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ABSTRACT Nowadays, traffic management and sustainable mobility are central topics for intelligent
transportation systems (ITS). Thanks to new technologies, it is possible to collect real-time data to monitor
the traffic situation and contextual information by sensors. An important challenge in ITS is the ability to
predict road traffic flow data. The short-term predictions (10-60 minutes) of traffic flow data is a complex
nonlinear task that has been the subject of many research efforts in past few decades. Accessing traffic
flow data is mandatory for a large number of applications that have to guarantee a high level of services
such as traffic flow analysis, traffic flow reconstruction, which in their turn are used to compute predictions
needed to perform what-if analysis, forecast routing, conditioned routing, predictions of pollutant, etc. This
paper proposes a solution for short-term prediction of traffic flow data by using a architecture capable to
exploit Convolutional Bidirectional Deep Long Short Term Memory neural networks (CONV-BI-LSTM).
The solution adopts a different architecture and features, so as to overcome the state-of-the-art solutions and
provides precise predictions addressing traffic flow data in cities, which are tendentially very noisy with
respect to the ones measured in high-speed roads, the latter being the validation context for the majority of
state-of-the-art solutions. The proposed solution has been developed and validated in the city context and
data via Sii-Mobility, a smart city mobility and transport national project and it is currently in use in other
contexts such as in Snap4City PCP EC, TRAFAIR CEF, and REPLICATE H2020 SCC1, and it is operative
in those areas.

INDEX TERMS Traffic flow, short-term predictions, machine learning, deep learning, CONV-BI-LSTM.

I. INTRODUCTION
Traffic flowmeasuring is central for intelligent transportation
systems (ITS). According to recent technologies, real-time
traffic flow data can be measured, collected and exploited.
The knowledge of real-time traffic flow data enables the
development of a large number of services such as conges-
tion detection and reduction; computing of origin-destination
matrices; incident management; optimization of existing
infrastructures of public transport; dynamic network traffic
control; improved information services (e.g., traffic informa-
tion, dynamic route guidance, road digital signage, planned
routing); plan for future investments on mobility solutions;
reducing fuel consumption and emissions of both CO2 and
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NO2 that strongly depend on fossil combustion (and thus
on traffic, as well); predicting NOX [1]. See for example,
the European Commission 2008/50/ECDirective on Ambient
Air Quality and Cleaner Air for Europe and 2004/107/EC
Directive on heavy metals and polycyclic aromatic hydrocar-
bons in ambient air.

On this regard, traditional methods for traffic flow mea-
suring via spire sensors (inductive loops) [2], as well as TV
cameras to be located in several points of city roads can obtain
equivalent measures in terms of traffic flow density, velocity,
and number of vehicles. Surrogated traffic flow data can be
obtained from App on mobile devices, as well as from on
board units, and social media [3], etc. For example, in [3]
and [4], a smartphone-based crowd sensing system for traffic
detection and measure has been proposed, where data are
gathered from handheld devices. In [5], a deep Restricted
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Boltzmann Machine and Recurrent Neural Network, RNN,
architecture have been used to predict traffic congestion evo-
lution based on GPS data from taxis. Data coming from navi-
gator Apps (e.g., TomTom, Google map,Waze) could be very
expensive for a municipality with respect to the installation
of sensors and measures, and they could be not related to
the actual counting of vehicles. In [6], an interesting and
comprehensive review of the different approaches has been
provided.

The exploitation of TV Cameras located in specific critical
points reduces costs and increase the precision of the measure
in specific points, since multiple areas can be controlled
with a single installation, thus enabling the control of a high
number of traffic flows points. Traffic flow sensors provide
continuous measuring of the traffic on selected roads at fine
grain, while giving, in most cases, also information about the
vehicle kind: busses, tracks, cars, bikes, etc.

On traffic flow sensors, a variety of dysfunctions can be
experienced, thus causing a lack of data: network failure,
broken device, wrong data production, and byzantine errors.
When fault is temporary, an accurate short-term traffic predic-
tionmodel could solve that problem by providingmissed real-
time data. An anomaly detection algorithm can be adopted to
alert the municipality about the device failure to start fixing
the problem [7]. An anomaly detection can trigger the acti-
vation of predictions in place of missing data. In alternative
to predictions, typical time trends taking into account daily,
weekly seasonality can be provided.

Most of the above-mentioned services consume traffic flow
data with a high continuity to provide a needed level of
quality for real-time services. Among them, (i) traffic flow
reconstruction to compute a traffic flow estimation in each
segment of the road network [8]; (ii) conditioned and pre-
dictive routing for rescue teams, fire brigade; or (iii) what-
if analysis in critical conditions. Traffic flow data coming
from stationary scattered sensors can be combined with short-
term predictions of traffic flow to reduce discontinuities in the
above-mentioned services, thus accepting a certain level of
error that could maintain the needed service level and prevent
any infringement of relevant constraints within service level
agreements.

For the above-mentioned reasons, in literature, traffic flow
predictions have attracted extensive research efforts. In [9],
[10], [11], [12], and [13], traffic state analysis is related to
the monitored areas in terms of short-term traffic flow pre-
diction on fixed points. In [9] and [10], the theoretical bases
for modelling univariate traffic condition data streams as
seasonal autoregressive integrated moving average processes
are considered. In [11] and [13], the problem of short-term
prediction has been assessed in freeways through deep learn-
ing models exploiting historical information only. In [14],
authors discussed the usage of Random Forest, RF, model
for short-term prediction of traffic flow and achieved an
accuracy of about 94%. In [15], neural networks, RF, gradient
boostingmachine, GBM, and a generalized linear model have
been investigated for short-term prediction of traffic volume,

speed, occupancy of a single roadway segment. Authors have
applied the model only on 1.3-mile section of westbound
Interstate 64 (I-64) in St. Louis, Missouri, in the United States
and obtained an accuracy of about 92%, while exploiting
historical information to predict traffic conditions. In [16],
threemethods for short-term traffic prediction of a single road
have been compared, i.e., CNN (Convolutional Neural Net-
work) [17], GRU (Gated Recurrent Unit) [18], GRU+STFSA
(Spatio-Temporal Feature Selection Algorithm), based on
exploiting historical information in a period of 40 working
days. In [19], traffic volume is predicted on highway domain,
using characteristics as weak time continuity, structural space
topology and wider spatio-temporal correlation. In the liter-
ature, CNN architecture has been profitably used for person
re-identification [20], [21].

In the above presented cases, only simple network areas
such as freeways segments or rings have been considered to
compute short-term predictions, based only on the historical
data of the traffic flow. More extended cases are reported in
Section 2 of current paper.

This paper presents a solution to compute short-term traffic
flow sensors predictions up to 1 hour in advance, with a
resolution of 10 minutes. The proposed results are innovative
since the solution proposed:

• overcomes the state-of-the-art solutions in terms of pre-
cision and it is based on a never used architecture for
the purpose: Convolutional Bidirectional Deep Long
Short TermMemory neural networks, CONV-BI-LSTM
(this solution has been compared with respect to RF,
XGBOOST, and other 6 deep learning techniques as
described in the following),

• clarifies which are the features actually relevant (histor-
ical, seasonality, weather, pollutant, etc.) in prediction
computation, thus providing errors in all possible feature
combinations for a large range of different machines
and deep learning techniques vs the proposed solution,
aiming at covering all cases reported in the literature for
total of 512 combinations,

• has been validated in a complex urban network of a
real-world road structure, which is an aspect totally
different from most solutions only tested on high-speed
roads which have less noisy and quite regular traffic flow
conditions. The validation has been performed in the
Florence area; Italy as accessible on Snap4City.org. The
solution has been assessed in terms of impact of missing
data and performance for training and execution.

The solution has been implemented in the context
of Sii-Mobility project and infrastructure (national smart
city project of Italian Ministry of Research for terres-
trial mobility and transport, https://www.sii-mobility.org).
Sii-Mobility is based on Km4City model and tools
(https://www.km4city.org) [22], [23]. Sii-Mobility is at
present covering the whole Tuscany region, Italy, which
means 3.5M inhabitants and 40M of tourists per year. The
proposed solution is at the basis of Snap4City on traffic flow
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analysis and reconstruction, and Trafair CEF for comput-
ing NOX production from traffic [22], and it is currently
exploited in the Smart City Control Room for Florence area
according to REPLICATE H2020 SCC1 project. Moreover,
as to Florence, Pisa and Livorno municipalities in Tuscany
region traffic flow data are used for traffic flow reconstruction
and for other services [8].

The paper is structured as follows. Section II provides
a description and comparison of the related deep learning
works for short-term traffic flow prediction. Section III pro-
vides a description of data and features for traffic flow predic-
tion. Traffic flow data have been analysed to see their typical
behaviour and a large set of features has been considered.
In Section IV, a set of machine and deep learning approaches
has been adopted. The aim has been to identify the most
effective short-term predictive models and the best features to
be used. Section V contains a summary of the experimental
and validation results conducted. The section focuses on the
comparison of predictive models (short-term as 1 hour, every
10 minutes) exploiting data collected within Florence city
area for traffic sensors, in order to identify the best result-
ing approach in terms of prediction error (the data used are
accessible for all Snap4City open platform users and as Open
Data on other portals). In this case, the considered traffic data
are not collected from regular highways, as it often occurs in
many states of the art cases; instead, they are data gathered
from city sensors which are more complex to be managed
for their variability and rapid changes. The impact of missing
data has been analytics, as well as the performance in training
and execution. Conclusions are drawn in Section VI.

II. RELATED WORKS
In literature, the problem of traffic flow predictions and
related problems has been addressed through different
approaches, most recent reviewworks are using deep learning
techniques [47], [48], [49], [50]. Many of the latter are used
in time-series prediction, and in particular with deep recurrent
neural networks because of their capability of using informa-
tion at a certain instant, as well as past data from previous
observations. In most cases, the adopted data have been col-
lected from high-speed roads, showing typically more regular
flows than urban flows.

In Table 1, a comparative summary of the state-of-the-art
solutions is reported. Such comparison highlights the predic-
tive target, the adopted features, the used technique, and the
obtained results in terms of RMSE (RootMean Square Error),
MAPE (mean absolute percentage error), R2 (R Squared),
andMAE (Mean Absolute Error), according to what has been
published by authors.

Tian and Pan [24] used a LSTM (Long short-termmemory)
neural network for traffic flow predicting with targets of
15, 30, 45, 60 minutes in advance. The result has demon-
strated that LSTM performed better than Random Walk
(RW) [25], Support VectorMachine (SVM) [26], single-layer
Feed-Forward Neural Network (FFNN) [27], and Stacked
AutoEncoder (SAE) [28]. The used dataset is the Caltrans

Performance Measurement System (PeMS) as in [2]. They
used only traffic flow data for the prediction, without con-
sidering other factors such as spatial impact from neighbor
observation stations, weather conditions, accidents, density,
speed, which could have improved such predictive results.

Kang, Lv, and Chen [29] also used LSTMs for the PeMS
dataset and focused their work on studying the effects of
various inputs for short-term traffic flow prediction. They
reported that, when including also speed and occupancy fea-
tures, this led to better results. In their case study, results
were improved by using other data collected by previous and
subsequent stations, with respect to the target one, which is
an approach unfeasible in city road networks.

Z. Wang et al. [30] compared different machine learn-
ing models for the short-term prediction of traffic flow in
3 datasets: PeMS, Kunming Regional Interchange Station
traffic flow data provided by the China Yunnan Academy
of Transportation Science and the Ireland’s Nra traffic data.
The LSTM architecture achieved better results compared to
Backpropagation neural networks, SVR [31], RNNs [32], but
one of the main pillars of their work is that the regularization
of the LSTMwith a recurrent dropout and also a max normal-
ization weight constraint led to better results compared to the
LSTM without regularization.

Mou et al. [33] proposed a temporal enhanced LSTM
(T-LSTM) for short-term prediction of traffic flow in Bejing,
reporting a comparison with several other architectures, i.e.:
SAE, DBN (Deep Belief Networks) [34], GRU, LSTM,
SVM, KNN (K-nearest neighbor) [35], FFNN [27], ARIMA
(1,0,1) (Autoregressive Integrated Moving Average model)
[36] and The dataset used for validation included traffic flow,
speed, density and date. The proposed temporal enhanced
LSTM architecture achieved its best results for predicting
traffic flow 16 minutes ahead. Zhang et al. [37] compared
ARIMA (0,1,1) [36], RNN, LSTM and GRU for the predic-
tion of future 12 hours traffic flow. The considered dataset
is the PeMS, but they included also meteorological features
in the dataset such as average wind speed, weather types,
average temperature and precipitation. Results demonstrated
that 2 layers hidden GRU based on deep neural network
achieved best predictive results. Traffic is one of the main
sources causing air pollution in the cities. As to air qual-
ity prediction, much work is already available in literature,
where air pollution has been predicted using road traffic
data. Awan et al. [38] used LSTM networks for the task
of 1 hour traffic flow prediction, in the case study based
on Madrid, Spain. They included not only traffic measure-
ments, but also meteorological and air pollution features
in their dataset. This type of data inclusion could improve
results on traffic flow prediction based on 16 considered sen-
sors. Abduljabbar et al. [39], predicted speed and traffic flow
on 2Australian freeways: PacificMotorway, Queensland, and
Tullamarine Freeway, Melbourne. They also applied trans-
fer learning to another freeway, the Southeastern Freeway,
Melbourne, for traffic flow prediction with targets of 5’, 15’,
30’, 45’ and 60’. They implemented a Bidirectional-LSTM
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TABLE 1. Related works table, focus on deep neural network solutions for traffic flow predictions based on sensor data.

(BI-LSTM) model that achieved better results compared to
other unidirectional recurrent RNN and LSTM architectures.
Ma, Dai and Zhou [38] performed a time series analysis
on traffic flow data and performed smoothing and standard-
ization processing to obtain a stable time series for their
training process of machine learning models. The case study
is based on the urban road section Ningbo Meteorological
Road, China. They proposed amodel is composed by a LSTM
layer followed by a BI-LSTM layer and another LSTM con-
nected to a last Fully Connected layer. The LSTM-BI-LSTM
neural network for short-term traffic flow prediction on this
urban road section achieved results around 6% in terms of
MAPE, as to 5 minutes traffic flow prediction. Liu et al.,
[41] used a deep architecture model with Convolutional-
LSTM module combined with a BI-LSTM module to extract
space-temporal features of traffic flow as input to a fully
connected layer, so as to obtain short-term prediction of
traffic flow. The used dataset is the PeMS dataset and the
proposedmodel performed better thanARIMA, SAE, LSTM,
SVM. Polson and Sokolov [42] developed a learning model
to predict 40 minutes traffic flow from the Interstate I-55
Chicago. The sparse linear vector autoregressive model has
been combined with a median data pre-filtering technique.

They achieved the best results also in two events: a football
game and a snowstorm situation. Liu et al [43] proposed a
neural network architecture named DeepTSP (Deep Traffic
State Prediction) that is made up of a convolutional network
that extracts the features from the images of Berlin, Istanbul
and Moscow combined with multi source data as weather
condition, holiday, the day of the week and the time of day.
The solution achieved better results than the ST-ResNet that
represented the stoa solution for Spatio-Temporal prediction.
The Spatio-Temporal solution proposed by Yao et al. in [44]
to predict the traffic flow on the NYC taxi and bike-sharing
datasets (not on traffic flow data), combines the CNN and
LSTM architectures with a flow gating mechanism and a
periodically shifted attention mechanism. Essien et al. [45]
used in combination with the traffic and weather features
also data retrieved from the Social Network Twitter. The
Autoencoder BI-LSTM architecture has been used to predict
the traffic flow using also the count of the Tweets from road
traffic information users for the 12 temporal targets of 5, 10,
15, 20, . . . , 60 minutes. Also, Verma [46] on the PeMS dataset
achieved an improvement in the prediction results of Traffic
Flow for the next 5, 15, and 30 minutes using an attention
mechanism combined with a CNN-LSTM architecture.
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FIGURE 1. Map of the traffic sensors’ locations in Florence municipality.

III. DATA FOR TRAFFIC FLOW
A. TRAFFIC FLOW DATA
As mentioned in the introduction, our main goal was to find a
solution to predict traffic flow in the locations of traffic sen-
sors. In the considered scenario, traffic flow is typically reg-
istered every 10 minutes by each traffic sensor. The exploited
data refers to 135 devices located in the municipality of
Florence area as depicted in Figure 1. Please note that, each
device sensor location may measure traffic flow on both sides
of the road and on multiple lanes. Therefore, each location
may correspond to two distinct device logic sensors.

Trends of traffic flow data are strongly dependent on a
number of road features: road relevance (primary, secondary,
etc.), number of lanes, speed limits, presence of speedmeters,
distance from road crossing, etc. Moreover, a certain class
of roads (e.g., the so-called primary/main roads of the open
street map), may provide higher capability with respect to
local, single lane cases. In order to characterize the typical
time trend H24 of the whole traffic flow sensors located in the
city, a clustering was carried out. This approach allowed us to
aggregate device sensors with the same behaviour over time.
The range of considered data goes from September 2019 to
February 2020. A wider data set, over a larger time period,
has been also used without obtained any better estimation
performance, since traffic evolves over time.

As a first step, we have tested cluster tendency by measur-
ing the probability that a given data set has been generated by
a uniform data distribution using the Hopkins statistics [51].
The Hopkins statistic value resulted to be equal at 0.86, there-
fore proving significantly the data set cluster-ability. As a
second step, K-means clustering method has been applied
to identify clusters of traffic flow sensors. Please note that,
K-means assigns each item to the cluster having the nearest
centroid. In K-means clustering, there is an ideal centre point
representing a cluster [52]. The clustering has been performed
on the basis of the time trendH24, considering the normalized
traffic flow measures. The optimal number of clusters turned
out to be 3 and it has been identified by using gap statistic
criteria [53]. In Figure 2, the identified clusters have been
represented on map, assigning a different colour pin for each
cluster.

The representative sensor for cluster 1 (primary roads) is
METRO775, for cluster 2 (downtown area) is METRO707
and for cluster 3 (suburban area) is METRO714.

FIGURE 2. Map of the traffic sensors’ locations per cluster in Florence
municipality (blue pins: Group 1; red pins: Group 2; green pins: Group 3).

FIGURE 3. (a) Hourly median traffic flow trends per cluster (Group 1,
Group 2, Group 3) and (b) hourly average traffic flow trends per
representative sensor (Sensor 1, Sensor2, Sensor 3) in each cluster.

Figure 3 (a) depicts the hourly median traffic flow trends
for each cluster and Figure 3 (b) shows the average traffic
flow trends of the three most representative traffic flow sen-
sors for each cluster. The three trends are mainly describing
situations where: (1) a peak is registered in the morning and
a second peak is also present in the evening and this cluster
is characterized by a high flow of vehicles; (2) an almost
stable traffic is present in the whole day working hours,
characterized by medium flows; (3) the peak of traffic is
registered in the morning, from 7:00 to 9:00 while along the
rest of the day the traffic flow tends to decrease.

B. OTHER FEATURES
One of the goals of this work has been conquer a general
understanding above the factors that are more relevant for
predicting traffic conditions in the city. Based on the related
works, a set of data composed of temporal variables, traffic-
related features, weather information, and air pollution has
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been considered in present paper. Therefore, the identified
larger set of features has been classified and presented in
Table 2. The data related to traffic measurements have been
divided into two categories. The Traffic category includes
the TrafficFlow metric at the observation time that refers to
the number of vehicles detected by sensors, while TrafPlus
includes other measures coming from traffic sensors, such
as: the vehicles’ AverageSpeed (km/h) and the Concentration
which is a punctual measure expressed in percentage.

The DateTime category includes the timeOfTheDay met-
ric, encoded with a number that ranges from 1 to 144, since
traffic flow data are measured and collected every 10 min-
utes. Typically, these values are used to also consider the
data seasonality that may have different trends, e.g., working
days with respect to weekends. Usually, the trend related to
the vehicle number is similar on the same day of the week
(e.g., Monday of current week with respect to Mondays in
past weeks). Features related to the Seasonality are day-
OfTheYear, dayOfTheWeek, Weekend, and Year.

In the Temporal category, three time-based features have
been included in the model in order to take into account:
(i) dP: the difference between the vehicle number in the

observation day d at time t and the available vehicle
number during the previous time slot t-1 of the previous
day, d-1.

dP = VehicleFlowd,t − VehicleFlowd−1,t−1

(ii) dS: the difference between the vehicle number in the
observation day, d, at time t and the available vehicle
number during the successive time slot t+1 of the
previous day, d-1.

dS = VehicleFlowd,t − VehicleFlowd−1,t+1

(iii) PwVF: the vehicle number of the previous week d-7 in
the same time slot, t :

PwVF = VehicleFlowd−7,t

Features belonging to the Weather category are also col-
lected every 10 minutes (i.e., Air Temperature, Humidity,
Pressure, WindSpeed).

In order to complete any possible descriptive features for
the phenomena and thus for the input dataset, we included
data regarding themeasured pollutants,AirPoll category, such
as: CO, NO2, O3, PM10, and PM2.5.

IV. SHORT-TERM PREDICTION MODELS
In this section, machine learning techniques are compared
with the aim of creating a solution to predict the traffic flow
for the most representative sensors resulted from the previ-
ously referred clustering process (see Section III, A) with a
temporal target of 1h, which is the most critical short-term
prediction slot. Ensemble learning techniques such as Ran-
dom Forest (RF) and Extreme Gradient Boosting Machines
(XGBOOST) [54] are powerful techniques that must be con-
sidered for this type of problem. Regarding the deep learning

TABLE 2. Overview of the features used in the short-term prediction
models.

techniques for this work, we have compared the Deep Neural
Network (DNN), Deep LSTM [55], Deep BI-LSTM Neu-
ral Network [56], Autoencoder BI-LSTM, and an attention-
based CONV-LSTM, with respect to a architecture defined
in this paper as CONV-BI-LSTM. Therefore, these differ-
ent approaches have been compared to consider any best
results in both the state of the art and our solutions: RF
(as in [14]), XGBOOST, DNN, LSTM (as in [23], [29],
and [38]), BI-LSTM (as in [39]), Autoencoder BI-LSTM
(as in [45]), attention-based CONV-LSTM (as in [46]), and
CONV-BI-LSTM (which is the approach we have proposed
in this paper). Such different solutions have been applied in
64 combinations of feature category, as presented in Table 1,
with the aim of determining which one could be the most
relevant for current purpose and for which architecture. Some
combinations of features and solutions correspond to the ones
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in literature, resulting as a systematic comparison, as shown
in Table 6.

These models were evaluated in terms of statistical mea-
sures such as R-squared (R2), Mean Absolute Error (MAE),
Root Mean Squared Error (RMSE), Mean Absolute Percent-
age Error (MAPE) and Mean Absolute Scaled Error (MASE)
[57]. TheMAPEmetric is the one used to compare techniques
to choose the best model architecture for the task of short-
term predictions. The R2 is calculated as follows:

y =
1
n

n∑
i=1

obsi

R2 = 1−

(∑n
i=1 (obsi − pred i)

2∑n
i=1 (obsi − y)

2

)
The MAE is calculated as follows:

MAE =

∑n
i=1 |obsi − pred i|

n
The MAPE is calculated as follows:

MAPE =

∑n
i=1 |

obsi−pred i
obsi

|

n
∗ 100

The RMSE is calculated as the Root square of the Mean
Squared Error (MSE):

MSE =

∑n
i=1 (obsi − pred i)

2

n
RMSE =

√
MSE

The MASE is calculated as follows:

MASE = mean (|qt |) , t = 1, . . . , n

and

qt =
obst − pred t

1
n−1

∑n
i=2 |obsi − obsi−1|

where:

obsi = observation at time i,

pred t = prediction at time t,

n is the number of the values in the test set.

As to the implementation of ensemble learning techniques,
the number of trees parameter for the RF was set to 300, with
a minimum sample split set equal to 2, minimum number
of samples allowed for a leaf equal to 1, without limits on
both the maximum number of features considered to split
a node and the number of leaves, with the construction of
bootstrapped datasets for creating the trees.

XGBOOST regressor uses the least-squares loss func-
tion with learning rate optimized with values 0.1, 0.01, and
0.001 with max depth equal to 3 and minimum sample split,
minimum sample leaf, maximum number of features equal to
the ones chosen for the RF.

As to DNN, the developed deep neural networks have a
4 layers deep architecture: the first three layers are fully

TABLE 3. Hyperparameter optimized for the DNN for the prediction
target of 60 minutes.

TABLE 4. Hyperparameter optimized for the LSTM/BI-LSTM for the
prediction target of 60 minutes.

connected with a Leaky-Relu activation, and the final layer
provided one neuron to make the prediction 1 hour in the
future and has a sigmoid activation to obtain a value in the
range [0,1]. Indeed, the input data has been normalized using
a Min Max scaler. The adopted hyperparameters have been
tuned via RandomSearch among the ones reported inTable 3,
by using the minimum RMSE on the validation set to select
the best configuration.

The LSTMs and BI-LSTMs networks have a 7-layers
architecture structured such as: the first 6 layers are made
of LSTMs or BI-LSTMs units depending on the considered
network. The last layer is a fully connected one with one
neuron and sigmoid activation to obtain the prediction. The
implementation of recurrent neural networks is stateful with
a number of timesteps considered equal to 6 that corresponds
to the data of one hour prior to the observation/prediction
time. The training process has been made with early stop-
ping with patience set to 100 and weights restored to the
best model. The hyperparameters that have been optimized
through a Random Search are reported in Table 4. In the
training process, the minimum RMSE on the validation set
has been used to select the best configuration.

The structure of the defined CONV-BI-LSTM network is
reported in Figure4 and it is made up of 3 components:

• The first component is made up of a Convolutional
1-dimensional layer with 48 filters and a kernel size of
16, and a Max Pooling layer of 2 × 2 and stride equal
to 1.

• The second component is the BI-LSTMs layers, in par-
ticular 6 layers with 32 units per layer and dropout of
0,25. This value refers to the final version.

• The last one is made of 3 fully connected layers with
number of neurons of 32-16-1. The last one has a sig-
moid activation to produce the prediction.
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TABLE 5. Autoencoder BI-LSTM network architecture.

The used optimizer is Adam Optimizer with learning rate
between 0.005 and 0.008. MSE was selected as the loss
function to be monitored during optimization. The batch size
has been set to 512 and the number of epochs was set to a
maximum value of 1000, because the training strategy used
the Early Stopping method with patience parameter set to
100 to determine the optimum epoch number minimizing
the RMSE of the validation set, restoring the weights of
the best model at the end of the learning process. For the
CONV-BI-LSTM the only parameter optimized has been the
learning rate obtaining as final value 0.005; thus not dropout
optimization in the final training. The model proposed has
been trained with the two possible learning rates and based on
the minimum RMSE on the validation set it has been chosen
the best configuration. The rationale behind the addition of a
convolutive layer was the advantage of combining powerful
feature extraction of CNN with LSTM capability in cap-
turing temporal dependencies. CNN are useful for learning
local features in time series [58], since they can perform an
optimized smoothing of noisy input data, while maintain-
ing the underlying data trend. Therefore, convolutive layers
can improve performances of subsequent LSTM layers in
learning temporal dependencies [59]. In [46] and [60], CNN-
LSTM architectures have been employed for traffic speed
prediction. As to the adoption of BI-LSTM layer, a BI-LSTM
model has the characteristic of being trained twice, first by
feeding input data to an LSTM layer, and then feeding the
same input dataset (but on reverse order) to another LSTM
layer. This has shown improvements in time-series analysis
and forecasting [61].

The structure of the Autoencoder BI-LSTM network is
made up of 8 layers as for the work in [45] and the structure
of the network (reported in the Table 5) depends on the
hyperparameter n_unit that has been optimized between 16,
24, 28. The other hyperparameters optimized have been the
batch size, the dropout rate for the first 6 layers and the
learning rate with the same values reported inTable IV. In this
case, the Sklearn Random Search has been used [62].

The Attention-based CONV-LSTM, similarly to the work
in [46], is made up of 9 layers: the first one is an Attention
Layer followed by a Fully connected layer with 32 neurons.
Then there are 3 Convolutional 1-dimensional layers with
32 filters followed by 3 LSTM layers with number of units

optimized using the values ofTable 4 as for the other 2 hyper-
parameters optimized that are the batch size, the learning
rate, using Sklearn Random Search [62]. The dropout rate of
the first Fully connected and for the LSTM layers has been
set to 0.2.

V. EXPERIMENTAL RESULTS
According to data and remarks reported in previous sections,
the identified challenge was not only to find the best architec-
ture to predict the traffic flow with a resolution of 10 minutes
for the next hour, but also to discover the most informative
set of features for the analysed models. The training set con-
sidered included data from 09/09/2019 to 02/02/2020. The
two weeks from 03/02/2020 to 16/02/2020 have been used as
follows: the first week as validation set and the second one as
test set, for all techniques. The approach reduces the problem
of the so-called cold start period. We have much longer time
periods of data into Snap4City platform and service. On the
other hand, we have tested larger data sets without obtaining
better results due to data variability over long time periods.
As shown in the following, with the above-described limited
amount of data it is possible to train deep learning models as
well as Ensemble Learning techniques for short-term traffic
flow predictions and obtain satisfactory results with respect
to the state of the art.

According to the state-of-the-art, to derive short-term pre-
dictions of traffic flow by exploiting only historical traffic
flow data is not always the best solution. On the other hand,
a large set of features may not always produce better results
even in big data deep learning approaches.

In order to better understand the influence of each fea-
ture category, we have collected a large set of features,
as described in Table 2: traffic, datetime, seasonality, tempo-
ral, weather and air pollutants. Assuming the Traffic category
mandatory as input for the construction of any predictive
model, the number of combinations of the other 6 feature
categories reaches 64. Thus, we have trained, tested, and
validated all 64 combinations vs the traditional ML and
deep learning and CONV-BI-LSTM) (see Table 6), which
included also the ones used in literature. The aim was to
identify the best model, and at the same time to understand
which are the most relevant features. From the analysis of
results reported in Table 6, it seems that RF gets benefit for
the presence of the DateTime (Table 6 rows from C1 to C32)
feature which explicitly describes the time series over the
day. On the other hand, CONV-BI-LSTM obtains very simi-
lar results. Moreover, CONV-BI-LSTM model also includes
time series modelling, since it requires temporal sequences
as input data, obtained from the original time series by using
a sliding temporal window. The same approach is used in
LSTM and BI-LSTM. In fact, in absence of the DateTime
(Table 6 rows from C33 to C64) they obtain in most cases
the better results with respect to the other methods.

The best results have been achieved by the predictive mod-
els presenting a convolutional layer which efficiently extracts
local features in noisy data (Table 6 rows C32 – C6 – C28).
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FIGURE 4. Graphical representation of the CONV-BI-LSTM network used for the traffic short-term prediction.

While a bidirectional approach improved, in most cases,
the classic LSTM by performing an additional training on
reversed order input dataset, which seems to lead to a better
understanding of the underlying context also in time series
data [61]. CONV-BI-LSTM approach worked in a quite sat-
isfactory manner without considering Weather and Airpoll
features, whereas RF generically benefits from such pres-
ence. Moreover, other features positively could contribute
to the precision in terms of MAPE, but the impact of cate-
gories Trafplus, Temporal, Seasonality is not as evident on
Table 4 as for the Weather and Datetime. For this reason,
it has been conducted a detailed analysis reported in the next
Section V.A.

In order to identify best prediction model, machine learn-
ing solutions were compared based on the MAE, MAPE and
RMSE for short-term prediction of TrafficFlow 1 hour in
advance, for every possible combination of feature categories
as in Table 2. Typical trends for prediction are reported in
Figure 5 according to different clusters using the CONV-BI-
LSTM referring to the configuration with minimum MAPE
in Table 6 C32.
Overall, the best predictive model architecture for 1-hour

short-term prediction of TrafficFlow for the representative
sensors is CONV-BI-LSTM, as it can be observed from
Table 6. CONV-BI-LSTM achieved minimum errors for the
evaluated metrics if compared with the ensemble learning
methods RF andXGBOOST, and theDeep Learning architec-
tures DNN, LSTM and BI-LSTM. Noteworthy is this aspect:
best three results are the ones obtained without weather fea-
tures (Table 6 rows C32 – C6 – C28).

Best results per cluster are reported in Table 7 in terms
of R2, MAE, RMSE, MAE, MAPE for the CONV-BI-
LSTM referring to the configuration with minimum MAPE
in Table 6 C32.

A. FEATURE CATEGORY IMPORTANCE ANALYSIS
The problem of short-term prediction in traffic flowmeasure-
ments can be tackledwith a univariate approach or withmulti-
variate features of different categories. To achieve best results
from the evaluated predictive models, we tested models on
every possible combination of feature categories as reported
in Table 6, assuming the Traffic category as always present
as input for models.

FIGURE 5. Plots of the predictions made by the CONV-BI-LSTM of the
traffic flow for (a) Cluster1, (b) Cluster2, (c) Cluster3.

According to the above presented results, it is interesting
to assess the relevance of different features to explain model
impact and minimize model costs. To this end, an analy-
sis of the CONV-BI-LSTM for the representative sensor of
Cluster-1 has been performed. The analysis calculated the
MAPEs using all the features except the specific considered
category: for example, the MAPE of the CONV-BI-LSTM
for 1h prediction target of the TrafficFlow, considering all the
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TABLE 6. The MAPE estimated for 64 combinations of features for all the identified techniques as the median value on the sensors in the 3 clusters
described above. The order is based on the combination of features. In bold, best results/configurations. In bold with citation: results obtained taking
into account solutions from the state of the art. Please note that CONV-BI-LSTM overcomes all of them in the same feature conditions.
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TABLE 7. CONV-BI-LSTM results for the representative sensor of the
clusters.

FIGURE 6. Bar plot of the feature categories importance.

features categories except the DateTime, was 27,12%. After
calculating all MAPEs obtained excluding recursively each
single feature category, the DMAPE has been calculated. The
DMAPE is defined as the difference of MAPE with respect
to the minimum MAPE registered for the CONV-BI-LSTM
such as:

DMAPEi = MAPEall−cati − minMAPE

where: i = 1, . . . , number of categories-1 (all, except the
traffic, for a total of 6).

Categories with a higher DMAPE are the most relevant
ones, since they do not cause larger differences / errors.
Results are reported in the bar plot of Figure 6. The fea-
ture category with the highest DMAPE is the DateTime fol-
lowed by the Trafplus, and the Temporal feature category.
Additional information on data seasonality for short-term
prediction has been ranked 4th, ahead of Air Pollution feature
category which in turn beats also Weather features. On the
basis of Table 6 Min values obtained for all possible combi-
nations of features, the usage of weather feature marginally
influences the MAPE, and in most cases the resulting MAPE
is better without taking into account weather conditions. This
fact can be different for different methods.

B. IMPACT OF DATA MISSING ON PRECISION
Datamissing is an inevitable problemwhen dealing with real-
world IoT sensor networks and of course, the traffic data from
the real traffic system scenario of this study are affected by
this problem. Traffic sensors may suffer of problems such as
detector malfunction and communication failure, while there
could be also some problems during the data acquisition pro-
cess. All these problems can affect the monitoring of traffic
and may constrain the predictive capability of the predictive
models at runtime. The approaches of data imputation for

TABLE 8. Data missing analysis based on different missing rates on the
clusters representative sensors of Table 7.

producing surrogate data may help in creating dense data
in training and execution [63], while actual data are pre-
ferrable. Therefore, in training, we overcome the occurrence
of missing data cases by considering only complete sam-
ples/sequences according to the architecture.

On the other hand, the presence of missing data samples in
making predictions (execution of the predictive model) may
impact on the precision, up to make impossible to produce
the prediction. In the literature, several approaches have been
proposed depending on the machine or deep learning archi-
tecture adopted [63], [64].

In order to assess the impact of missing data on prediction
a set of experiments have been conducted on the best solution
identified in Table 6 for the CONV-BI-LSTM using the best
dataset configuration (Traffic and DateTime) as reported in
Section IV, on the test dataset from 10/02/2020 to 16/02/2020
randomly setting to missing the Traffic Flow of a percentage
of the total dataset based on the missing rates chosen (10%,
25%, 50%, 75%) and then imputing the missing data. The
approach used for imputation has been based on the so-called
Hot Deck on the basis of which the missing data are imputed
with a previously observed data value from a ‘‘similar’’ unit
[64]. Thus, thanks to data seasonality (daily and weekly) an
identical time slot of a previous period or the median of a set
of identically positioned slots in time, have been taken. The
results are reported in Table 8.

The imputation strategy proposed to handle missing data
reports valid results for the missing rates of 10%, 25%, 50%,
75% on all the representative sensors of the three clusters.
In particular, taking into consideration theMAE as evaluation
metric, the strategy proposed for the METRO775 achieved
a minimum additional MAE, to the 0% missing rate test set
MAE of 161.42, of 11.77 and a maximum additional MAE
of 15.94 for the missing rates considered. The results on the
METRO707 are even better in terms of MAE starting from
the 0% missing rate of the test set of 138.98 ranging from
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TABLE 9. Comparative performance for machine learning techniques in
the context of traffic flow predictions.

a minimum additional value of 6.74 to a maximum of 8.51.
The METRO714 handled the different missing rates with
an additional MAE ranging from a minimum of 0.32 to a
maximum of 3.14.

As a conclusion, the presence of missing data in execution
of the prediction marginally impacted the quality of results
for CONV-BI-LSTM. This result is very similar to what has
been obtained in [63] for similar data sets.

C. PERFORMANCE ANALYSIS
To assess the performance analysis, we have evaluated the
required computational capability and the execution time
obtained by the RF, XGBOOST, DNN, LSTM, BI-LSTM,
Autoencoder BI-LSTM, attention-based CONV-LSTM, and
CONV-BI-LSTM, which provided the best MAPE, see
Table 6. The performance analysis is made of two parts as
reported in Table 9 with the training described in Section IV.
The first one is based on typical train execution time required
for a single sensor/cluster considering the above-described
temporal window and considering all the features of Table 2.
The second one analyses the execution time required to
compute predictions. Please note that, the ensemble learning
techniques RF andXGBoost have been trained onCPU,while
deep learning techniques have been trained on the GPU. The
CPU computations have been performed on 8 core XEON at
2.3GHz, while deep learning solutions have been executed on
GPU as NVIDIA Quadro GV100 with 32GByte Ram, which
has 5120 CUDA Cores, FP64 perf as 7.4 TFLOPS.

The training time required by the ensemble learning tech-
niques is much lower than the ones of deep learning tech-
niques, even though for the training of the latter GPU has
been used. The time needed for training the deep neural net-
works tested depends on multiple factors. The time reported
included the hyperparameter optimization as described in
Section IV. This explains whyDeep Learning based solutions
require more training time, and also other factors related to
the optimization process, could influence this: for instance,
the time required for the networks to converge on each
iteration of the optimization process. Moreover, the use of
Random Search optimization method implies the random
selection of hyperparameters values from the hyperparame-
ters search space, and this can lead to different total train-
ing times for different optimized models. On this regard,

Autoencoder BI-LSTM and Attention-based CONV-LSTM
have been trained by using a different implementation of
the optimization search space, with respect to the CONV-
BI-LSTM. As described in Section IV, for the CONV-BI-
LSTM the only parameter optimized on reported training
time has been the learning rate, see Section IV. In fact,
since the CONV-BI-LSTM provided the best MAPE, the
value reported for training time refers to the final training
values obtained during manual optimization as described in
Section IV. Regarding GPU load, it settles at a max of 25%
while training DNNs, up to a max load of around 40% for
the other architectures. As a final consideration, the training
time can further be improved by: (i) reducing the ranges of
the hyperparameters or passing to a manual optimization,
(ii) executing the training once per week/month, and/or (iii)
performing the training per cluster.

According to Table 8, the required time to compute pre-
dictions on a test set, XGBOOST is the fastest solution, and
it takes a few seconds, followed by the RF, DNN, LSTM,
BI-LSTM requiring hundredths of seconds, and Attention-
based CONV-LSTM, Autoencoder BI-LSTM which are
much slower. The solution taking longer time is the CONV-
BI-LSTM, performing predictions in 1/10 of second, while,
as presented above it is an acceptable performance, and it is
the best in terms ofMAPE. Thus, in most cases, in 10minutes
it is possible to compute at least 580 estimations, remarking
the suitability for short terms predictions. Please note that in
mid-size cites, as in Florence, there are 150 sensors, which
results in a cheap solution.

VI. CONCLUSION
In this paper, we have proposed a predictive approach and
solution for short-term predictions of traffic flow data in a
urban context, being typically much more noisy than high
speed roads segments, which appears to be the main target of
most solutions in current state of the art. Accessing precise
traffic flow data is mandatory to guarantee high level of
services such as: traffic flow reconstruction, which in turn
is used to perform what-if analysis, conditioned routing, etc.
They have to be reliable and precise for possible rescue teams
and fire brigades.

The considered case refers to city traffic data being noisier
and more complex than more regular traffic data from high-
speed roads. This paper proposes a solution and an approach
for short-term traffic flow prediction by using traditional
machine learning as RF and XGBOOST and comparing them
with deep learning techniques as DNN, LSTM, BI-LSTM,
Attention based CONV-LSTM, Autoencoder BI-LSTM, and
the proposed CONV-BI-LSTM. In the paper a comparative
analysis has been performed, taking into account a large
number of solutions and features, thus analysing the precision
of such different techniques. Best solution turned out to be
the solution, namely CONV-BI-LSTM which in most cases
produced better results with respect to other solutions already
in the state of the art and even better results could be obtained
with the proposed feature combination. The current study
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evaluated which type of feature categories, based on the
related state-of-the-art works, improved the models’ results.
On this regards a specific analysis on the motivation and
feature relevance has been discussed, considering a very large
number of combinations of both features and methods. Also,
RF could produce quite precise results and is computation-
ally lighter than CONV-BI-LSTM. This solution has been
developed in the context of Sii-Mobility/Km4City smart city
mobility and transport national project and it is in use in other
solutions such as Snap4City, TRAFAIR CEF, and REPLI-
CATE smart city control room for Florence area.
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