the backbone, as in [15]. All input features were padded
or truncated along the time axis to reserve lengths of 250 and

150 for parts 1 and 2, respectively. The r-vector corresponded
to the output of the statistical pooling layer at the top of the
backbone. To minimize the cross-entropy loss of each model,
AMSGrad [50] was adopted as the optimizer, with a learning
rate of 0.001. Each model was trained for 100 epochs using
only clean utterances of the background subset, and themodel
with the lowest equal error rate (EER) on development trials
was selected for evaluation.

The empirical statistics (i.e., the between-class covariance
and within-class precision matrices) for both PLDA and
GLASSO-PLDA were estimated for 10 iterations using clean
and noisy (i.e., babble, metro, and station) utterances of the
background subset. For GLASSO-PLDA, the within-class
precision matrix was regularized using the GLASSO with
different values of the regularization hyperparameter ρ in the
range of 0 to 0.5, at intervals of 0.0005. We set the maximum
number of iterations and tolerance for convergence to 100 and
0.0001, respectively.

C. RESULTS AND DISCUSSION
1) DEMONSTRATION OF THE CONDITIONAL
INDEPENDENCE ASSUMPTION OF NOISE VARIABILITY
As mentioned in Section II-A, we first checked the relative
scale of the noise variability to the within-class variability.
Let 8w_clean = 8sess + 8ε be the within-class covariance
matrix for clean condition, and8w_noise = 8sess+8noise+8ε
be the matrix for noisy condition, where8sess,8noise, and8ε
are the covariancematrices for the session, noise, and residual
variabilities, respectively. We defined the relative scale γ of
8noise as follows:

γ = 1−

∥∥8w_clean
∥∥
1∥∥8w_noise
∥∥
1

=
‖8noise‖1∥∥8w_noise

∥∥
1

. (11)

In Part 1, the values of γ are 0.3540 and 0.3386 for the
d-vector and r-vector, respectively. In Part 2, the values of γ
are 0.5086 and 0.3458 for the d-vector and r-vector, respec-
tively. Because 8noise accounts for a significant proportion
of 8w, it is reasonable to confirm the true structure of the
noise variability by reflecting the structure to within-class
variability.

Figure 1 illustrates the EERs of PLDA, PLDA with diago-
nalized empirical within-class precision matrix8−1w (referred
to as diag

(
8−1w

)
), and GLASSO-PLDA on the development

trials. The enrollment utterances are clean whereas the test
utterances have subway noise, according to the regularization
hyperparameter ρ. Because the GLASSO is a biased esti-
mator that shrinks all the nonzero elements of the precision
matrix to zero, the EER of the GLASSO-PLDA (blue solid
line) starts at the EER of the original PLDA (red dashed
line; corresponding to ρ = 0) and converges at the EER
of the PLDA with diag

(
8−1w

)
(green dotted line). In our

experiments, 8−1w was not diagonalized for the interval of
ρ ≤ 0.5.

Overall, the EER of GLASSO-PLDA sharply decreased
initially, but then gradually increased and converged. In the
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TABLE 1. EERs of the PLDA and GLASSO-PLDA with ρ̂dev = 0.0525 with
the d-vector on the development and evaluation trials for Part 1.

TABLE 2. EERs of the PLDA and GLASSO-PLDA with ρ̂dev = 0.0285 with
the r-vector on the development and evaluation trials for Part 1.

development trials of both parts, GLASSO-PLDA outper-
formed the baseline regardless of ρ. In Part 1, the optimal val-
ues of ρ were 0.0525 and 0.0285 for the d-vector and r-vector,
respectively. The relative reduction in EER with the optimal
GLASSO-PLDA (the lowest point on the blue solid line)
against the baseline (the original PLDA) was approximately
5.32% with the d-vector (reduced 7.7620% to 7.3488%;
shown in Table 1) and 10.42% with the r-vector (reduced
7.6751% to 6.8754%; shown in Table 2). In Part 2, the
optimal values of ρ were 0.1255 and 0.0505 for the d-vector
and r-vector, respectively. The relative reduction in EER
was approximately 1.56% with the d-vector (reduced from
14.3190% to 14.0955%; presented in Table 3) and 7.65%with
the r-vector (reduced from 12.4228% to 11.1730%; presented
in Table 4). These results indicated that a sparse structure
in the within-class precision matrix was closer to the true
statistics in noisy TD-SV than in a dense structure.

However, the above results are insufficient for supporting
our assumption that true noise variability has a condi-
tional independence structure. To support this assumption,
the GLASSO-PLDA (i.e., reflecting the conditional inde-
pendence structure) should outperform the PLDA with
diag

(
8−1w

)
(i.e., reflecting the independence structure),

unless it would be more reasonable to assume that the true
noise variability has an independence structure (i.e., the true

TABLE 3. EERs of the PLDA and GLASSO-PLDA with ρ̂dev = 0.1255 with
the d-vector on the development and evaluation trials for Part 2.

TABLE 4. EERs of the PLDA and GLASSO-PLDA with ρ̂dev = 0.0505 with
the r-vector on the development and evaluation trials for Part 2.

noise covariance and accompanying precision matrices are
diagonal), as assumed in many studies.

In practice, PLDA with diag
(
8−1w

)
) outperformed the

baseline, but not as much as GLASSO-PLDA, and did not
achieve the optimal EER under all the conditions. The rela-
tive EER reduction with the PLDA with diag

(
8−1w

)
against

the baseline was approximately 2.36% and 4.93% with the
d-vector and r-vector, respectively, in Part 1, and 0.92% and
6.23% with the d-vector and r-vector, respectively, in Part 2.
These results indicated that the optimal noise variability had
a conditional independence structure, rather than an indepen-
dence structure, as assumed.

2) VISUALIZATION OF THE SPARSITY IN THE OPTIMAL
PRECISION MATRIX
Figures 2 and 3 depict the empirical within-class precision
matrix 8−1w and optimum of its regularization 8̂−1w in the
parts 1 and 2, respectively. In both parts, 8−1w has no zero
entries. In Part 1 (Figure 2), the optimal 8̂−1w for the d-vector
(top right in Figure 2; ρ = 0.0525) has 4,398 non-zero
elements out of 261,632 (= 5122 − 512) off-diagonal ele-
ments. The optimal 8̂−1w for the r-vector (bottom right in
Figure 2; ρ = 0.0285) has 3,126 non-zero elements out
of 65,280 (= 2562 − 256) off-diagonal elements. In Part 2
(Figure 3), the optimal 8̂−1w for the d-vector (top right in
Figure 3; ρ = 0.1255) has 2,650 non-zero elements out
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FIGURE 2. (Left) Empirical within-class precision matrix 8−1
w and (right)

its regularization 8̂−1
w of (top) d-vectors and (bottom) r-vectors, in Part 1.

FIGURE 3. (Left) Empirical within-class precision matrix 8−1
w and (right)

its regularization 8̂−1
w of (top) d-vectors and (bottom) r-vectors, in Part 2.

of 261,632 off-diagonal elements. The optimal 8̂−1w for the
r-vector (bottom right in Figure 3; ρ = 0.0505) has 1,870
nonzero elements out of 65,280 off-diagonal elements.

The optimal 8̂−1w in Part 2 (right in Figure 3) was closer
to the diagonal than that in Part 1 (right in Figure 2). This
is connected with the result in Figure 1 that the relative
EER gap between the optimal GLASSO-PLDA and PLDA
with diag

(
8−1w

)
is lower in Part 2 (right in Figure 1) than

Part 1 (left in Figure 1). However, this difference is not well
explained by only the noise variability because the same kinds
of noise were used for both the parts in our experiments.
Given that the duration of the utterance is the main difference
between parts 1 and 2, it may explain this gap. However, this
is beyond the scope of this study and is left for future work.

3) EVALUATION OF THE GLASSO-PLDA ON VARIOUS NOISY
CONDITIONS
Figures 4, 5, 6, and 7 illustrate the EERs of the PLDA and
GLASSO-PLDA on the evaluation trials, where the enroll-
ment utterances were clean, whereas the test utterances had
one of six conditions (i.e., two noise types: bus and cafe ×
three SNRs: 0, 5, and 10 dB). The black dotted vertical

FIGURE 4. EERs of the PLDA (red dashed line) and GLASSO-PLDA (blue
solid line) with the d-vector in the evaluation trials for Part 1 according
to ρ.

FIGURE 5. EERs of the PLDA (red dashed line) and GLASSO-PLDA (blue
solid line) with the r-vector in the evaluation trials for Part 1 according
to ρ.

FIGURE 6. EERs of the PLDA (red dashed line) and GLASSO-PLDA (blue
solid line) with the d-vector in the evaluation trials for Part 2 according
to ρ.

line indicates the position of the optimal ρ for the develop-
ment trials (denoted by ρ̂dev; mentioned in Section IV-C-1).
Figures 4 and 5 correspond to the d-vector and r-vector,
respectively, for Part 1. Figures 6 and 7 correspond to the
d-vector and r-vector, respectively, for Part 2. Each row of
the figures corresponds to the SNR while each column corre-
sponds to male trials in bus and cafe noises, and female trials
in bus and cafe noises, in sequence. Tables 1, 2, 3, and 4 show
the EERs of PLDA and GLASSO-PLDA with ρ̂dev for the
evaluation trials, and summarize the results in Figures 4, 5, 6,
and 7, respectively.

In Part 1, the average relative EER reductions in the
evaluation trials were 4.1450% (0.74% to 9.16%) with the
d-vector (see Table 1) and 7.5367% (5.71% to 10.38%) with
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FIGURE 7. EERs of the PLDA (red dashed line) and GLASSO-PLDA (blue
solid line) with the r-vector in the evaluation trials for Part 2 according
to ρ.

the r-vector (see Table 2). In Part 2, these were 1.8267%
(-0.06% to 3.84%) with the d-vector (see Table 3) and
7.4758% (4.8% to 9.91%) with the r-vector (see Table 4).

The EERs in the evaluation trials exhibited trends simi-
lar to those in the development trials. Except for one case,
GLASSO-PLDA with ρ̂dev also outperformed the baseline
in the evaluation trials, although ρ̂dev was not optimal for
the evaluation trials. The exception case occurred where the
d-vector was used in the male evaluation trials of Part 2 under
cafe 10 dB noise (see 3rd row and 2nd column of Figure 6, and
7th row of Table 3). In this case, the EER of GLASSO-PLDA
with ρ̂dev was higher than but very close to the baseline EER.
The relative difference was only 0.06% (an increase from
9.9860% to 9.9917%).

Different tendencies were observed between the d-vector
and r-vector. With the r-vector, the EERs of GLASSO-
PLDA (see Figures 5 and 7) converged stably. GLASSO-
PLDA almost always showed lower EERs than the baseline,
regardless of ρ. The EERs of the GLASSO-PLDA were
slightly higher within certain intervals of ρ only in two cases,
in the female trials of Part 1 under bus 5 dB and 10 dB
noises (see 3rd column of Figure 5). The optimal ρ for
the evaluation trials (denoted by ρ̂eval) was close to ρ̂dev in
all cases.

Meanwhile, with the d-vector, the EERs of GLASSO-
PLDA (see Figures 4 and 6) oscillated locally, with degrees
greater than those in the development trials (see the left of
Figure 1). In nine out of 24 cases, the GLASSO-PLDA exhib-
ited higher EERs than the baseline within certain intervals
of ρ. EERs with ρ̂dev and ρ̂eval usually show non-negligible
gaps. In particular, the average performance gain with the
d-vector (2.9858%) is significantly lower than that with
the r-vector (7.5063%). This problem is probably because
of the higher number of parameters in the GLASSO-PLDA
built with the d-vectors than that built with the r-vectors.
The dimensionality of the d-vector (i.e., 512) was double that
of the r-vector (i.e., 256) in our experiments, whereas the
number of training utterances was the same. Therefore, the
uncertainty of the parameters for the GLASSO-PLDA built
with the d-vectors is expected to be higher in this case and
appears to be primarily responsible for the problems with the
d-vector mentioned above.

V. CONCLUSION
This study sheds light on a certain structure of true noise
variability for noise-robust ASV systems. It assumes that true
noise variability has a conditional independence structure,
rather than simply an independence structure. This assump-
tion was corroborated by evaluating the performance of
GLASSO-PLDA-based TD-SV systems under various noisy
conditions. TheGLASSO-PLDA is an extension of the PLDA
that can reflect conditional independence structure to within-
class variability 6w = 6sess + 6noise + 6ε , by making the
within-class precision matrix 8−1w sparse using GLASSO.
Since the true structures of both session variability 6sess
and residual variability 6ε are conditionally independent (as
demonstrated in our previouswork), GLASSO-PLDAoutper-
forms PLDA under noisy environments if the true structure
of noise variability 6noise is also conditionally independent.
Our findings reveal that the optimal noise variability has a
conditional independence structure, which is evident from
the experimental results where GLASSO-PLDA surpassed
both the original PLDA and PLDA with diagonal 8−1w in the
noisy TD-SV task. In conclusion, the reflection of the sparse
structure on8−1w is informative for building noise-robust TD-
SV systems.

Some issues remain to be addressed in future research.
First, it is not confirmed whether a specific pattern of sparsity
improves the performance. We reflected the sparse structure
on 8−1w using only GLASSO, a likelihood-based estimator.
There may be alternatives to GLASSO; however, not all
methods for estimating sparse precision achieve the optimal
structure of 6noise. For example, matrix banding can also
estimate a sparse matrix that confines non-zero elements
to a diagonal band. However, we found in [23] that PLDA
with banded 8−1w was inferior to both GLASSO-PLDA and
PLDA with diagonal 8−1w . Hence, the relationship between
the sparsity pattern and performance should be investigated
in the future to improve performance. Second, the usefulness
of reflecting a sparse structure on 8−1w was evaluated only in
PLDA-based systems. This does not indicate that reflection is
possible only with PLDA. However, there is still no method
that reflects the sparse structure in other types of models.
Future studies should develop methods that can reflect the
structure on other models. For example, an extension of
neural PLDA [51] based on sparse8−1w , and/or a loss function
for end-to-end networks that push the within-class precision
of embeddings to be sparse could be investigated in the future.
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