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ABSTRACT Designing an effective feature selection scheme (FSS) is an inevitable solution for top-level
balancing contrastive-correlated indices, namely transient processing time (TPT) and transient prediction
accuracy (TPA) on transient stability assessment (TSA). Achieving low TPT and high TPA have a tight
relationship in selecting the most relevant transient point features (MRTPFs) survived by applying com-
prehensive FSS on m-variate transient trajectory features (mVTTFs). Hence, we introduce dyadic 24-way
hybrid FSS (D24WHFSS) to select MRTPFs frommVTTFs. The D24WHFSS comprises 24 permutations of
the chained four-stage hybrid structure called 24-way hybrid FSS (24WHFSS). The 24WHFSS raised by bi-
incremental wrapper mechanism (bi-IWM) contains incremental wrapper subset selection (IWSS) and IWSS
with replacement (IWSSr). Each hybrid scenario is equipped with symmetric uncertainty (SU) (filter phase)
and dual support vector-based classifiers (DSVCs) (wrapper phase). Embedded DSVCs into IWSS/ IWSSr
include kernel support vector machine (kSVM) and k-twin SVM (kTWSVM). By plugging dual kernel
function pairs (DKFPs) into DSVCs, 24-way SUbi-IWMDSVCs is exerted in the varied twofold repetition
(dyadic 24WHFSS). In the first KFP (KFP1), the radial basis function (RBF) is situated in the DSVCs of
bi-IWM. In KFP2, the dynamic time warping (DTW) and polynomial (Poly) kernels are used in 24-way SUbi-
IWMDSVCs that the DTW and Poly kernels plugged into SUIWSSkSVM/ SUIWSSrkSVM and SUIWSSkTWSVM/
SUIWSSrkTWSVM, respectively. Finally, the efficacy of D24WHFSS-based MRTPFs in TSA is evaluated via
cross-validation. The results show that D24WHFSS has a TPA of 99.25% and a TPT of 102.607milliseconds
for TSA.

INDEX TERMS Hybrid feature selection scheme, most relevant transient point features, transient stability
assessment.

ACRONYMS
DM Data Mining.
FSP Fast-Sudden Phenomena.
HPA High Prediction Accuracy.
LPT Low Processing Time.
HDS High Dimensional Space.
IRFs Irrelevant and Redundant Features.
FS Feature Selection.
TSA Transient Stability Assessment.
PMUs Phasor Measurement Units.
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TPT Transient Processing Time.
TPA Transient Prediction Accuracy.
IRTFs Irrelevant-Redundant Transient Features.
HDTS High Dimensional Transient Space.
FSS Feature Selection Scheme.
MRTPFs Most Relevant Transient Point Features.
MLCs Machine Learning Classifiers.
CTS Compact Transient Space.
ITPs Information Theory Principles.
MI Mutual Information.
mRMR Minimum-Redundancy and Maximum-

Relevance.
FCBF Fast Correlation-Based Filter.
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TTC Transfer Capability Calculation.
SVM Support Vector Machine.
NMI Normalized Mutual Information.
BPSO Binary Particle Swarm Optimization.
FICA Fuzzy Imperialist Competitive Algorithm.
IWSS Incremental Wrapper Subset Selection.
MWFWs Mono-Way Filter-Wrapper Structure.
IMRTPFs Invisible MRTPFs.
mVTTFs m-Variate Transient Trajectory Features.
SWSD Single-Window Streaming Data.
TSP Transient Stability Prediction.
D24WHFSS Dyadic 24-Way Hybrid FSS.
bi-IWM bi-Incremental Wrapper Mechanism.
SU Symmetric Uncertainty.
TU Transient Univariate.
PSS/E Power System Simulator for Engineering.
MATLAB Matrix Laboratory.
IWSSr IWSS with Replacement.
DSVCs Dual Support Vector-based Classifiers.
kSVM kernel Support Vector Machine.
kTWSVM kernel Twin Support Vector Machine.
DKFPs Dual Kernel Function Pairs.
RBF Radial Basis Function.
Poly Polynomial.
DTW Dynamic Time Warping.
TPFs Transient Point Features.
L4SH Linked 4-Stage Hybrid.
6L4SH Six-type of L4SH.
OFs Optimal Features.
ITIs Information Theory-based Indices.
3FPs Triple Fundamental Principles.
GEPSVM Generalized Proximal Eigenvalue SVM.
KKT Karush-Kuhn-Tucker.
2STDCM Two-Step Transient Data Creation

Mechanism.
VOLT Bus Voltages.
VANGLE Voltage Phase Angle.
PELEC Machine Active Power.
QELEC Machine Reactive Power.
QLOAD Reactive Power Consumption.
PCS Python-based Contingency Simulation.
API Application Program Interface.
NETS-NYPS New England Test System-New York

Power System.
CONL Convert Load.
Acc Accuracy.
TPR True Positive Rate (Sensitivity).
TNR True Negative Rate (Specificity).
OWT Observation Window Time.
3MWHFSSs three Mono-Way Hybrid FSSs.
3MCWHFSSs three Multi-Circular-Way Hybrid FSSs.

BMHFSS Bi-Mode Hybrid FSS.
CPQHFSS Cross-Permutation-based Quad-Hybrid FSS
PITHS Partial-Injective Trilateral Hybrid Scheme.

NOTATION
fi ith feature.
fhi Feature with ith-highest SU.
Acc(fhi) Learningmodel accuracy based on fhi.
Incr: #i ith increments in IWSS/ IWSSr tree.
CLtrain(fi) Training procedure of classification

learner based on fi.
param Recording learning parameters.
CLtest(fi, param) Testing procedure of model based on

param and fi.
OCTVsBFi Output channels transient values

related to ith basic features; i:
{VOLT/VANGLE/PELEC/QELEC/QLOAD}.

TUx x th transient univariate in mVTTFs.
xMRTPFs MRTPFs subset related to TUx.
UMRTPFs1:m Union result of 1MRTPFs to

mMRTPFs.

TU
TPFsj
x jth TPFs of x th TU.

H (X ) Entropy of X; X:{TU
TPFsj
x , target

class}.
Max Maximum function.
Min Minimum function.
Var Variance function.
RankTPFsTUx Ranked TPFs of TUxbased on SU val-

ues.
Z zRTPFsix Contain the Zonez-specific RTPFs per

iD24WHFSS.
Z1:4URTPFsix Contain union result of Zone1-

Specific RTPFs to Zone4-specific
RTPFs per iD24WHFSS.

Z1:4MRTPFs1:4x Contain union result of obtained
1D24WHFSS-specific CRTPFs and
2D24WHFSS-specific CRTPFs.

DKFPi ith kernel function pair; i: {(RBF,
RBF)/(DTW, Poly)}.

OFsstagestotal Struct for recording the L4SH1:6-
specific OFs related per zone of
iD24WHFSS.

I. INTRODUCTION
Nowadays, the application of data mining (DM) technologies
[1], [2] for promoting the prediction quality of fast-sudden
phenomena (FSP) in core strategic industries (e.g., the energy
industry, health industry, transportation industry, and so on)
leads to realizing intelligent insights for system stakehold-
ers [3], [4], [5]. Measuring FSP prediction quality depends
on contrastive-correlated metrics, namely the accuracy of
system status prediction and processing time for system status
labeling. Achieving high prediction accuracy (HPA) and low
processing time (LPT) simultaneously is defined ultimate
goal in supervision-required industries. Such targeting in cog-
nition of system phenomena markedly reduces system oper-
ator’s directing challenges in conducting the timely-accurate
intervention actions to return the system to a normal operation
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state. However, a significant concept called high dimen-
sional space (HDS) negatively overshadows the performance
of DM-based tools to reach HPA and LPT-based effective
decision-making on the system under study. The HDS arises
from massive variables observed by software and hardware-
oriented monitoring systems that irrelevant and redundant
features (IRFs) populate a considerable portion of HDS. The
presence of IRFs in DM-based extracting pattern procedures
reduces prediction accuracy and increases the processing
time related to unseen case labeling. Hence, the problem of
dimensionality is a critical topic in pattern recognition [6],
[7]. The right solution presented by DM experts to handle
the HDS is termed the feature selection (FS) process [8], [9].
Applying FS-based techniques on HDS be caused discarding
IRFs and surviving the most relevant ones. The selected
subset encompasses features with minimum redundancy and
maximum relevance criteria that promise low processing time
and high accuracy prediction regarding FSP occurred in high-
risk industries.

The energy sector as a sensitive industry includes the
strategic product, namely electricity. Electric power has
an incomparable role in economic prosperity and meeting
human needs in modern society by guaranteeing the survival
and continued growth of downstream to upstream industries.
Hence, power system operational reliability assessment is a
24/7 supervisory support to ensure a stable power supply. One
of the significant branches of dynamic stability assessment of
the power grid is transient stability assessment (TSA) [10].
TSA aims to predict the transient stability status based on
the data analytics dashboard raised by coupling DM tech-
nologies and transient data obtained by phasor measurement
units (PMUs) [11] so that the system operator triggers a
prompt-correct reaction against the unstable state. However,
on the way to the synchronal achievement of low tran-
sient processing time (TPT) (low prediction time and small
observation window) and high transient prediction accuracy
(TPA) on TSA, the irrelevant-redundant transient features
(IRTFs) in high dimensional transient space (HDTS) is the
main obstacle. To solve this concern, applying the feature
selection scheme (FSS) on HDTS to select the most relevant
transient point features (MRTPFs) should be on the agenda.
The IRTFs elimination and streaming of more information
between MRTPFs and target class cause facilitate the well-
training process condition of machine learning classifiers
(MLCs) for high TPA. On the other hand, MRTPFs-based
compact transient space (CTS) brings low TPT (low predic-
tion time due to CTS-based faster training procedure; and
selecting small observation window from MRTPFs subset),
which causes to pass the time constraint in demanded correc-
tive actions [12]. Considering the above points, designing the
effective FSS for high-performance TSA has become a hot
topic for DM specialists.

II. RELATED WORKS
Scrutinizing glance at the FS-based TSA studies manifests
that applied FS mechanisms to find optimal transient fea-

tures are mounted on information theory principles (ITPs)
(filter) and ITPs-MLCs approaches (filter-wrapper). In the
case of filter-oriented works like [13] and [14], power and
angle-based HDTS is targeted by mutual information (MI)
metric to gain the best quantify of redundancy and relevance
(minimum-redundancy and maximum-relevance (mRMR)).
Another way of measuring the relevancy of observed fea-
tures for monitoring the induction motor is the extended
Relief called ReliefF elaborated in [15]. In [16], the fast
correlation-based filter (FCBF) is situated as the primary
stage in the transfer capability calculation (TTC) model,
which by selecting optimal features helped the grid opera-
tors in addressing triple issues, namely static security, static
voltage stability, and transient stability. In the case of the
hybrid FS frameworks used in transient studies, [17] pro-
poses the Relief and support vector machine (SVM)-based
filter-wrapper combination to extract the optimal features
on transient trajectories data set. In [18], hybrid FSS is
appeared by integrating the normalized mutual information
(NMI) (filter phase) and binary particle swarm optimiza-
tion (BPSO) (wrapper phase) for high-performance tran-
sient stability status prediction. To surmount the HDTS, [19]
presents the point and trajectory-feeding hybrid algorithm in
the form of coupling fuzzy imperialist competitive algorithm
(FICA) and incremental wrapper subset selection (IWSS)
called FICA-IWSS that includes MI and conditional MI
metrics in the filter phase and kernel SVM in the wrap-
per phase. In [20], a BinJava-based kernelized fuzzy rough
sets (KFRS) approach is conducted on the entire feature
space for selecting optimal feature subsets. In [21], coupling
the kernelized fuzzy rough sets (KFRS) and the memetic
algorithm is applied to transient data to survive the optimal
transient features for TSA of power systems. In [22], cross-
permutation-based quad-hybrid FSS (CPQHFSS) to select
optimal features from TMEs. The CPQHFSS consists of four
filter-wrapper blocks (FWBs) in the form of twin two-FWBs
mounted on two-mechanism of the incremental wrapper.
Reference [23] presents the partial-injective trilateral hybrid
scheme (PITHS) based on horizontally integrated mode is
applied on transient multivariate trajectory features (TMTFs)
which consist of two nested trilateral phases namely nested
trilateral filter phase (NTFP) and the nested trilateral wrapper
phase (NTWP).

Focusing on the past FS-based TSA studies (e.g., [13],
[14], [15], [16], [17], [18], [19], [22], and [23]) revealed
the released strategies suffer from the mono-way filter-
wrapper structure (MWFWS) that causes failure in the
precise exploring MRTPFs from nonlinear HDTS. Pass-
ing the weak-learner MWFWS gates requires designing
the well-structured FSS supported by a multi-level circular
learning model (MLCLM). Performing MLCLM on foggy
non-separable transient data brings the retrieving of invis-
ible MRTPFs (IMRTPFs). On the other hand, in some
of FS-based TSA like [20] and [21], applying MLCLM
on m-variate transient trajectory features (mVTTFs) set to
single-window streaming data (SWSD) mode stemmed from
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sticking transient univariates together leads to pruning fea-
tures defeated by selected features according to filter-wrapper
metrics (a slight distinction between discarded features and
optimal ones). In this regard, replacing the sectoral-oriented
view with the SWSD mode is compelling in the feature
selection process. Generally, overcoming mentioned obsta-
cles has a direct impact on achieving timely-accurate transient
stability prediction (TSP).

The trilateral contributions of this paper to handle FS-based
TSP problems faced by transient analysts are categorized as
follows:

• A novel feature selection algorithm named the dyadic
24-way hybrid FSS (D24WHFSS) is proposed to extract
optimal features for high-performance TSA. The offered
scheme including the linked four-stage hybrid model
in a 24-way manner (called 24WHFSS) mounted on
the bi-incremental wrapper mechanism (bi-IWM). The
bi-IWM is decorated by symmetric uncertainty (SU)-
based filter phase and hyperplane-based MLCs as
wrapper phase. To reach CTS containing discrimina-
tive transient features, HDTS is fed to kernel-based
in the varied twofold-repetition of 24WHFSS (dyadic
24WHFSS).

• Based on the SWSD in FS, the univariates of mVTTFs
are fed to the D24WHFSS separately. Besides extracting
univariate-specific MRTPFs in such an approach, the
risk of discarding optimal features in the streamed fea-
ture set induced by pasting together features of transient
univariates (TUs) (TU1 to TUm) will be close to zero.

• The performance of D24WHFSS-basedMRTPFs in TSP
is compared with survived MRTPFs by various FS algo-
rithms via cross-validation.

The rest of the article is structured as follows: The proposed
D24WHFSS are elaborated in Section 3. Experimental results
of exerting D24WHFSS on mVTTFs and MRTPFs-based
TSP are depicted in Section 4. Also, Section 4 ending is
explained the performance comparison of the D24WHFSS-
based MRTPFs with the optimal features survived by other
FS techniques in TSA. Finally, the conclusion is remarked in
Section 5.

III. DYADIC 24-WAY HYBRID FEATURE SELECTION
SCHEME (D24WHFSS)
The overall workflow for high-performance TSA centered
on D24WHFSS is depicted in Fig. 1. As the preliminary
step, the contingency simulation to construct transient data
set is performed by a triad of SIEMENS power system sim-
ulator for engineering (PSS/E) software, Python technology,
and matrix laboratory (Matlab) tools. Next, dimensionality
reduction of HDTS by introducing D24WHFSS is on the
agenda. The proposed hybrid FSS is driven by 24 permu-
tations of the chained four-stage hybrid models mounted
on bi-IWM called 24WHFSS. The bi-IWM encompasses
incremental wrapper subset selection (IWSS) and IWSS
with replacement (IWSSr), which is supported by SU and

dual support vector-based classifiers (DSVCs) as the filter
and wrapper phases of D24WHFSS, respectively (filterbi-
IWMswrapper including SUIWSSDSVCs and SUIWSSrDSVCs).
The DSVCs contain kernel support vector machine (kSVM)
and k-twin SVM (kTWSVM). Based on setting dual kernel
function pairs (DKFPs) into DSVCs, 24WHFSS is con-
ducted in varied twofold repetition (dyadic 24WHFSS).
Each KFP contains two functions: the first function is
the bi-IWMkSVM-specific kernel and the second function
is the bi-IWMkTWSVM-specific kernel. As the first KFP
(KFP1), the radial basis function (RBF) kernel plugged
into DSVCs of bi-IWM that we have four-stage hybrid
scenarios including SUIWSSRBFSVM, SUIWSSRBFTWSVM,
SUIWSSrRBFSVM, and SUIWSSrRBFTWSVM. In KFP2,
SUIWSSkSVM-SUIWSSrkSVM-specified kernel is dynamic
timewarping (DTW) and SUIWSSkTWSVM-SUIWSSrkTWSVM-
specified kernel is polynomial (Poly) kernel. Finally, the
efficacy rate of survived MRTPFs by D24WHFSS in TSP
is measured via cross-validation. In the continuation of the
third step, we compare the performance of D24WHFSS-
based MRTPFs with extracted discriminative features by
other feature selection algorithms.

In D24WHFSS, the bi-IWM accompanied by filter and
wrapper methods plays the pivot role in extracting MRTPFs
of mVTTFs to achieve low TPT and high TPA. Accord-
ing to the overall summary of D24WHFSS depicted in
Fig. 2, first, the filter phase is conducted per TUx of
mVTTFs for ranking the transient point features (TPFs)
of TUx (RankTPFsTUx). Next, RankTPFsTUx is entered into
24WHFSS, which is repeated two times (1D24WHFSS and
2D24WHFSS) according to various two KFPs (See Fig. 2,
sprinkler symbols), namely (RBF, RBF), (DTW, Poly) pairs.
Each iD24WHFSS is categorized into four learning zones.
Each zone consists of linked four-stage hybrid (L4SH) struc-
ture (SUIWSSkSVM, SUIWSSkTWSVM, SUIWSSrkSVM, and
SUIWSSrkTWSVM) which led by one of them (Zone1 led
by SUIWSSkSVM, Zone2 led by SUIWSSkTWSVM, Zone3

led by SUIWSSrkSVM, and Zone4 led by SUIWSSrkTWSVM).
Based on the starter hybrid scenario in each zone, by per-
muting of the rest hybrid scenarios (three scenarios have
six permutations), we have six types of L4SH structure
(6L4SH structure) per zone of iD24WHFSS. Based on
the chained-face of L4SH, the output of each hybrid sce-
nario will be the input of the other scenario. After enter-
ing RankTPFsTUx into 6L4SH of zones (See Fig. 2, blue-
face dotted line), the optimal features (OFs) obtained by
L4SH1 to L4SH6 (xOFs1 to xOFs6) are recorded. Then,
the intersection of zonez L4SH1:6-specific selected fea-
tures is labeled as iD24WHFSS-based xzonez relevant TPFs
(iD24WHFSS-based xZzRTPFs). Then, the union operator is
applied on iD24WHFSS-based xZ1RTPFs to iD24WHFSS-
based xZ4RTPFs for selecting iD24WHFSS-based xZ1:4

unified RTPFs (iD24WHFSS-based xZ1:4URTPFs) (See
Fig. 2, red-face dotted line). Based on setting DKFPs
on 24WHFSS, we have 1D24WHFSS-based xZ1:4URTPFs
and 2D24WHFSS-based xZ1:4URTPFs sets. To achieve
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FIGURE 1. Overall workflow of FS-based TSA via D24WHFSS.

TUx-specificMRTPFs (xMRTPFs), the union of 1D24WHFSS-
based xZ1:4URTPFs and 2D24WHFSS-based xZ1:4URTPFs
is calculated. Finally, the union result of 1MRTPFs to
mMRTPFs is called UMRTPFs1:m subset.

Besides the visual summary of D24WHFSS (See Fig. 2),
for more details about the main functions of the proposed
FSS, the pseudocode of D24WHFSS is shown in Table 1.
According to Table 1, ‘SUCalc’ for SU-based TPFs weight-
ing per transient univariate (TU1 to TUm) is situated in
the main body of D24WHFSS as a primary filter-oriented
function (See Table 1, Line 1-5). After ranking the weights
of TPFs1 to TPFsl related to TPFsSUTUx in descending
order (Line 7), the necessary condition for entering each
TUx into 24WHFSS decorated in varied two-fold repetition
based on DKFPs (Line 9) is provided. The RankTPFsSUTUx

is fed to iD24WHFSS designed by the four-zone contains
the linked four-stage hybrid structure (Line 11, Zone4SH).
Each zone of iD24WHFSS (Line 12) is led by the starter
(or leader) hybrid scenario. By execution of starter leader
in each zone of iD24WHFSS (IWSS (RankTPFsTUx, 1DKFPi,
Classifier {1}); IWSS (RankTPFsTUx, 2DKFPi, Classifier
{2}); IWSSr (RankTPFsTUx, 1DKFPi, Classifier {1}); IWSSr
(RankTPFsTUx, 2DKFPi, Classifier {2})), the optimal fea-
tures of RankTPFsSUTUx is calculated (ziOFs

Leader
x ) (Line 13).

On the other hand, the permutation of the three remaining
hybrid scenarios (containing IWMs of Zone4SH without
starter IWM) is obtained as

[z
i6L4SHx

]
6×3 (Line 14 and

Line 15). Hence, z
i6L4SHxand

z
iOFs

Leader
x are considered

as arguments of the ‘Link4SH’ function (Line 16) select-
ing six subsets of OFs (1:6OFs) per zone of iD24WHFSS.
Based on the last command of ‘Link4SH’ (Line 18 of
the ‘Link4SH’ function), the union result of 1:6OFs is
obtained as the Z zRTPFsix set. By calculating Z zRTPFsix
per zone of iD24WHFSS, the union of Z1RTPFsix to
Z4RTPFsix is recorded as Z1:4URTPFsix (Line 23). Repeat-
ing the above-mentioned scenario (Line 10-23) for all
KFPi (two KFPs) cause to obtain two Z1:4URTPFsixsets.

After conducting union operation on 1D24WHFSS-
specific URTPFs and 2D24WHFSS-specific URTPFs
(Z1:4URTPFs1x to Z1:4URTPFs2x), the Z1:4MRTPFs1:2x
(TUx-specific MRTPFs) is obtained (Line 30). Finally,
by extracting the MRTPFs per TUx (Z1:4MRTPFs1:21 to
Z1:4MRTPFs1:2m ), the union result of them is labeled as
UMRTPFs1:m. For a better understanding of filter and bi-
IWM formulations, refer to Sections III-A to III-C.

Besides the explanations of D24WHFSS in the form
of the pseudocode of its main body and various func-
tions, we discuss the complexity of D24WHFSS in this
section. The complexity of D24WHFSS is based on the bi-
IWM (IWSS and IWSSr) accompanied by DSVCs (kSVM
and kTWSVM). By focusing on these significant ele-
ments, we can approximate the complexity of D24WHFSS.
In the worst case, the complexity of IWSS and IWSSr is
O(n) and O(n2), respectively [24]. Also, the complexity
of SVM and TWSVM is O(n3) and O(2×(n/2)3), respec-
tively [25]. Hence, the complexity of IWSSkSVM/kTWSVM

is O(max{(n×n3), (n×2×(n/2)3)}) and IWSSrkSVM/
kTWSVM

has O(max{(n2×n3), (n2×2×(n/2)3)}) complexity. Since
the complexity of the SVM is 4 times larger than of
the TWSVM, the complexity of SUIWSSkSVM/kTWSVM

and SUIWSSkSVM/kTWSVM will be equal to O(n×n3) and
O(n2×n3), respectively. On the other hand, [24] results show
that the complexity of IWSSr is near to IWSS in the presence
of the compacted space of optimal features in wrapper iter-
ations. Consequently, according to the D24WHFSS scheme,
D24WHFSS has O(c×n4) complexity.

A. BI-INCREMENTAL WRAPPER MECHANISM (BI-IWM)
1) IWSS
The IWSS [27] is one of the IWM, which is used in variant
forms in six types of the chained four-stage hybrid scenarios
embedded in the D24WHFSS four-zone. Two approaches,
including the ITPs (filter) and MLCs (wrapper), have a direct
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FIGURE 2. Overall process of D24WHFSS.
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TABLE 1. The pseudocode of the D24WHFSS.
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TABLE 1. (Continued.) The pseudocode of the D24WHFSS.

relationship in the growth of IWSS tree branches. First,
features ranking in descending order based on information
theory-based indices (ITIs) is performed to determine how
features are entered into the IWSS tree. Then, the first branch
of the IWSS tree grows by training the MLC via the feature

with the highest ITI (fh1), and the prediction accuracy in the
presence of fh1 (Acc(fh1)) is obtained. The subsequent growth
is related to the participation of the second-rank feature (fh2)
with fh1 to train MLC, and the obtained result is labeled as
Acc(fh1, fh2). If the comparison of Acc(fh1,fh2) and Acc(fh1)
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FIGURE 3. IWSS algorithm [22].

FIGURE 4. IWSSr algorithm [22].

reports superiority of coupling fh1and fh2, the fh3 added to
(fh1,fh2) as 3rd element for MLC training. On the other hand,
if the Acc(fh1, fh2) is lower than Acc(fh1), fh2 is discarded from
the candidate file, and a couple of fh3 and fh1 are used for
MLC training. An example of how the IWSS algorithmworks
is shown in Fig. 3.

2) IWSSr
Another IWM accompanied by IWSS for selecting opti-
mal features in D24WHFSS is the IWSSr algorithm [24].

According to the dual basic requirements to form the IWSS
tree (ITPs and MLCs), the IWSSr is no exception in this
matter. The IWSSr works differently than IWSS in the tree
branches grow. After sorting features based on ITIs, fh1 is
placed in the candidate file as the first element and used
for training the MLC. After obtaining Acc(fh1), two branches
develop from the fh1-based node. First, fh1 is replaced with
fh2 (See Fig. 4, Node 2), and MLC is trained by fh2. Sec-
ond, couple fh1 and fh2 (See Fig. 4, Node 3) participate in
MLC training. According to Fig. 4, the obtained results is
manifested that among Node 1 (Acc(fh1)), Node 2 (Acc(fh2)),
and Node 3 (Acc(fh1, fh2)), Node 3 is selected for subsequent
increment. Node 3 growth via fh3 cause to create the Node
4 with (fh2, fh3)-based MLC, Node 5 with (fh1, fh3)-based
MLC, and (fh1, fh2, fh3)-basedMLC. Such an increment under
Node 3 does not improve the prediction accuracy, and conse-
quently, (fh1, fh2) of Node 3 is introduced as optimal features.

B. FILTER AND WRAPPER METHODS PLUGGED IN
BI-IWM of D24WHFSS
1) SU-BASED FILTER IN BI-IWM
The SU index [28] as the symmetrical measure is considered a
preliminary step of bi-IWM to specify the importance degree
of features. The SU via interlacing basic ITIs measures the
amount of feature relevance with the target class. Based on
triple basic ITIs, namely entropy, conditional entropy, and
mutual information (MI), the SU index is defined as:

SU (TU
TPFsj
x ,L) = 2

MI (TU
TPFsj
x ;L)

H (TU
TPFsj
x )+ H (L)

(1)

where TU
TPFsj
x indicates jth transient point features of TUx ,

and L as class label reports the status of transient cases.
According to (1), SU supported by the entropy index, which
is defined as:

H (K ) = −
∑
k∈K

p(k) log p(k) (2)

In (2), based on the probability density function p(k) =
Pr{K = k}, K ’s entropy (K represent discrete random vari-
able) is calculated. Another index situated in (1) is mutual
information (MI) which is given by:

MI (TU
TPFsj
x ;L) = H (TU

TPFsj
x )− H (TU

TPFsj
x |L) (3)

In (3), H (TU
TPFsj
x |L) reflects the conditional entropy and

is defined as:

H (TU
TPFsj
x |L) = −

∑
f ∈TU

TPFsj
x

∑
l∈L

p(f , l) log p(f |l) (4)

2) WRAPPER METHODS IN BI-IWM
a: SVM CLASSIFIER
SVM [29] is one of the most popular hyperplane-based
classifiers that focus on plotting the optimal separating
hyperplane between binary or multi-label considering triple
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FIGURE 5. Two-step transient data creation mechanism (2STDCM).

fundamental principles (3FPs), namely margin maximiza-
tion, structural-risk minimization, and avoiding overfitting.
Besides the soft or hard margin-based idea for linear classifi-
cation, the kernel-based approach paves the way for finding
the zero-error nonlinear decision boundary on non-separable
HDTS. Plugging kernel into SVM computations causes pro-
jecting data into separable space. Hence, SVM can be refor-
mulated by exploiting the kernel trick as follow:

a∗ = argmin
α

1
2

l∑
i=1

l∑
j=1

αiαjyiyjK (xi, xj)−
l∑

k=1

αk ;

0 ≤ αi ≤ C,
l∑
j=1

αiyi = 0, i, j = 1, . . . , l (5)

In this paper, two types of efficient kernels are used as substi-
tutes for K (xi, xj): 1) radial basis function (RBF) [29] and 2)
dynamic time warping in RBF (DTWRBF) [30]. The concise
explanations of RBF and DTWRBF kernels are as follow:

(1) RBF kernel: The RBF provides point-to-point matching
for pattern discovery in feature space. The non-elastic RBF
kernel is defined as:

K (x, x ′) = exp
(
−
||x − x ′||2

2σ 2

)
(6)

||x−x ′||2 in (6) represents the squared Euclidean distance for
calculating the distance between two data points.

(2) DTWRBF kernel: Changing the RBF kernel formula by
replacing RBF’s distance function with DTW causes defining
elastic kernel, which brings the nonlinear pattern matching on
feature space. The DTW distance is given by:

distanceDTW (Ap1,B
q
1)

= d(a(p), b(q))+Min

 distanceDTW (Ap−11 ,Bq1)
distanceDTW (Ap−11 ,Bq−11 )
distanceDTW (Ap1,B

q−1
1 )

 (7)

FIGURE 6. Single line diagram of NETS-NYPS test system.

Based on DTW distance, the DTWRBF kernel is defined as
(8):

K (x, x ′) = exp

(
−

[
distanceDTW (Ap1,B

q
1)
]

2σ 2

2)
(8)

Finally, solving (9) leads to drawing 3FPs-based separating
hyperplane in HDTS:

f (x) = sgn

(∑
i∈s

αiyiK (xi, x)+ b

)
;

b =
1
s

∑
i∈s

yi −∑
j

αjyjK (xj, xi)

 (9)

b: TWSVM CLASSIFIER
Making the changes in the mathematical structure of
the SVM learning model caused the offering of a
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TABLE 2. 28-variate transient trajectory features (TU1:28).

cross hyperplane-based classifier called generalized prox-
imal eigenvalue support vector machine (GEPSVM) [31].
In GEPSVM, finding two hyperplanes that each hyperplane
takes the nearest distance from the samples of a class and

FIGURE 7. Stable and unstable samples based on F14 variations [22].

FIGURE 8. SU amount of TU
TPFs1:6
15 .

the farthest distance from the samples of another one is on
the agenda. Achieving the high-performance classification
based on GEPSVM motivates DM scholars to design a novel
classifier based on the GEPSVM principle. TWSVM [32] is
the name of the GEPSVM-based classification model that
regards the new formulation for plotting the separating cross
hyperplanes. The TWSVM-based optimization problems are
as follows:

min
w1,b1,q

1
2
||Pw1 + e1b1||2 + c1eT2 q
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s.t. − (Qw1 + e2b1)+ q ≥ e2, q ≥ 0 (10)

min
w2,b2,q

1
2
||Qw2 + e2b2||2 + c2eT1 q

s.t. (Pw2 + e1b2)+ q ≥ e1, q ≥ 0 (11)

where c1, c2 > 0 are parameters, and e1 and e2 are vectors
of ones with proper dimensions. By obtaining the Karush–
Kuhn–Tucker (KKT) conditions for (10) and (11) based on
applying the Lagrangian function on (10) and (11); and also
combining some relations, the dual optimization problem
of (10) and (11) are obtained as follows:

dualTWSVM1
: max{eT2 α −

1
2
αTG(HTH )−1GTα} (12)

dualTWSVM2
: max{eT1ψ −

1
2
ψTP(QTQ)−1PTψ} (13)

Based on quadratic programming applied on (12) and (13),
αand ψ are obtained. Hence, necessary conditions to take the
values of [w(1), b(1)] and [w(2), b(2)] for drawing the cross
hyperplanes on a binary classification problem is provided:

XTw(1)
+ b(1) = 0 and XTw(2)

+ b(2) = 0 (14)

Finally, predicting the class label of an unseen case is given
by:

Class x = argvmin
∣∣∣xTw(v)

+ b(v)
∣∣∣ ; v = 1, 2 (15)

To achieve high-performance classification in the non-
separable HDTS, empowering TWSVM by embedding the
kernel functions on TWSVM computations is the best solu-
tion [32]. Hence, we have:

K (xT ,CT )u(1) + b(1) = 0 and K (xT ,CT )u(2) + b(2) = 0

(16)

In (16), CT
= [A B]T and K indicate the kernel function.

Solving the (17) and (18) leads to obtaining the [u(1) b(1)]T

and [u(2) b(2)]T vectors.

KTWSVM1
: min

u(1),b(1),q

1
2
||(K (A,CT )u(1) + e1b(1)||2 + c1eT2 q

s.t. − (K (B,CT )u(1) + e2b(1))+ q ≥ e2,

q ≥ 0 (17)

KTWSVM2
: min

u(2),b(2),q

1
2
||(K (B,CT )u(2) + e2b(2)||2 + c2eT1 q

s.t. (K (A,CT )u(2) + e1b(2))+ q ≥ e1,

q ≥ 0 (18)

In (17) and (18), the K is replaced with RBF (discussed in
(a) section of III. B. 2) and the polynomial (Poly) [33] kernels.
The following definition is related to the Poly:

Poly kernel: In linear kernel relation [33], by setting degree
(d) to greater than one, the Poly kernel is defined as follows:

K (x, x ′) = (αxT x ′ + c)d (19)

TABLE 3. Different uncertainties to generate dynamic responses [23],
[34].

IV. EXPERIMENTAL DESIGN
A. CREATING TRANSIENT DATASET
For FS-based TSA, creating the transient dataset is the pre-
liminary task of the three-step proposed framework in this
paper (See Fig. 1, Step 1). In this regard, we design the two-
step transient data creation mechanism (2STDCM) as shown
in Fig. 5. In 2STDCM, first, output channel transient values
per basic features (OCTVsBFi ) are recorded. The BFi includes
the bus voltages (VOLT), voltage phase angle (VANGLE),
machine active power (PELEC), machine reactive power
(QELEC), and reactive power consumption (QLOAD)). The
OCTVsBFi is obtained via Python-based contingency simu-
lation (PCS) supported by the application program interface
(API) functions of the SIEMENS power system simulator
for engineering (PSS/E) [34]. For more information about
Python scripting for dynamic simulation based on PSS/E API
(‘psspy’ module) refers to Table 4. The contingency simula-
tion is conducted on the New England test system- New York
power system (NETS-NYPS) (See Fig. 6) [35]. The transient
cases are stemmed from substation outages, generator out-
ages, and line outages by setting disturbance different param-
eters (fault duration time: 0.23 seconds with 0.0167 seconds
time step and the fault clearing time is set after the end of fault
duration time). For gathering severe transient samples, the
uncertainty factor is considered by the convert load (CONL)
API of PSS/E situated in PCS that causes the setting of dif-
ferent load characteristics for converting active and reactive
power load (See Table 3; first row) [23], [34]. The second
step of 2STDCM includes a Matlab-based script for adding
the required add-ons to OCTVsBFi (e.g., geometric functions
and other electrical parameters) called +OCTVsBFi . Finally,
transient responses of 28-variate transient trajectory features
(28VTTFs) enumerated in Table 2 [36], [37], and [38] are
obtained. Based on performing 2STDCM, we have transient
dataset containing 800 (No. transient cases)× 28 (TU1:28)×6
(No. observed cycles). For example, some stable and unstable
excursions regarding TU14 trajectory (The proportion of total
QLOAD to total QELEC) are shown in Fig. 7. We executed
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TABLE 4. Python scripting for dynamic simulation based on PSS/E API (‘PSSPY Module’) [37].

TABLE 5. The SU-based ranking of transient point features of TU1:28.

all the simulations on a programming platform employing a
Surface Pro 4 with an Intel Core i5-6300 2.5 GHz processor
and 4 GB RAM.

B. SELECTING UMRTPFs1:28 SET
In this section, we elaborate on how to select the 1:28MRTFPs
set containing the union result of TU1-specific MRTPFs to
TU28-specific MRTPFs based on performing D24WHFSS

on 28VTTFs (TU1:28). According to Fig. 2, in the first
step of D24WHFSS, the SU-based filter is applied on
28VTTFs for ranking the importance degree of the TPFs of
TU1:28 (RankTPFsTU1 to RankTPFsTU28). According to descrip-
tions of the filter method in Section III.B.1 (See (1) to (4)),
the SU values of transient point features (TPFsj) per TUx are
obtained (TPFsjSUTUx ). As an illustration of the SU amounts
related to the six TPFs (6 cycles observed of TU15(TU

TPFs1:6
15 ),
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TABLE 6. Selecting 1D24WHFSS-2Z1:4RTPFs from RankTPFsTU2 Via KPF1-Based D24WHFSS (1D24WHFSS).

refer to Fig. 8. According to Fig. 8, among the TPFs of
TU15, TU

TPFs1
15 and TUTPFs4

15 get the first (high SU) and last
(low SU) rank, respectively. Then, by sorting TUTPFs1:6

15 in
descending manner, RankTPFsTU15 is entered into the bi-IWM
of D24WHFSS. The sorted face of TUTPFs1:6

1 to TUTPFs1:6
28

(RankTPFsTU1 to RankTPFsTU28) based on SU is shown in
Table 5.

After ranking the TPFs of TU1:28 based on SU val-
ues (RankTPFsTU1 to RankTPFsTU28), the RankTPFsTU1:28 are
entered into the varied bi-IWM (IWSS and IWSSr-based
hybrid structures) embedded into D24WHFSS.
The RankTPFsTU1:28 are fed to four zones (Z1 to Z4) dec-
orated by the bi-IWM-oriented six-type L4SH structures
(6L4SH) (See Fig. 2, e.g., Zone1 including L4SH1to L4SH6)
called 24WHFSS. By setting DKFPs (See Fig. 2, sprin-
kler symbols) in the form of KFP1 and KFP2 (20), the
24WHFSS is performed in the two-fold repetition named
D24WHFSS (1D24WHFSS and 2D24WHFSS). For exam-
ple, Table 6 shows the results of entering RankTPFsTU2 into
1D24WHFSS. By exerting the first zone led by IWSSSVM,
the OFs per L4SH (L4SH1:6) are selected (See Table 6, 3rd

row), and the 1D24WHFSS-2Z1RTPFs set by intersecting
z1[OFs-L4SHh]h=1:6 is obtained (See Table 6, 5th row).
In Z1 of 1D24WHFSS, in the case of L4SH5 structure,
first, the RankTPFsTU2 are entered into the first stage of
L4SH5 (See Fig. 2, Z1-L4SH5, first circle blue-face tree),
namely SUIWSSRBFSVM. The OFs of the first stage of L4SH5

(1L4SH5) is OFs-1L4SH5
= {TPF1, TPF3, TPF4} with

87.80% classification accuracy (accuracy (Acc) metric in
Table 9). Next, the ranked OFs-1L4SH5 is entered into
SUIWSSrRBFTWSVM (See Fig. 2, Z1-L4SH5, circle2: yellow-
face tree), and OFs-2L4SH5

= {TPF1, TPF4}: 82.92%
is obtained. In the third stage, the sorted 2L4SH5 are fed

to SUIWSSrRBFTWSVM, and 3L4SH5
= {TPF1, TPF4}:

82.92% is obtained (See Fig. 2, Z1-L4SH1, circle3 with
orange-face tree). In the last round, 3L4SH5 are entered
into SUIWSSrRBFSVM (See Fig. 2, Z1-L4SH5, circle4 with
green-face tree), and the result is recorded as 4L4SH5

=

{TPF1, TPF4}: 90.24%. The 4L4SH5 is the TU2-specific
OFs-L4SH5 of Z1 (See Table 6, row 3, column 5) based on
the 1D24WHFSS setting. Such a mechanism is performed
in the rest chained hybrid scenarios (L4SH1:4 and L4SH6)
for extracting OFs-L4SH1:4 and OFs-L4SH6 (See Table 6,
row 3, column 1 to column 4 and column 6). In Z2 of
1D24WHFSS led by IWSSTWSVM, the 6L4SH of Z2 is
exerted, and Z2-specific OFs are obtained (See Table 6, 8th

row) and recorded in the 1D24WHFSS-2Z2RTPFs array by
the intersection of Z2[OFs-L4SHh]h=1:6 (See Table 6, 10th

row). The optimal features obtained by Z3 (IWSSrSVM as
the starter of 6L4SH) and Z4(IWSSrTWSVM is the leader
in 6L4SH) of 1D24WHFSS are gathered in 1D24WHFSS-
2Z3RTPFs and 1D24WHFSS-2Z4RTPFs, respectively. Next,
by union the 1D24WHFSS-2Z1:4RTPFs (∪ [1D24WHFSS-
2ZzRTPFs]z=1:4), the 1D24WHFSS-2Z1:4URTPFs set con-
taining {TPF1, TPF4, TPF5} is obtained (See Table 6,
last row or See Table 7, 3th row, column 1). Accord-
ing to what was mentioned on obtaining 1D24WHFSS-
2Z1:4URTPFs, by setting the KFP2 on 24WHFSS, the
execution of 2D24WHFSS is lead to obtaining the
2D24WHFSS-2Z1:4URTPFs (See Table 7, 3th row, col-
umn 2). As can be seen in Table 7, the 1D24WHFSS-
xZ1:4URTPFs and 2D24WHFSS-xZ1:4URTPFs sets related to
each RankTPFsTUx (RankTPFsTU1:28) are listed. The xMRTPFs-
specific results (1MRTPFs to 28MRTPFs) stemmed from
union result of the 1D24WHFSS-xZ1:4URTPFs and
2D24WHFSS-xZ1:4URTPFs (∪ [iD24WHFSS-
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TABLE 7. Selecting 1:2D24WHFSS-xZ1:4URTPFs of RankTPFsTUx based on D24WHFSS.

TABLE 8. The obtained UMRTPFs1:28 set based on union 1MRTPFs to 28MRTPFs.

xZ1:4URTPFs]i=1:2) is shown in Table 8. Finally,
UMRTPFs1:28 is obtained by the union of 1MRTPFs to
28MRTPFs (See Table 8, last row).

In the case of exerted wrapper-based predictive models
(SVMand TWSVM) inD24WHFSS, the following points are
important. The accuracy (Acc) metric (21) measured the per-
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FIGURE 9. Structure of IWSSRBF SVM tree related to Z1-specific first stage of L4SH1:6 of 1D24WHFSS
in selecting OFs of TU8 regarding Acc variations in optimal node (node 3).

TABLE 9. The evaluation metrics.

formance of SUIWSSkSVM, SUIWSSrkSVM, SUIWSSkTWSVM,
and SUIWSSrkTWSVM learning models. On the other hand,
the fine-tuning of learning parameters (C in SVM and
TWSVM, σ in RBF and DTW, and p in Poly) in each
increment of bi-IWM is considered in train-test procedures.
The range of learning parameters (RoLPs) related to SVM
(SVMRoLPs) and TWSVM (TWSVMRoLPs) is defined in (22)
and (23), respectively. In each iteration, themaximum amount
of the Acc which is obtained based on the best value of
learning parameters is recorded. For example, Fig. 9 shows

the IWSSRBFSVM tree related to Z1-specific first stage of
L4SH1:6 of 1D24WHFSS applied on TU8, which Acc varia-
tions of optimal node (node 3: green-face) is depicted in 3-D
plot.

QKFPs =
{
KFP1 : (RBF, RBF)|SVMRBF ,TWSVMRBF

}

KFP2 : (DTW , Poly)|SVMDTW ,TWSVMPoly
}

}
(20)

Accuracy(Acc) = (TP+ TN )
/
(TP+ TN + FP+ FN ){

P : stable sample;T : predicted correctly
N : unstable sample;F : predicted incorrectly

(21)

SVMRoLPs
{
C = 2i | i = 0, 1, . . . , 5
σ = 2j | j = −3,−2, . . . , 4 (RBF, DTW )

}
(22)

TWSVMRoLPs


C = 2i | i = 0, 1, . . . , 5
σ = 2j | j = −3,−2, . . . , 4 (RBF)
p = 2j | j = 2, 3, 4, 5 (Poly)

 (23)
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FIGURE 10. Acc variations based on learning parameters in some folds (fold4,6,8,10) for TSP based on UMRTPFs1:28.

TABLE 10. Results of TSP based on UMRTPFs1:28 set.

TABLE 11. TPT based on coupling UMRTPFs1:28 and SVMRBF.

C. TSP BASED ON UMRTPFs1:28 SET
The union of TU1:28-specific MRTPFs (1:28MRTPFs) called
UMRTPFs1:28 (See Table 8, last row) is used for TSP
in this section. The10-fold cross-validation-based scenario

is considered for measuring the performance of the
UMRTPFs1:28 on TSP. The SVMRBF-based learning model
is performed per fold-specific train-test procedure. Further-
more, the fine-tuning of the SVMRBF parameters, namely C
and σ , is considered regarding the {C = 2i|i = 0, 1, . . . , 15}
and {σ = 2j|j = −5,−4, . . . , 15} to report the best val-
ues of evaluation metrics (See Table 9) per fold. Accord-
ing to the above-mentioned experimental design, the per-
formance of SVMRBF based on UMRTPFs1:28 is shown in
Table 10. Set different values on learning parameters of
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TABLE 12. Results of TSP via coupling SVMRBF and selected OFs by 3MWHFSSs and 3MCWHFSSs
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TABLE 12. (Continued.) Results of TSP via coupling SVMRBF and selected OFs by 3MWHFSSs and 3MCWHFSSs.

TABLE 13. TPT based on 3MWHFSSs and 3MCWHFSSs.

TABLE 14. Amount of memory usage by Matlab-based TSPP.

SVMRBF cause obtaining various Acc per fold. As can be
seen in Table 10, the maximum value of Acc is consid-
ered as the result of Acc-based performance evaluation per
fold. For more clarity, the Acc variations in some folds
(fold4, fold6, fold8, and fold10) are illustrated in Fig. 10.
Also, the maximum Acc-specific TPR and TNR per fold
are listed in Table 10. Finally, the mean value of obtained
results in all folds per metric is calculated (See Table 10,
last row). The Acc 99.25 %, TPR 99 %, and TNR 99.5 %
indicates the high TPA on TSP via UMRTPFs1:28. Another
main factor in proving the efficiency of the UMRTPFs1:28-
oriented learning model is the TPT index (including obser-
vation window time (OWT) and prediction time). For TPT
calculation, first, we focus on the TPFs of UMRTPFs1:28

(See Table 8, last row) to specify OWT. The most extended
observed cycle in UMRTPFs1:28 is related to TPFs6, which
picked up as the optimal cycle of TU1, TU3, TU5, TU6, TU8,
TU14, TU18, TU21, TU23, TU25, and TU26. In this manner,
the OWT is six cycles (100.2 milliseconds (ms)). On the
other hand, the prediction time based on UMRTPFs1:28-

SVMRBF is 2.407 ms. Consequently, the TPT is 102.607 ms
(See Table 11), reflecting the low TPT to exert control
actions.

D. COMPARISON OF EXPERIMENTAL METHODS:
D24WHFSS VS. 3MWHFSSs AND 3MCWHFSSs
For a deep assessment of the efficiency of the proposed
FSS in selecting OFs, D24WHFSS is compared with
3MWHFSSs. The 3MWHFSSs includes mRMR [13], Reli-
efF [15] and FCBF [16]. Also, D24WHFSS is compared
with 3MCWHFSSs including BMHFSS [19], CPQHFSS
[22], and PITHS [23]. The 28VTTFs are fed to the
3MWHFSSs and 3MCWHFSSs, the 3MWHFSSs-based
OFs and 3MCWHFSSs-based OFs are selected. Then, the
3MWHFSSsOFs and 3MCWHFSSsOFs are entered into the
SVMRBF based on similar train-test conditions defined for
D24WHFSS (See Section IV. C).

As can be seen in Table 12, D24WHFSS-based
UMRTPFs1:28 have better performance in TSP than
3MWHFSSsOFs and 3MCWHFSSsOFs. According to
Table 12, the obtained results manifested the D24WHFSS
by selecting 88-cycles of 28VTTFs (See Table 8, last
row), which has better performance (Acc, TPR, and
TNR) than mRMROFs (9 cycles-4VTTFs), FCBFOFs,
ReliefFOFs, and BMHFSSOFs (9 cycles-3VTTFs) [19],
CPQHFSSOFs (48 cycles-28VTTFs [22]), and PITHSOFs

(24 cycles-18VTTFs [23]). Based on the TPT index,
the obtained results (See Table 13) show that the cou-
pling D24WHFSSOFs and SVMRBF has a higher TPT
(102.607 ms) than SVMRBF-3MWHFSSsOFs (SVMRBF-
mRMROFs: 68.793 ms, SVMRBF-FCBFOFs: 68.930 ms,
SVMRBF-ReliefFOFs: 68.910ms) and SVMRBF-BMHFSSOFs

with 52.948 ms. Also, SVMRBF-D24WHFSSOFs has lower
TPT than SVMRBF-PITHSOFs with 152.591 ms and
SVMRBF-CPQHFSSOFs with 152.525 ms. The TPT value
of SVMRBF-D24WHFSSOFs provides the proper opportunity
for the grid operator to conduct corrective actions. For more
TPT-based info, refer to Table 11 and Table 13. As the final
report, checking the amount of memory usage by the transient
status predictive program (TSPP) (MATLAB-based TSPP) is
presented in the form of the user-focused memory structure
in Table 14.
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V. CONCLUSION AND FUTURE WORK
Thinking critically about the low-performance of the pro-
posed mono-way hybrid FSS on TSA studies motivated
us to design a novel feature selection algorithm called
dyadic 24-way hybrid FSS (D24WHFSS) in this paper. The
D24WHFSS is driven by the beating heart of linked four-
level hybrid models (LFLMs) that the different permuta-
tions of levels cause execution LFLMs in 24-way (called
24WHFSS). The 24WHFSS ismounted on the bi-incremental
wrapper mechanism (bi-IWM), namely IWSS and IWSSr.
The filter and wrapper phases of bi-IWM are accompanied
by SU and DSVCs, respectively. kSVM and kTWSVM are
supervised machine learning algorithms regarded as DSVCs
plugged into the bi-IWM. For precise mining on nonlinear
HDTS, DKFPs are situated into DSVCs. Hence, KFPs-based
24WHFSS exerting is repeated in varied two times (dyadic
24WHFSS). After conducting D24WHFSS onmVTTFs, sur-
vived MRTPFs are entered into the cross-validation proce-
dure to measure the efficacy of MRTPFs set in achieving
low TPT and high TPA. Obtained results manifested that the
MRTPFs have high performance (Acc 99.25 %, TPR 99 %,
TNR 99.5 %, and TPT of 102.607 ms) for TSP. To address
the effectiveness of the D24WHFSS against other feature
selection algorithms, the performance of D24WHFSS com-
pared with 3MWHFSSs and 3MCWHFSSs. The results show
that selected MRTPFs by D24WHFSS have better perfor-
mance than extracted optimal features by 3MWHFSSs and
3MCWHFSSs on TSP.

In future work, we intend to introduce a novel feature
selection-feature extraction algorithm decorated by embed-
ding a hybrid-based optimum-features selector layer in the
convolutional deep network-based feature extraction. Such a
framework can promise to pick up the most discriminative-
relevant features on HDTS for high-performance TSA. Fur-
thermore, the efficacy of the optimal transient features in
achieving high-performance TSA under the N -k contingency
analysis, load-generation level variations, and contaminated
transient responses (missing and noisy transient data) is eval-
uated in future studies.
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