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ABSTRACT Air Quality Index (AQI) is the crucial foundation for measuring air quality, which reflects the
influence of air quality on people’s health and life to a certain extent. In this paper, a hybrid AQI prediction
model based on Convolutional Neural Network (CNN) and Attention Gate Unit (AGU) is proposed to deal
with the problems of the ‘‘vanishing gradient’’ and ‘‘exploding gradient’’ of Recurrent Neural Network
(RNN). AGU is a new model proposed in this paper to embed the attention mechanism and Data Adjustment
Module (DAM) into the gated unit. The attention mechanism enhances the learning ability of the gated unit,
and the DAM makes the gated unit more sensitive to historical data learning. In this model, CNN plays a
role in extracting features from time series data. AGU can make differentiated learning of historical data
and finally produce prediction results. The model evaluation indexes used in the experiments are Mean
Absolute Error (MAE), Mean Square Error (MSE), and R Squared (R2). The experimental results show that
the overall performance of the AQI prediction model based on CNN-AGU is superior to that of other models
by comparing with the other nine models on the same data set.

INDEX TERMS CNN, AGU, AQI prediction, machine learning.

I. INTRODUCTION
Air pollution has caused great harm to the development of the
national economy and people’s physical and mental health,
which has attracted significant attention from all walks of
life. AQI is used to evaluate air quality, and the evaluation
results can fully reflect the actual air quality [1], [2], [3]. The
prediction of AQI has been one of the research hotspots in air
pollution monitoring and treatment for a long time.

According to the regulations of the relevant environmental
protection departments, if the AQI value is within the range
of 0-50, the AQI level is one, and the air quality status is
excellent. If the AQI value is within the range of 51-100, the
AQI level is two, and the air quality status is good. If the
AQI value is 101-150, the AQI level is three, and the air
quality status belongs to mild pollution. If the AQI value
is 151-200, the AQI level is four, and the air quality status
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belongs to medium pollution. If the AQI value is within the
range of 201-300, the AQI level is five, and the air quality
status belongs to heavy pollution. If it is above 300, the AQI
level is six, and the air quality status belongs to very serious
pollution [4].

The air pollution problem is becoming more and more
serious, which has attracted significant attention from all
walks of life. Various countries have established air quality
supervision mechanisms to better monitor and improve air
quality to ensure people’s well-being and economic con-
struction and prevent pollution incidents. These initiatives
have accumulated many historical monitoring data on air
quality. The vast amount of data brings new opportunities
to study air quality and challenges in making good use of
them. Therefore, it is of great social significance and value
to construct an efficient AQI prediction model to treat air
pollution effectively.

The continuous development of machine learning makes
it possible to predict AQI accurately. The standard neural
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network is not suitable for processing time series data, but
the network structure of RNN connects each time state in a
series. The latter state is affected by the former state, so RNN
effectively the time series data processing is realized [5], [6].
However, when the amount of data is significant, RNN train-
ing often has the problems of ‘‘vanishing gradient’’ and
‘‘exploding gradient.’’ Long Short-Term Memory (LSTM)
and Gated Recurrent Unit (GRU) are proposed, which can
effectively alleviate the problems of ‘‘vanishing gradient’’
and ‘‘exploding gradient’’ [7], [8], [9]. LSTM and GRU have
solved the gradient problem of RNN to some extent, but
it is still not enough. They still cannot learn the relation-
ship between data more deeply when dealing with longer
sequences.

Through the study of LSTM and GRU, it is concluded
that gated technology is used to decide the forgetting and
saving data [10], [11], [12]. However, these gated units have
some defects in processing time series data. In terms of
the time dimension, the importance of meteorological data
features is not consistent, and the features hidden in abnormal
meteorological data are more important than those in nor-
mal meteorological data. This kind of difference in temporal
features is difficult to be reflected by standard LSTM and
GRU. Based on this problem, this paper proposes an AGU,
which embeds the attention mechanism into the gated unit
to enhance the learning ability of the gated unit. At the
same time, AGU introduces DAM to avoid the error of pre-
diction results caused by the saturation of function, which
affects the prediction accuracy, so that the gated unit can
learn the historical data more thoroughly. AGU combines
the advantages of GRU and attention mechanism, GRU has
fewer network parameters, and the attention mechanism has
a strong learning ability. AGU uses the attention mechanism
to make up for the ability of the gated unit to pay attention
to specific features adaptively and deals with the problem of
data redundancy or loss in the learning process. Usually, the
attention mechanism is often used as an additional layer of
RNN to form a combined model. Compared with the com-
bined model, AGU makes the model more straightforward
and easier to train. AlthoughAGUmakes up for the shortcom-
ings of the existing gated technology that cannot pay attention
adaptively to specific features and learn thoroughly, a single
AGU cannot fully extract data features. This paper combines
CNN efficiently extracting data features and AGU to propose
a CNN-AGU model for AQI prediction. The accuracy and
effectiveness of the proposed CNN-AGU model are verified
by comparing the prediction results of nine different models
through experiments.

To sum up, the major contributions of this paper are as
follows:

(1) This paper proposes a newmodel, AGU, which embeds
the attention mechanism and DAM into the gated unit. The
attention mechanism enhances the learning ability of the
gated unit. DAM makes the gated unit more sensitive to
historical data learning.

(2) Compared with LSTM and GRU, the MAE, MSE, and
R2 of AGU are better than LSTM and GRU in predicting AQI
with the same data set and experimental environment.

(3) This paper proposes a new hybridAQI predictionmodel
based on CNN and AGU, CNN-AGU. The introduction of
CNN achieves the extraction of characteristic values well
and improves the CNN-AGU model’s prediction accuracy
about AQI.

The rest of the paper is organized as follows: Section II
introduces the literature review and analysis of related mod-
els. Section III presents the principle of CNN, AGU, and
the architecture of the CNN-AGU. Section IV introduces the
experimental tools, experimental data, data set sources, data
preprocessing, data set segmentation, models adjustment and
validation, experimental results. Section V includes the anal-
ysis and discussion of the experimental results. Section VI
concludes the work of this paper and introduces further
research.

II. RELATED WORK
As for the study of AQI and the concentration of various
pollutants in the air, people used traditional statistical meth-
ods such as multiple regression to study the variation rule
of pollutant concentration in the early stage. Abdul-Wahab
et al. used pollutants in the air and various meteorological
factors as variables and used multiple regression analysis
methods to fit the model of O3 concentration change. The
experiment showed that this method was effective in pre-
dicting O3 concentration [13]. The study combined Multi-
ple Linear Regression (MLR) with Principal Components
Analysis (PCA) to solve the problem of multicollinearity
among independent variables. The MLR model was one of
the most widely used methods to express the dependence of
dependent variables on several independent variables. But
the disadvantage of this model was that it was limited to
solving the linear problem with a small data variation range
or the problem with less severe nonlinearity. Most problems
that needed to be solved were nonlinear problems, but the
MLR model could not produce a high degree of fitting for
nonlinear problems. The commonly used numerical predic-
tion models included the WRF-Chem and CAMQ models
in the United States. These methods explored a series of
complex changes in pollution data and the atmospheric envi-
ronment, and they could accurately predict the concentration
of some factors in the air [14], [15]. The WRF-Chem model
could simulate a more realistic atmospheric environment.
It added many chemical modules into the WRF framework
to realize the complete online coupling of meteorological
and chemical models. This method made up for the loss of
important information about atmospheric processes due to
the separation of meteorology and chemistry caused by the
offline transmission of the CAMQ model. Models-3 CMAQ
promoted environmental modeling technology by integrating
physical and chemical algorithms, realized the sharing of
technologies and models, and promoted the collaborative
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development of meteorological and air quality modules in
the system. However, these numerical prediction methods
involved a variety of fields, such as mathematics, physics,
chemistry, and meteorology. And they required various more
complex data and high-performance computer equipment for
modeling and analysis.

In recent years, machine learning algorithms have also
made some air quality prediction achievements. Some schol-
ars used traditional machine learning algorithms to predict air
quality and pollutant concentration. Sun et al. used Random
Forest Regression (RFR) to estimate the solar radiation level
based on the air quality data set. The experimental results
showed that the predicted values were close to the observed
values, and the RFR model performed well in predicting
the solar radiation value [16]. Still, RFR risked over-fitting
to predict nonlinear air quality data. Silva et al. used Sup-
port Vector Regression (SVR) to predict AQI in California.
The experimental results showed that SVR could accurately
predict pollutant concentration and AQI within hours [17].
However, the single traditional SVR model is often due to
the lack of computing power, which is unsuitable for training
on large-scale data sets.

RNN had advantages in processing time series data, and
more andmore scholars began to apply RNN to AQI research.
Kim et al. used a data-driven air quality prediction model
and applied RNN to it. Compared with other data-driven
prediction modeling methods, the prediction results of RNN
had better interpretability and modeling performance [18].
The study used Partial Least Squares (PLS) to select the input
variables of the RNNmodel to optimize the predictionmodel.
However, the problems of the ‘‘vanishing gradient’’ and
‘‘exploding gradient’’ caused by the long-term dependence of
data on the model would occur in the training of RNN [19].
He and Luo used transfer entropy to select meteorological
factors that affected significant changes in AQI and studied
the prediction accuracy of AQI in different prediction times
in the next 0-48 hours through LSTM. This study showed
that LSTM had better robustness than traditional neural net-
works and had the advantage of short-term prediction [20].
Pu et al. improved the wavelet denoising method to pro-
cess air quality data and constructed LSTM to predict AQI.
The results showed that LSTM had good applicability in air
quality prediction [21]. The above two studies showed that
LSTMgreatly affected processing time series tasks. Although
LSTM could effectively alleviate the ‘‘vanishing gradient’’
and ‘‘exploding gradient’’ problems, training a single LSTM
would produce instability. For more extended sequence data,
capturing long-term interdependence and achieving high-
precision prediction was challenging. The Paperswirhcode
website showed that the optimal model for sunspot time
series tasks was BD-LSTM (Bi-directional Long Short-
Term Memory). The study verified LSTM on seven differ-
ent time series problems, and experimental results showed
that BD-LSTM performed well in processing time series
tasks [22]. Although BD-LSTM could process the depen-
dency relationship between data forward and backward, it still

could not transmit the long-distance dependence information
well for the excessively long sequence. Zhou et al. used GRU
to train four models with PM2.5 concentration data in four
seasons in Beijing. The results showed that the prediction
accuracy of the GRU model was high, and the method was
effective for the time series prediction of air pollutants [23].
Becerra-Rico et al. studied PM10 data inMexico City through
GRU. The experimental results showed that GRU was bet-
ter than LSTM in predicting time length. LSTM and GRU
could predict such highly nonlinear data without a significant
difference in performance [24]. But the single GRU model
could not extract the input data features efficiently. Xie et al.
used CNN and GRU to predict PM2.5 concentration. They
used CNN to extract data features automatically and input
CNN results into the GRU network to learn the dependence
between air quality data further. Moreover, the combined
model could predict PM2.5 concentration with high accu-
racy [25]. There was still the problem of feature learning,
such as theGRU could not constantly remember or forget data
according to the importance of data. In the future, when the
data and model volumes were gradually increasing, further
enhancing the learning ability of models was the bottleneck
of GRU development. Mei et al. proposed a CNN-GRU-
Attention model to realize the prediction of time series data.
The study found that the prediction accuracy of the combined
model was better than that of the single model. And compared
with other models, the prediction effect of the CNN-GRU-
Attention was more accurate, and the stability of the model
was enhanced [26]. However, integrating multiple models
would lead to the complexity of the whole combined model,
which increased the amount of computation and was incon-
venient for model training.

III. MODELS
A. CNN
CNN can achieve the parameters sharing mechanism on the
one hand. Different regions share the same filter, so they share
the same set of parameters [27]. Through this mechanism,
the number of parameters of the network is significantly
reduced, the amount of calculation is reduced, and over-
fitting is effectively avoided. On the other hand, the local
connection structure of CNN makes any output unit only
related to the part of the input units [28]. In addition, CNN
allows data to be defective and distorted, so CNN has good
compatibility with the data.

CNN is a good feature learner, which can automatically
extract features according to the problem. 1D convolution is
often used for series data, such as air pollutant concentration,
stock index, and other time series data. 2D convolution is
often used in the field of image processing, which can extract
spatial dimension features of images [29]. 3D convolution
enables the convolution kernel to perform operations in the
spatial and temporal dimensions, which can well integrate the
information of these dimensions. 3D convolution can be used
to deal with problems such as videos that have not only spatial
features of images but also temporal features [30].
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Time series data can be directly used as the input of CNN to
effectively decrease the complexity of feature extraction. The
trained CNN can efficiently and accurately realize feature
extraction of time series data [31], [32], [33].

B. AGU
As shown in Fig. 1, GRU generates the next predicted value,
relying only on the output state of the previous cell and the
input value of the current input. In the attention mechanism,
the generation of each predicted value will be related to all
historical data [34].

FIGURE 1. GRU structure.

The principle of Attention is to calculate the matching
score between the current input sequence and the output
vector. The higher the matching score, that is, the higher the
relative score of the focus point, and then summarize the input
information by weighted average.

FIGURE 2. AGU structure.

As shown in Fig. 2, compared with GRU, AGU introduces
the DAM and attention mechanism module inside the gated
unit. The reset gate rt controls how much past information is
to be forgotten, and its calculation process is the same as the
reset gate of GRU, as shown in formula (1).

rt = σ (Wr · [ht−1, xt ]+ br ) (1)

In the formula, σ represents the sigmoid activation func-
tion, xt represents the input vector of the current cell, ht−1
represents the hidden state passed down from the previous
cell, and Wr and br represent the weight and bias of the reset
gate, respectively.

The update gate zt helps the model solve how much past
information should be transferred to the future, and its calcu-
lation process is the same as the update gate of GRU, as shown
in formula (2).

zt= σ (Wz · [ht−1, xt ]+ bz) (2)

In the formula, Wz and bz represent the weight and bias of
the update gate, respectively.

When x is less than -6 or greater than 6, the sigmoid
function value will approach 0 or 1, respectively. Therefore,
when the input data are in (−∞,−6) or (6,+∞), themapping
function value will not change significantly. That is, it will
approach a saturation state, which will lead to a decrease
in learning sensitivity. Therefore, DAM is introduced into
AGU in this paper. The module can map the sigmoid function
values approaching 0 and 1 as x on the tanh activation func-
tion. According to the size of the input value, the mapping
function value will also change significantly, which improves
the model’s sensitivity to the input data and increases the
nonlinearity of the neural network model, as shown in
formula (3).

DAM = tanh(rt ) (3)

In the formula, rt stands for the output of the reset gate, and
tanh stands for the activation function.

αt = σ (Wα · [ht−1, xt ]+ bα) (4)

Ut = softmax(αt ) (5)

h′t = tanh(Ut · [DAM · ht−1, xt ]+ bt ) (6)

αt represents the matching score between the input
sequence xt and ht−1. And σ is used to calculate the matching
score, as shown in formula (4). The attention probability
distribution Ut is obtained by normalizing αt with the softmax
function, as shown in formula (5). Firstly, the matching score
αt is calculated by ht−1 and xt, and then the adaptive weighted
average value Ut is obtained so that it is more scientific to
calculate and sum historical data. The attention distribution
Ut is taken as the weight of the input sequence of the current
time and the information of the previous time to be forgotten.
That is, the weighted sum of xt and DAM ·ht−1 is carried out.
Finally, the candidate hidden state h

′

t is computed by the tanh
activation function, as shown in formula (6).

The phase of updating ht uses the same zt to forget
and remember simultaneously. The operation of this step is
to selectively forget some unimportant information in ht−1
passed down from the previous step and selectively remem-
ber h

′

t containing the current step information, as shown in
formula (7).

ht = (1− zt ) · ht−1 + zt ·h′t (7)

C. CNN-AGU
Fig. 3 shows the overall architecture of the CNN-AGU. The
model consists of four parts: data preprocessing layer, CNN
layer, AGU layer, and output layer, which is described in
detail as follows.
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FIGURE 3. CNN-AGU model architecture.

(1) Data preprocessing layer: For different abnormal data,
different methods are used to deal with them, such as forward
recurrent complement, feature numerical replacement, and so
on; for the significant difference between values of different
variables, standardized processing is carried out. The data set
is divided into three parts according to the partition method
introduced in Section IV.C.

(2) CNN layer: The preprocessed data are concatenated
into a two-dimensional structure, where the rows represent
the time length, and the columns represent the dimension
of the features. The batch-sized samples are used for batch
training during modeling and then enter the CNN layer. This
layer uses the convolution kernel to complete the convolution
operation and extracts the features information of data in
different dimensions. And then, the pooling layer reduces the
dimension of the extracted information to alleviate the over-
fitting of the model. After CNN transformation, the output
results are concatenated into a matrix, which can be regarded
as the new expression of features.

(3) AGU layer: The filtered new features are passed as
input to the AGU layer, and the layer is used to train the
time series rules in the data. The AGU’s update gate controls
how much useful information needs to be passed down at the
previous and current moment. The reset gate and the DAM of
the AGU control how much past information needs to be for-
gotten. The DAM maps data changes on different activation
functions to enhance the learning ability of the model. Then,
the layer receives the sequence information and the hidden
state at the previous moment in the attention gate and learns
the weight matrix, which can express the importance of the
data. The weight matrix is used to calculate the candidate
hidden state, which helps the memory cells quickly discard
the unimportant content and enhances the learning ability of

the model. The AGU layer takes the hidden state of the last
moment in the time series as its output.

(4) Output layer: Finally, the final output value, namely
the AQI value, is obtained through the weighted sum and
processing of the fully connected layer.

IV. EXPERIMENTS
A. EXPERIMENTAL TOOLS AND DATA SET
In the experiments, the CNN-AGU model is built using Ten-
sorFlow 1.14.0-GPU, Keras2.1.0 deep learning platform, and
PyCharm 2018 3.5 × 64 development tool. The hourly air
quality data andmeteorological data from 00:00 on January 1,
2018, to 23:00 on June 30, 2021, in Shijiazhuang, Hebei
Province, China, are selected as the data set. These data are
obtained from the Shanghai Qingyue Data website and China
Urban Meteorological Data interface (NowAPI), and a total
of 39408 data pieces are collected.

According to China’s air quality evaluation standards, the
primary pollutants involved in AQI evaluation are SO2, O3,
PM2.5, NO2, PM10, and CO. By analyzing the factors affect-
ing AQI, it is found that meteorological conditions have a
certain influence on the diffusion, dilution, and accumulation
of pollutants. Under situations of relatively stable air pol-
lution emissions, AQI is closely related to typical meteoro-
logical factors such as precipitation, temperature, and wind
[35], [36]. In the experiment, meteorological factors such as
temperature, humidity, wind, and weather that affect AQI are
added to the air quality data set. Therefore, the inputs involved
inAQI prediction include thesemeteorological factors and six
primary pollutants.

B. DATA PREPROCESSING
1) MISSING DATA HANDLING
This paper analyzes the missing data from the attributes and
duration and takes corresponding processing methods to fill
in the specific missing data. Therefore, this paper proposes
a combined missing value processing method, as shown
in Table 1.

TABLE 1. Combination of missing value processing methods.

According to the combination of missing value processing
methods proposed in this paper, specific data missing situa-
tions will be elaborated as follows:

(1) In view of the lack of AQI, according to the calculation
formula of AQI, its value is determined by the maximum
value of the Individual Air Quality Index (IAQI) of various
pollutants, which is related to the corresponding pollutant
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TABLE 2. Partial original data.

concentration and has nothing to do with the duration of the
missing data. Therefore, no matter how long the duration of
themissing data is, it is necessary to analyze the concentration
values of various pollutants first to judge whether there is
any missing situation. If there is any missing concentration
value, the corresponding missing value processing should be
carried out according to the duration of the missing data.
The missing AQI will be assigned according to the max-
imum method when all the pollutant concentration values
exist.

(2) For the lack of pollutant concentration and meteorolog-
ical data, and considering the duration of the missing data,
there will be the following three situations:

1) There is no value for the concentration of a particu-
lar pollutant, and the corresponding AQI exists but is not
the maximum value of other IAQI. In this case, the IAQI
of the missing pollutant is equal to the AQI value, from
which the concentration value of the pollutant can be back-
calculated;

2) Suppose one or more data is missing for one hour.
In this case, if AQI exists and is the maximum value in
the existing pollutants IAQI data, or AQI does not exist,
it is necessary to fill each pollutant or meteorological data
by forwarding recurrent complement [37], as shown in
formula (8):

Xdt = Xdt−1 (8)

In the formula, Xd
t−1 represents the effective observed value

of d-dimensional component data at the previous time;
3) For the data missing for more than one hour, if the

forward recurrent complement method is used, the filling
value of certain data in consecutive missing periods will be
constant. The data are so smooth that the network cannot
find connections between the data well. In this case, the
moving average method fills the missing data. As shown in
formula (9):

Xdt = (Xdt−1 + X
d
t−2 + . . .+ X

d
t−k )/k (9)

Firstly, a time window is set, which is denoted as k . The
moving average method means this time window slides along
the time axis to get the average value. When calculating the
average value, the data of t − 1, t − 2, . . . , t − k time steps
are used. Xd

t−k represents the d-dimensional component data
of k time steps before the current missing time.

2) DATA NORMALIZATION
Some original data have abnormal situations, such as incon-
sistent format and repeated data, as shown in Table 2.
Therefore, before using this data set for model training and
evaluation, the experiment needs to process the original data,
such as cleaning out abnormal data and standardizing the
format.

The data in the table at 3:00 on February 28, 2020, is dupli-
cated. In the experiment, the last item of repeated data is
saved, and the repeated data before this item is deleted.
To ensure the uniform format of the input data, delete the
unit symbol of the data, such as temperature data with ◦ and
humidity data with the % symbol. Features are sometimes
not always continuous value but may be classified value.
For example, weather situations can be divided into ‘‘Over-
cast’’ and ‘‘Sunny.’’ The experiment usually needs to digitize
them [38], as shown in Table 3.

TABLE 3. Weather data preprocessing.

The sample data of the experiment are multi-dimensional.
That is, multiple features represent a sample. In the prob-
lem of AQI prediction, the factors affecting AQI include
pollutants such as CO, NO2, and some meteorological fac-
tors. The dimensions of features and magnitude of value are
different. If the original data are used directly, their influ-
ence on AQI will be different. While different features can
have the same scale through normalization, thus reducing
the influence of different values on model training, speeding
up the model convergence, and making comprehensive eval-
uation and analysis. Min-Max normalization is used in the
experiment to carry out corresponding linear transformation
processing on sample data to make the function values kept
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in the interval [0, 1] [39]. The whole process does not destroy
the existing data structure, as shown in formula (10).

yi =
xi − min

1≤j≤n

{
xj

}
min
1≤j≤n

{
xj

}
− min

1≤j≤n

{
xj

} (10)

3) THREE-DIMENSIONAL TIME SERIES
DATA CONSTRUCTION
Time series data refer to the data column information
recorded in a time sequence, obtained by indexing the time
dimension. The air quality data and meteorological data stud-
ied in this paper are also time series data. The obtained data
set S can be represented by {X1, X2, . . . ,Xn}, where n repre-
sents the number of time. Each time stepXt is a d-dimensional
vector representing the set of pollutant concentration observa-
tions andmeteorological data at a certain time point. Xt can be
expressed as {C1, C2, . . . , C11}, where C1-C7 are AQI value
and CO, NO2, O3, PM10, PM2.5, and SO2 concentration,
respectively, and C8-C11 are temperature, humidity, wind,
and weather respectively. Therefore, the dimension of the
data set is (n, d). Then the time series sample set generated
by the data set is three-dimensional data with the size of
(N, T, D), where N is the number of time slices, that is,
the number of samples, T is the number of time steps in a
sample, and D is the number of features of the input data.
In the experiment, the data set is constructed according to the
setting that the step size is one and the sequence length is 24.
Finally, the sample set’s dimensions are (Y-23, 24, 11), where
Y represents the number of time, as shown in Fig. 4.

FIGURE 4. Time series construction process.

C. DATA SET SEGMENTATION
The sample data of the experiment are limited, so we divide
the sample set into training set, verification set, and test set
according to the ratio of 6: 2: 2 [40]. Firstly, 7877 samples
are intercepted from the end of 39385 samples as the test set.
Then 23,631 learning samples are intercepted as the training
set and 7877 as the validation set.

D. MODELS ADJUSTMENT AND VALIDATION
The experiment is not only the comparison between dif-
ferent models but also the selection of models themselves.
Usually, the generalization ability of the neural network is
more robust than that of the linear model. However, many
parameters in the neural network still need to be adjusted
and selected. The experiment needs to adjust these hyper-
parameters to make the model’s generalization ability reach
its best level. The model needs to be initially evaluated on the
validation set to avoid data leakage. Once the best parameters
are found, the experiment tests the model last on the test set
and takes the error as the approximation of the generalization
error. The final experimental parameters are shown in Table 4.

TABLE 4. Models parameters.

Through the preliminary evaluation of the validation set
on the ten models, different prediction models have been
adjusted to an appropriate and effective state under the same
experimental environment, as shown in Table 5. In terms
of model training time, compared with LSTM and GRU,
AGU needs to match the current input sequence with the
corresponding hidden state at the previous moment in the
training process because of the inclusion of the attention
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FIGURE 5. True Value and the Predicted Value of MLR, SVR, RFR, CNN-AGU.

TABLE 5. Validation set experimental results.

mechanism in AGU. This matching process is used to cal-
culate the weight of the matching degree, which is limited to
the current sequence pair and is not the overall weight like the
weight of the traditional neural network models. It increases
slightly in training time, but AGU performs well in MAE,
MSE, and R2.

E. EXPERIMENTAL RESULTS
1) EXPERIMENTAL RESULTS ON AIR QUALITY DATA SET
To validate the AQI prediction model based on CNN-AGU,
the prediction results of this model are compared with the
other nine models using MAE, MSE, and R2. The experi-
mental results of eachmodel are shown in Table 6. The results
show that the evaluation indexes of the CNN-AGU prediction
model are better than other models.

(1) The R2 of traditional machine learning and statistical
models’ SVR, MLR and RFR are between 0.85 and 0.88,
which are far lower than the fitting degree of neural network
prediction models. Because SVR, MLR and RFR models
have a poor ability to learn outliers, their MAE and MSE
performance is poor. Comparedwith traditional statistical and
machine learning methods, the structure of RNN is recursive
according to the sequence direction, and the cyclic units are
connected in a chain. This structure makes the output result
become the result of the joint action of the input at that
moment and all history and finally achieves the purpose of

TABLE 6. Test set experimental results.

modeling time series. Therefore, this kind of model is more
efficient in processing temporal tasks. Compared with the
LSTM prediction model, the R2 of SVR is 0.065 lower, MAE
is 11.099 higher, andMSE is 290.359 higher. Predicted values
of SVR, RFR, MLR and CNN-AGU versus true values are
shown in Fig. 5.

(2) LSTM, GRU, and AGU are all variants of RNN in
essence. GRU has the shortest training time in the experimen-
tal process due to its relatively simple internal structure, and
the fitting effect is equivalent to LSTM. Compared with the
GRU structure, the DAM is added to AGU to make the model
more efficient in processing input data, and the addition of
the attention mechanism makes the memory cells quickly
discard unimportant content. Compared with LSTM, the R2

of AGU increases by 0.018, and MAE and MSE decrease by
1.259 and 36.3139, respectively. Compared with GRU, R2

of AGU increases by 0.0278, MAE and MSE decrease by
0.457 and 33.5379, respectively. Predicted values of LSTM,
GRU, and AGU versus true values are shown in Fig. 6.

(3) CNN can process data efficiently and extract features
automatically because of its shared convolution kernel. Com-
binedwith RNN, CNN further enhances the feature extraction
ability of the combined model. When LSTM, GRU and AGU
are combined with CNN, MAE decreases and R2 increases.
Compared with LSTM, the MAE of CNN-LSTM reduces by
0.9%, the MSE reduces by 14.35%, and R2 rises by 0.12%.
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FIGURE 6. True Value and the Predicted Value of LSTM, GRU, AGU.

FIGURE 7. True Value and the Predicted Value of CNN-LSTM, CNN-GRU, CNN-AGU.

FIGURE 8. True Value and the Predicted Value of BD-LSTM, CNN-AGU.

Compared with GRU, the MAE of CNN-GRU reduces by
8.37%, the MSE reduces by 17.59%, and R2 rises by 1.66%.
Compared with AGU, the MAE of CNN-AGU reduces by
7.26%, the MSE reduces by 6.69%, and R2 rises by 1.17%.
(4) Compared with CNN-LSTM, the MAE of CNN-AGU

is 1.8044 lower than that of CNN-LSTM, the MSE of
CNN-AGU decreases by 16.0434, and the R2 of CNN-AGU

increases by 0.0279. Compared with CNN-GRU, theMAE of
CNN-AGU is 0.322 lower than that of CNN-GRU, the MSE
of CNN-AGU decreases by 6.22, and the R2 of CNN-AGU
increases by 0.0237. The predicted values of the above three
models versus the true values are shown in Fig. 7.

(5) BD-LSTM shows the best performance in processing
sunspot time series tasks. Therefore, the experiment uses

VOLUME 10, 2022 113351



J. Wang et al.: Hybrid Air Quality Index Prediction Model Based on CNN and AGU

BD-LSTM as a baseline model and adds this model to AQI
time series tasks to verify the performance of the CNN-AGU
model. BD-LSTM is a combination of forward LSTM and
backward LSTM. It can capture the dependencies between
long-distance data. However, for excessively long sequences,
the initial information of the series is still not well trans-
mitted. AGU adds the attention mechanism based on GRU
structure, which does not rely on the order between data,
but mines information by calculating the similarity between
data. Hence, it reduces the loss of information. Moreover, the
BD-LSTM has insufficient ability to extract features. Com-
pared with the BD-LSTM prediction model, the R2 of CNN-
AGU is 0.0286 higher, MAE is 1.864 lower, and MSE is
48.547 lower. Predicted values of BD-LSTM and CNN-AGU
versus true values are shown in Fig. 8.

2) EXPERIMENTAL RESULTS ON GOLD FUTURES DATA SET
To further verify the generalization ability of the CNN-AGU,
the model is verified in predicting the gold futures price.

The gold futures data set used in this research comes
from the API interface provided by Tushare, a third-party
financial data website. There are 5827 pieces of data and nine
input items in the gold futures price data set: futures settle-
ment price, closing price, trading volume, futures holdings,
AU99.99, USD_CNY, dollar index, Dow Jones Industrial
Average, and NASDAQ index. The output of the model is the
futures closing price.

The gold futures and air quality data sets are nonlinear time
series data. The experimental results of the proposed model
and baseline models on the gold futures data set are shown
in Table 7.

TABLE 7. Experimental results on gold futures data set.

In the prediction task of gold futures price with a small
amount of data, CNN-AGU has the best MAE, MSE, and
R2 compared with the other nine models. It shows that the
proposed model has strong adaptability in new samples.

V. DISCUSSION
Compared with nine other models for predicting the AQI
task, the CNN-AGUmodel proposed in this paper is effective.
In addition, this paper also verifies the CNN-AGU model on
the gold futures data set, which is also time series data. These
experimental results show that the model proposed in this
paper is optimal compared with the baseline models on the

air quality data set with a large amount of data and the gold
futures data set with a small amount of data.

The fitting degree of LSTM, GRU, and AGU are higher
than that of SVR, MLR, and RFR from the comparative
experiments. The traditional machine learning and statistical
models are not easy to learn the in-depth information in AQI
data, so they cannot produce a high fitting degree.

Compared with LSTM and GRU, MAE, MSE and R2 of
the AGUmodel are the best. The introduction of CNN further
enhances the model’s prediction accuracy. For example, after
the introduction of CNN, MAE and MSE of CNN-LSTM,
CNN-AGU and CNN-GRU are reduced, and R2 are corre-
spondingly increased. Compared with other models, MAE,
MSE and R2 of CNN-AGU are the best. The reasons for
CNN-AGU to achieve high-precision AQI prediction are as
follows:

(1) AGU inherits the advantages of neural network and
gated technology, and effectively learns historical data by
using gated technology while reducing the probability of
‘‘vanishing gradient’’ and ‘‘exploding gradient’’. Therefore,
this model has certain advantages in learning the nonlinear
characteristics of time series data, such as air quality.

(2) AGU adds attention mechanism and DAM on the basis
of GRU, which not only enhances the sensitivity of this
kind of RNN to input data but also improves the rationality
of parameter allocation learning greatly, which enables the
model to pay attention to and remember important parts
adaptively in the learning process.

(3) CNN can automatically mine deeply hidden features
from the data. The introduction of CNN improves the model’s
data feature extraction and prediction accuracy.

VI. CONCLUSION
This paper proposes a new AQI prediction model based
on CNN-AGU. In this model, the data features extracted
by the CNN are the input data of the AGU. The AGU embeds
the attention mechanism into the gated unit, which enhances
the memory ability of the gated unit. At the same time, AGU
also embeds the DAM, which makes the gated unit more
sensitive to historical data learning. The comparative experi-
ments show that the comprehensive evaluation of CNN-AGU
is superior to the other nine models.

AQI prediction is an important research direction, and
future research is mainly divided into the following two
aspects:

(1) The experiment mainly uses the temporal attention
mechanism to process time series data. However, in real life,
factors affecting AQI include not only time series data (such
as pollutants, meteorological data, and the traffic flow) but
also spatial data (such as Point of Interest (POI) and road
network). For example, the air quality near parks is much
better than near factories in general, and the road network
strongly correlates with transportation modes. For processing
these spatial feature data, our future research work is to
introduce the spatial attention mechanism into the prediction
model.
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(2) In the development of processing time series tasks,
transformers have become popular in recent years. Compared
with CNN, this model can pay more attention to local details
[41]. The model will be more known and explored in future
research work.

REFERENCES
[1] G. Kyrkilis, A. Chaloulakou, and P. A. Kassomenos, ‘‘Development of

an aggregate air quality index for an urban Mediterranean agglomera-
tion: Relation to potential health effects,’’ Environ. Int., vol. 33, no. 5,
pp. 670–676, Jul. 2007, doi: 10.1016/j.envint.2007.01.010.

[2] P. Poursafa, M. Mansourian, M.-E. Motlagh, G. Ardalan, and R. Kelishadi,
‘‘Is air quality index associated with cardiometabolic risk factors in ado-
lescents? The CASPIAN-III study,’’ Environ. Res., vol. 134, pp. 105–109,
Oct. 2014, doi: 10.1016/j.envres.2014.07.010.

[3] X.-J. Wen, L. Balluz, and A. Mokdad, ‘‘Association between media alerts
of air quality index and change of outdoor activity among adult asthma in
six states, BRFSS, 2005,’’ J. Community Health, vol. 34, no. 1, pp. 40–46,
Sep. 2008, doi: 10.1007/s10900-008-9126-4.

[4] H. Y. Wang, J. Y. Wang, and X. H. Wang, ‘‘An AQI level forecasting
model using chi-square test and BP neural network,’’ in Proc. 2nd Int.
Conf. Intell. Inf. Process., Bangkok, Thailand, Jul. 2017, pp. 1–16, doi:
10.1145/3144789.3144817.

[5] U. Saini, R. Kumar, V. Jain, and M. U. Krishnajith, ‘‘Univariant time
series forecasting of agriculture load by using LSTM and GRU RNNs,’’
in Proc. IEEE Students Conf. Eng. Syst. (SCES), Jul. 2020, pp. 1–6, doi:
10.1109/SCES50439.2020.9236695.

[6] A. Tokgöz and G. Ünal, ‘‘A RNN based time series approach for
forecasting Turkish electricity load,’’ in Proc. 26th Signal Process.
Commun. Appl. Conf. (SIU), Izmir, Turkey, May 2018, pp. 1–4, doi:
10.1109/SIU.2018.8404313.

[7] A. U. Muhammad, A. S. Yahaya, S. M. Kamal, J. M. Adam,
W. I. Muhammad, and A. Elsafi, ‘‘A hybrid deep stacked LSTM
and GRU for water price prediction,’’ in Proc. 2nd Int. Conf. Com-
put. Inf. Sci. (ICCIS), Sakaka, Saudi Arabia, Oct. 2020, pp. 1–6, doi:
10.1109/ICCIS49240.2020.9257651.

[8] F. Landi, L. Baraldi, M. Cornia, and R. Cucchiara, ‘‘Working memory
connections for LSTM,’’ Neural Netw., vol. 144, pp. 334–341, Dec. 2021,
doi: 10.1016/j.neunet.2021.08.030.

[9] Z. Yu, D. S. Moirangthem, and M. Lee, ‘‘Continuous timescale long-short
term memory neural network for human intent understanding,’’ Frontiers
Neurorobotics, vol. 11, p. 42, Aug. 2017, doi: 10.3389/fnbot.2017.00042.

[10] K. Ohno and A. Kumagai, ‘‘Recurrent neural networks for learning long-
term temporal dependencies with reanalysis of time scale representation,’’
in Proc. IEEE Int. Conf. Big Knowl. (ICBK), Auckland, New Zealand,
Dec. 2021, pp. 182–189, doi: 10.1109/ICKG52313.2021.00033.

[11] Z. Cheng, Y. Xu, M. Cheng, Y. Qiao, S. Pu, Y. Niu, and F. Wu, ‘‘Refined
gate: A simple and effective gating mechanism for recurrent units,’’ 2020,
arXiv:2002.11338.

[12] X. Y. Li and S. Q. Jiang, ‘‘Bundled object context for referring expres-
sions,’’ IEEETrans.Multimedia, vol. 20, no. 10, pp. 2746–2760, Oct. 2018,
doi: 10.1109/TMM.2018.2811621.

[13] S. A. Abdul-Wahab, C. S. Bakheit, and S. M. Al-Alawi, ‘‘Principal compo-
nent and multiple regression analysis in modelling of ground-level ozone
and factors affecting its concentrations,’’ Environ. Model. Softw., vol. 20,
no. 10, pp. 1263–1271, Oct. 2005, doi: 10.1016/j.envsoft.2004.09.001.

[14] G. A. Grell, S. E. Peckham, R. Schmitz, S. A. McKeen, G. Frost,
W. C. Skamarock, and B. Eder, ‘‘Fully coupled ‘online’ chemistry within
the WRF model,’’ Atmos. Environ., vol. 39, no. 37, pp. 6957–6975,
Dec. 2005, doi: 10.1016/j.atmosenv.2005.04.027.

[15] D. W. Byun and K. L. Schere, ‘‘Review of the governing equations,
computational algorithms and other components of the models-3 commu-
nity multiscale air quality (CMAQ) modeling system,’’ Appl. Mech. Rev.,
vol. 59, no. 2, pp. 51–78, Mar. 2006, doi: 10.1115/1.2128636.

[16] H. Sun, D. Gui, B. Yan, Y. Liu, W. Liao, Y. Zhu, C. Lu, and N. Zhao,
‘‘Assessing the potential of random forest method for estimating solar
radiation using air pollution index,’’ Energy Convers. Manage., vol. 119,
pp. 121–129, Jul. 2016, doi: 10.1016/j.enconman.2016.04.051.

[17] S. Silva, F. M. Clemente, M. Castelli, A. Popovi, and L. Vanneschi,
‘‘A machine learning approach to predict air quality in California,’’
Complexity, vol. 2020, no. 332, pp. 1–32, Aug. 2020, doi:
10.1155/2020/8049504.

[18] M. H. Kim, Y. S. Kim, J. Lim, J. T. Kim, S. W. Sung, and C. Yoo, ‘‘Data-
driven prediction model of indoor air quality in an underground space,’’
Korean J. Chem. Eng., vol. 27, no. 6, pp. 1675–1680, Nov. 2010, doi:
10.1007/s11814-010-0313-5.

[19] Q. Yin, R. Zhang, and X. Shao, ‘‘CNN and RNN mixed model for image
classification,’’ in Proc. MATEC Web Conf., vol. 277, 2019, p. 02001, doi:
10.1051/matecconf/201927702001.

[20] H. He and F. Luo, ‘‘Study of LSTM air quality index prediction based on
forecasting timeliness,’’ IOP Conf. Earth Environ. Sci., vol. 446, no. 3,
2020, Art. no. 032113, doi: 10.1088/1755-1315/446/3/032113.

[21] T. Pu, F. Lin, Y. Zhao, and Z. Fu, ‘‘Air quality prediction method based on
improved wavelet denoising and LSTM,’’ J. Phys., Conf., vol. 1748, no. 3,
Jan. 2021, Art. no. 032033, doi: 10.1088/1742-6596/1748/3/032033.

[22] R. Chandra, S. Goyal, and R. Gupta, ‘‘Evaluation of deep learning mod-
els for multi-step ahead time series prediction,’’ IEEE Access, vol. 9,
pp. 83105–83123, 2021, doi: 10.1109/ACCESS.2021.3085085.

[23] X. Zhou, J. Xu, P. Zeng, and X. Meng, ‘‘Air pollutant concentration
prediction based on GRU method,’’ J. Phys., Conf., vol. 1168, Feb. 2019,
Art. no. 032058, doi: 10.1088/1742-6596/1168/3/032058.

[24] J. Becerra-Rico, M. A. Aceves-Fernández, K. Esquivel-Escalante, and
J. C. Pedraza-Ortega, ‘‘Airborne particle pollution predictive model using
gated recurrent unit (GRU) deep neural networks,’’ Earth Sci. Informat.,
vol. 13, no. 3, pp. 821–834, May 2020, doi: 10.1007/s12145-020-00462-9.

[25] H. Xie, L. Ji, Q. Wang, and Z. Jia, ‘‘Research of PM2.5 prediction
system based on CNNs-GRU in Wuxi urban area,’’ IOP Conf. Earth Env-
iron. Sci., vol. 300, no. 3, Jul. 2019, Art. no. 032073, doi: 10.1088/1755-
1315/300/3/032073.

[26] P. Mei, M. Li, Q. Zhang, G. Li, and L. Song, ‘‘Prediction model of drinking
water source quality with potential industrial-agricultural pollution based
on CNN-GRU-attention,’’ J. Hydrol., vol. 610, Jul. 2022, Art. no. 127934,
doi: 10.1016/j.jhydrol.2022.127934.

[27] Y. Sun and Q. Liu, ‘‘Attribute recognition from clothing using a
faster R-CNN based multitask network,’’ Int. J. Wavelets, Multireso-
lution Inf. Process., vol. 16, no. 2, Mar. 2018, Art. no. 1840009, doi:
10.1142/S021969131840009X.

[28] C. Guo, H. Wang, T. Jian, Y. He, and X. Zhang, ‘‘Radar target recognition
based on feature Pyramid fusion lightweight CNN,’’ IEEE Access, vol. 7,
pp. 51140–51149, 2019, doi: 10.1109/ACCESS.2019.2909348.

[29] Z. Wang, W. Zheng, C. Song, Z. Zhang, J. Lian, S. Yue, and S. Ji,
‘‘Air quality measurement based on double-channel convolutional neural
network ensemble learning,’’ IEEE Access, vol. 7, pp. 145067–145081,
2019, doi: 10.1109/ACCESS.2019.2945805.

[30] Z. Wang, S. Yue, and C. Song, ‘‘Video-based air quality measurement with
dual-channel 3-D convolutional network,’’ IEEE Internet Things J., vol. 8,
no. 18, pp. 14372–14384, Sep. 2021, doi: 10.1109/JIOT.2021.3068375.

[31] C. X. Liu, K. L. Li, J. Liu, and C. Chen, ‘‘LHCnn: A novel efficient
multivariate time series prediction framework utilizing convolutional neu-
ral networks,’’ in Proc. 21st Int. Conf. High Perform. Comput. Commun.,
IEEE 17th Int. Conf. Smart City, IEEE 5th Int. Conf. Data Sci. Syst.
(HPCC/SmartCity/DSS), Zhangjiajie, China, Aug. 2019, pp. 2324–2332,
doi: 10.1109/HPCC/SmartCity/DSS.2019.00323.

[32] B. Xin and W. Peng, ‘‘Prediction for chaotic time series-based AE-CNN
and transfer learning,’’ Complexity, vol. 2020, pp. 1–9, Sep. 2020, doi:
10.1155/2020/2680480.

[33] Y. Qiao, Y. Wang, C. Ma, and J. Yang, ‘‘Short-term traffic flow
prediction based on 1DCNN-LSTM neural network structure,’’ Mod-
ern Phys. Lett. B, vol. 35, no. 2, Oct. 2020, Art. no. 2150042, doi:
10.1142/S0217984921500421.

[34] D. T. Tran, A. Iosifidis, J. Kanniainen, and M. Gabbouj, ‘‘Temporal
attention-augmented bilinear network for financial time-series data analy-
sis,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 5, pp. 1407–1418,
May 2019, doi: 10.1109/TNNLS.2018.2869225.

[35] C. H. Zhang, F. S. Li, L. M. Chao, and J. S. Guo, ‘‘Correlations
between air quality status and meteorological factors in Hohhot city,’’
J. Arid Land Resour. Environ., vol. 32, no. 2, pp. 87–93, Feb. 2018, doi:
10.13448/j.cnki.jalre.2018.053.

[36] B. V. Bhaskar and V. M. Mehta, ‘‘Atmospheric particulate pollutants and
their relationship with meteorology in Ahmedabad,’’ Aerosol Air Quality
Res., vol. 10, no. 4, pp. 301–315, 2010, doi: 10.4209/aaqr.2009.10.0069.

[37] S. Lim, S. J. Kim, Y. Park, and N. Kwon, ‘‘A deep learning-based time
series model with missing value handling techniques to predict various
types of liquid cargo traffic,’’ Exp. Syst. Appl., vol. 184, Dec. 2021,
Art. no. 115532, doi: 10.1016/j.eswa.2021.115532.

VOLUME 10, 2022 113353

http://dx.doi.org/10.1016/j.envint.2007.01.010
http://dx.doi.org/10.1016/j.envres.2014.07.010
http://dx.doi.org/10.1007/s10900-008-9126-4
http://dx.doi.org/10.1145/3144789.3144817
http://dx.doi.org/10.1109/SCES50439.2020.9236695
http://dx.doi.org/10.1109/SIU.2018.8404313
http://dx.doi.org/10.1109/ICCIS49240.2020.9257651
http://dx.doi.org/10.1016/j.neunet.2021.08.030
http://dx.doi.org/10.3389/fnbot.2017.00042
http://dx.doi.org/10.1109/ICKG52313.2021.00033
http://dx.doi.org/10.1109/TMM.2018.2811621
http://dx.doi.org/10.1016/j.envsoft.2004.09.001
http://dx.doi.org/10.1016/j.atmosenv.2005.04.027
http://dx.doi.org/10.1115/1.2128636
http://dx.doi.org/10.1016/j.enconman.2016.04.051
http://dx.doi.org/10.1155/2020/8049504
http://dx.doi.org/10.1007/s11814-010-0313-5
http://dx.doi.org/10.1051/matecconf/201927702001
http://dx.doi.org/10.1088/1755-1315/446/3/032113
http://dx.doi.org/10.1088/1742-6596/1748/3/032033
http://dx.doi.org/10.1109/ACCESS.2021.3085085
http://dx.doi.org/10.1088/1742-6596/1168/3/032058
http://dx.doi.org/10.1007/s12145-020-00462-9
http://dx.doi.org/10.1088/1755-1315/300/3/032073
http://dx.doi.org/10.1088/1755-1315/300/3/032073
http://dx.doi.org/10.1016/j.jhydrol.2022.127934
http://dx.doi.org/10.1142/S021969131840009X
http://dx.doi.org/10.1109/ACCESS.2019.2909348
http://dx.doi.org/10.1109/ACCESS.2019.2945805
http://dx.doi.org/10.1109/JIOT.2021.3068375
http://dx.doi.org/10.1109/HPCC/SmartCity/DSS.2019.00323
http://dx.doi.org/10.1155/2020/2680480
http://dx.doi.org/10.1142/S0217984921500421
http://dx.doi.org/10.1109/TNNLS.2018.2869225
http://dx.doi.org/10.13448/j.cnki.jalre.2018.053
http://dx.doi.org/10.4209/aaqr.2009.10.0069
http://dx.doi.org/10.1016/j.eswa.2021.115532


J. Wang et al.: Hybrid Air Quality Index Prediction Model Based on CNN and AGU

[38] J. Wang, J. Li, X. Wang, J. Wang, and M. Huang, ‘‘Air quality prediction
using CT-LSTM,’’ Neural Comput. Appl., vol. 33, no. 10, pp. 4779–4792,
Nov. 2020, doi: 10.1007/s00521-020-05535-w.

[39] L. Munkhdalai, T. Munkhdalai, K. H. Park, H. G. Lee, M. Li, and
K. H. Ryu, ‘‘Mixture of activation functions with extended min-
max normalization for forex market prediction,’’ IEEE Access, vol. 7,
pp. 183680–183691, 2019, doi: 10.1109/ACCESS.2019.2959789.

[40] I. Goodfellow, Y. Bengio, and A. Courville, ‘‘Machine learning basics,’’
in Deep Learning. Cambridge, MA, USA: MIT Press, 2016, pp. 118–120.
[Online]. Available: https://www.deeplearningbook.org/

[41] Z.Wang, Y. Yang, and S. Yue, ‘‘Air quality classification and measurement
based on double output vision transformer,’’ IEEE Internet Things J., vol. 9,
no. 21, pp. 20975–20984, Nov. 2022, doi: 10.1109/JIOT.2022.3176126.

JINGYANG WANG received the B.Eng. degree
in computer software from Lanzhou University,
China, in 1995, and the M.Sc. degree in soft-
ware engineering from the Beijing University of
Technology, China, in 2007. He is currently a
Professor with the School of Information Sci-
ence and Engineering, Hebei University of Sci-
ence and Technology, Shijiazhuang, China. His
research interests include machine learning, natu-
ral language processing, big data processing, and
distributed computing.

LUKAI JIN is currently pursuing the master’s
degree with the Hebei University of Science
and Technology. Her research interests include
machine learning and deep learning.

XIAOLEI LI is currently pursuing the master’s
degree with the Hebei University of Science
and Technology. His research interests include
machine learning and deep learning.

SIYUAN HE is currently pursuing the bache-
lor’s degree with the Hebei University of Science
and Technology. Her research interests include
machine learning and deep learning.

MIN HUANG is currently an Associate Pro-
fessor with the School of Information Science
and Engineering, Hebei University of Science
and Technology. His research interests include
machine learning, data processing and security,
and artificial intelligence.

HAIYAO WANG received the B.Eng. degree
in mechanical design and manufacturing, and
the M.Sc. degree in industry engineering from
the Hefei University of Technology, China, in
1998 and 2009, respectively. She is currently an
Associate Professor with the School of Ocean
Mechatronics, Xiamen Ocean Vocational College,
Xiamen, China. Her research interests include
machine learning, process optimization, and effi-
ciency improvement.

113354 VOLUME 10, 2022

http://dx.doi.org/10.1007/s00521-020-05535-w
http://dx.doi.org/10.1109/ACCESS.2019.2959789
http://dx.doi.org/10.1109/JIOT.2022.3176126

