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ABSTRACT The skin lesion types result in delayed diagnosis due to high similarity in early stages of the
skin cancer. In this regard, deep learning algorithms are well-recognized solutions; however, these black box
approaches result in lack of trust as dermatologists are unable to interpret and validate the decisions made by
the models. In this paper, an explainable artificial intelligence (XAI) based skin lesion classification system is
proposed to improve the skin lesion classification accuracy. This will help the dermatologists to make rational
diagnosis in the early stages of skin cancer. The proposed XAl model is validated using International Skin
Imaging Collaboration (ISIC) 2019 dataset. The developed model correctly identifies the eight types of skin
lesions (dermatofibroma, squamous cell carcinoma, benign keratosis, melanocytic nevus, vascular lesion,
actinic keratosis, basal cell carcinoma and melanoma) with classification accuracy, precision, recall and F1
score as 94.47%, 93.57%, 94.01%, and 94.45% respectively. These predictions are further analyzed using
the local interpretable model-agnostic explanations (LIME) framework to generate visual explanations that
match a prior belief and general explanation best practices. The explainability integrated within our model

will enhance its applicability in real clinical practice.

INDEX TERMS Explainable artificial intelligence, skin lesion classification, deep learning.

I. INTRODUCTION

The skin cancer is a type of cancer that affects the surface of
the skin. More than 5 million people in the United States have
been diagnosed with skin cancer [1]. Thus, the improvement
in the diagnostic accuracy and the rate of early diagnosis
is a crucial task. In this regard, both medical experts and
researchers are putting their great efforts in advancing medi-
cal diagnosis, treatments, and examinations [2].

Skin lesion is the abnormal appearance or growth of
skin compared to the skin area around it. Lesions can dif-
fer in type, texture, color, shape, affected location and dis-
tribution. They are classified into 2,032 categories that is
organized into a hierarchy [3] as shown in Fig. 1. The
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first two main categories of this hierarchy are: melanocytic
and non-melanocytic. Melanocytic (i.e., pigmented) or non-
melanocytic (i.e., non-pigmented) is based on the presence
or the lack of melanocytes and melanin pigment in the
lesion, respectively. Melanocytic lesions have 8 global fea-
tures which aid in the detailed classification of pigmented
skin lesions, and 14 local features that give more accu-
rate information about a given lesion [4]. Non-melanocytic
lesions can appear yellow or orange due to keratin; or red,
purple, blue and black due to hemoglobin [5]. Lesions could
be cancerous (i.e., malignant) or non-cancerous (i.e., benign).

Dermoscopy is one of the most widely used skin imaging
techniques to improve the diagnostic performance and reduce
skin cancer deaths [6]. It is a non-invasive method in which
a magnified and well illuminated picture of skin is taken to
clearly see and understand the lesion area [7]. This technique
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FIGURE 1. Skin lesions hierarchy.

is usually used to diagnose the skin cancer in early stages
and enhances the diagnostic ability of the doctors. Usually,
dermatologists analyze the dermoscopic images (aka biomed-
ical images) through visual inspection, which requires a high
degree of skill and concentration, and is time-consuming and
prone to operator bias [8]. The reason is that the skin infected
parts and normal moles are so similar that sometimes it is hard
to make an accurate diagnosis.

In order to assist the dermatologists to diagnose the skin
cancer, many computer aided diagnosis (CAD) systems [9],
[10], [11], [12], [13] have been developed, not only bypassing
aforementioned issues but also improving the accuracy, effi-
ciency and objectivity of the diagnosis system. In this regard,
deep learning (DL) algorithms have shown promising results
and large potential for image processing and data analysis.
DL has been widely used due to its popularity and unique fea-
tures in many complex domains e.g., detection, identification,
classification, and recognition of objects [14]. It is a machine
learning (ML) technique that adds more ‘depth’ (complexity)
into the model and transforms the data using various functions
that allow data representation in a hierarchical way, through
several levels of abstraction [15]. DL can solve more complex
problems in a fast and efficient manner due to more complex
models employed [16]. DL algorithm such as convolutional
neural networks (CNNs) and image processing techniques are
the most important part of common CAD systems [17].

However, the use of such CAD systems by dermatolo-
gists and patients remains doubtful because the processing
cycle behind model learning and features encoding is not
well understood. The DL model without a rational expla-
nation is a barrier for dermatologists in accurate decision
making. Occasionally, the experts find it difficult to under-
stand the predictions made by the model. For example, a DL
model with 87% accuracy result for the diagnosis of skin
cancer, is frequently difficult to understand that why the DL
model produces inaccurate results in the remaining 13% of
cases, and how to improve these decisions. The DL models
are not always similar or representational of dermatologists’
decision-making processes. Hence, these models are often
deemed as a ‘black box’ nature of ML algorithms, which
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does not give clear explanation for its conclusions. The lack
of model transparency associated with DL algorithms in the
complete cycle of decision-making cannot be neglected in
skin cancer diagnosis. It is, therefore, needed to develop such
robust approaches to better understand the black box deci-
sions. Such approaches are commonly referred to as inter-
pretable deep learning or XAI [18].

In this study, the state-of-the-art pre-trained deep learning
algorithm ResNet-18 [19] is applied on on ISIC 2019 dataset
classifying 8 skin lesions, using LIME as an explanation
method with enhanced explanation and accuracy. We train the
model deeply to resolve the problem of imbalance dataset and
showed their effect on the accuracy of the model. In summary,
we present a robust model with enhanced accuracy with the
involvement of XAI techniques in the skin cancer diagnosis
and makes the following main contributions:

e Model Transparency: An XAI model is developed
employing LIME framework and ResNET-18 i) to
explain that why a deep learning model is predicting
particular skin lesion, and ii) to increase the model accu-
racy which can lead to increase the level of trust, thus,
increasing the safety of the diagnostic system.

o Data Set: The developed approach is tested with 25,331
dermoscopic images using ISIC 2019 dataset.

This paper is organized as follows: Section II overviews
the background and related work highlighting the merits
and limitations of existing methods. The developed model
is explained in section III followed by experimental analysis
in section IV. The threats to validity of this study are in
section V. Finally, section VI concludes this study with future
directions.

II. LITERATURE REVIEW

A. BACKGROUND

1) LIME FRAMEWORK

In this paper, LIME (local interpretable model-agnostic
explanations) is used as an XAI (eXplainable AI) method.
It is a post hoc method which is applied after the model is
trained [31]. Moreover, model-agnostic refers to the group of
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TABLE 1. Research matrix of related work.

Study Dataset(s) Methodology Results Skin Classes XAI method
Chowdhury et al. [20] HAM10000 custom CNN accuracy 82.7% 7 classes CAM
Esteva et al. [21] ISIC 2018 CNN AUC 94% 7 classes Backpropagation
Lietal. [22] ISIC 2017 CNN Wilcoxon’s Sign Rank Test 7 classes CAM
Lietal. [6] ISIC 2018 VGG16+ResNet-50 accuracy 85% 7 classes Occlusion
Nunnari et al. [23] ISIC 2019 VGG16, ResNet-50 accuracy 72.2%, 76.7% 8 classes GradCam
Sadeghi et al. [24] 1021 images ResNet-50 accuracy 60.94% 4 classes CBIR
Xie et al. [25] ISIC 2017, PH2 | Modified version of deep CNN accuracy 90.4% 3 classes CAM
Yang et al. [26] ISIC 2017 ResNet-50 accuracy 83% 2 classes CAM
. GradCam,
Young et al. [27] HAM10000 Inception accuracy 85% 2 classes Kernal SHAP
Zunair et al. [28] ISIC 2016 VGG16 sensitivity 91.76%, AUC 81.18%. 2 classes CAM
Brinker et al. [17] ISIC 2018 CNNss specificity 86.5% 1 class No
Kassem et al. [9] ISIC 2019 Deep CNN accuracy 94.92% 8 classes No
Kasani et al. [29] ISIC 2018 ResNet 50 accuracy 92% 7 classes No
Salido et al. [12] PH2 CNN accuracy 93% 3 classes No
Shahin et al. [10] ISIC 2018 Inception V3 + ResNet 50 Vahdaté‘;“g‘gf“racy 7 classes No
Sherif et al. [13] ISIC 2018 Deep CNN accuracy 96.67% 2 classes No
Unver et al. [30] PH2, ISBI 2017 YOLO, Grab Cut accuracy 93.39% 3 classes No

explainers that are not specifically designed for a certain ML
algorithm and has wide scope [31].

The LIME [32] is a popular technique for interpreting and
explaining the black box decisions made by the ML algo-
rithms. The objective of LIME is to train surrogate mod-
els locally and explain an individual prediction [32]. The
high-level structure of LIME is presented in Fig. 2. At the
first step, a synthetic data set is generated by permuting the
samples around an instance from a normal distribution in a
random manner. This perturbed dataset is used by LIME to
train an interpretable model (e.g., linear regression) followed
by corresponding predictions are gathered using the black
box model.

Linear regression is used to estimate relationships amongst
dependent variables and multiple independent variables by
utilizing a regression line as shown in Eq. (1).

y=a+bx (D

where y is dependent variable and x is independent variable,
a is intercept, b is slope of the line and i = 1,2,...,n.
The main purpose of this equation is to predict the value of
target variable from given predictor variables. Further, the
number of important features is given as input (K) to LIME
to generate the explanation. The model is easier to understand
with lower value of K. There are many techniques to select
the K important features e.g., backward or forward selection
of features and highest weights of linear regression coeffi-
cients. The forward feature selection method is used by LIME
for small datasets having less than 6 attributes. For higher
dimensional datasets, it uses highest weights approach [33].
The mathematical formulation of LIME is stated in

Eq. (2).
explanation(x) = argmin g € GL(f, g, nx) + Q(g) (2)

where x represents the instance to be explained and g repre-
sents the interpretable model, the loss function L, also known
as the fidelity function (e.g., mean squared error), calculates
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the explanation’s closeness to the original model’s predic-
tion. In addition, G refers to a group of potentially inter-
pretable models, such as decision trees. The neighbourhood
size around the initial instance x is defined by the proximity
measure x.

B. RELATED WORK

According to World Health Organization (WHO) [34], cancer
is expected to be the leading cause of death (13.1 million)
by 2030. The skin cancer is common in human beings which
arises from the skin due to the abnormal growth of the cells
that can easily invade and spread to the other parts of the
human body [35].

Different methods have been presented and implemented
in healthcare domain with focus on skin lesion classification
over recent years. In this regard, Chowdhury et al. [20] used
a custom CNN identifying 7 classes of skin diseases using
HAM10000 dataset [36]. They used CAM [37] as an XAI
method and maximum achieved accuracy is 82.7% and 78%
of precision. Esteva et al. [21] used CNN to identify 7 classes
while using ISIC 2018 dataset and Backpropagation [38]
as explainable method. They achieved 94% Area Under
Curve (AUC). Li et al. [22] used CAM [37] as an explain-
able method using ISIC 2017 dataset to detect 7 classes
of skin diseases. However, they used Wilcoxon’s sign rank
test [39] to differentiate their results. Li et al. [6] incor-
porated Occlusion [40] as explainable method using ISIC
2018 dataset to diagnose 7 classes of skin diseases with accu-
racy rate of 85%, while using an ensembled VGG16 [41] and
ResNet-50 [19].

Nunnari et al. [23] utilized GradCAM [42] as an explain-
able method with ISIC 2019 dataset and classifying 8 skin
classes. They also used VGG16 [41] and ResNet-50 [19] as
explanation models with 72.2% and 76.7% accuracy, respec-
tively. Sadeghi et al. [24] used ResNet-50 [19] to identify
4 skin classes with 1021 dermoscopic images. They incorpo-
rated Content-Based Image Retrieval (CBIR) [43] as expla-
nation method, with accuracy rate of 60.94%. Xie et al. [25]
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FIGURE 2. The workflow of LIME method.

used CAM [37] as an explanation method to classify 3 skin
diseases with a modified version of deep CNN and achieved
average accuracy rate of 90.4%. They used ISIC 2017 and
PH2 [44] datasets. Yang et al. [26] used ResNet-50 [19]
along with CAM [37] as explanation method to classify
2 skin diseases using ISIC 2017 dataset with accuracy
rate of 83%. Young et al. [27] used both GradCAM [42]
and Kernel SHAP [45] as explanation methods using
HAMI10000 dataset [36], to identify 2 skin diseases with
accuracy rate of 85%. Zunair et al. [28] used VGG16 [41]
to classify 2 skin diseases using ISIC 2016 dataset and
CAM [37] as explanation method with sensitivity 91.76% and
AUC 81.18%.

In our work, we also compare our model accuracy with
the studies who have not applied XAI method. In this con-
text, Brinker et al. [17] deep learning system outperformed
136 out of 157 experienced dermatologists of the hospitals in
a German university. When the system’s results were com-
pared to those of board-certified dermatologists, the system
outperformed 136 of 157 in the melanoma detection chal-
lenge. They used 12,378 images from the ISIC dataset for
training the network. A total of 100 images were utilised to
compare the system’s performance against that of human spe-
cialists. They used the Local Outlier Factor (LOF) approach
to find outliers. The specificity of the network was 86.5%
as compared with the human experts who got only 60%.
The sensitivity was also 74.1% for both doctors and network
system.

Kassem et al. [9] explained skin lesion classification into
eight classes. In their research, they employed the ISIC
2019 dataset for testing and training. They demonstrated that
image augmentation and transfer learning can improve clas-
sification rates. Their results show 94.2% accuracy, 74.5%
sensitivity, 96.5% specificity, 73.62% precision and 74.04%
F1 score using image augmentation techniques. When they
applied additional image augmentation steps and modified
GoogleNet architecture, the results obtained were 94.92%
accuracy, 79.8% sensitivity, 97% specificity, 80.36% preci-
sion and 80.07% F1 score.

Kasani et al. [29] compared various deep learning archi-
tectures for melanoma diagnosis. They tested the most recent
deep learning architectures for melanoma detection in dermo-
scopic images. They used image pre-processing to improve
image quality and remove noise. Overfitting was reduced

113718

using the data augmentation approach. The data augmenta-
tion and picture preparation techniques considerably improve
the classification rates, according to their research. They were
able to reach 93% precision, 92% accuracy and 92% recall.

Salido et al. [12] proposed technique automatically seg-
mented the skin lesion after pre-processing the photos by
removing undesirable elements such as hair. They con-
structed a deep CNN after eliminating artifacts and noise from
the images. Their tests revealed that the processed photos had
a high level of categorization accuracy. They were able to
reach 93% accuracy and sensitivity in the 84-94% range.

Shahin et al. [10] proposed a framework based on deep
neural network that follows an ensemble method to skin
lesion classification by integrating Inception V3 and ResNet-
50 architectures. To train the algorithm, they used the ISIC
2018 dataset. On the same dataset of dermoscopic images, the
system was tested and validated. The validation experimental
results achieved an accurate classification rate with a valida-
tion accuracy of up to 89.9%. Sherif et al. [13] also employed
deep CNN for melanoma classification and detection. To train
the system, they used the ISIC 2018 dataset. The system was
tested and validated on the same dermoscopic images dataset.
They were able to reach 96.67% accuracy.

Unver et al. [30] used latest deep learning algorithm for
melanoma detection. You Only Look Once (YOLO) [46]
and GrabCut algorithm [47] was used to detect and segment
the melanoma affected body parts. The YOLO is used for
detection purposes which has great detection results. It’s very
fast and computationally inexpensive [46]. After this GrabCut
algorithm was applied to segment the detected area on image.
They used PH2 and ISBI 2017 datasets and got an accuracy
of 93.39%.

Table 1 presents the summary of these works. It can be
observed that most of the researchers have used CAM [37]
as model explainability method with not so high accuracy.
Only 1 study has considered ISIC 2019 dataset (with large
number of images). This motivates our research to develop a
robust XAl based model with the goal to achieve Al model
transparency, traceability, and improvement in skin lesion
classification.

lll. PROPOSED METHODOLOGY
In this section, we explain the proposed methodology. The
flow is shown in Fig. 5 and steps are explained below.
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A. DERMOSCOPY IMAGE PRE-PROCESSING

Due to the intricacy of digital pictures, the detection of
malignancy by visual evaluation becomes complicated. As a
result, effective image processing techniques are required to
assist clinicians in properly diagnosing skin lesions. In this
study, the training set contained more than 25,000 skin lesion
images of different resolutions [9]. As the resolution of all
lesion images is greater than 299 x 299, it was necessary
to extract the region of interest (ROI) and get rid of unnec-
essary/redundant regions from each image. Therefore, these
images are cropped automatically and processed before using
the images in classification algorithm. This pre-processing
step is necessary to reduce the computation time and
increasing the effective performance and reliability of the
classifier.

1) IMAGE RESAMPLING AND CROPPING

This step applies image resampling and cropping to the
images. Image resampling is a technique used to manip-
ulate the size of an image. Increasing the size of the
image is called upsampling while decreasing the size is
called downsampling. These two techniques are essential for
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applications like image display, compression, and progres-
sive transmission. During upsampling or downsampling pro-
cesses, a two-dimensional (2D) representation is kept the
same while the spatial resolution is reduced or increased,
respectively. On the other hand, cropping is a technique used
to find the ROI in an image by framing around and clipping
the area.

2) IMAGE RESIZING WITH ADDING ZERO-PADDING

The data obtained from the ISIC archive [9] is not always
ready to directly feed into the algorithm which requires struc-
tured, clean, and meaningful data. To overcome this problem,
all images are resized from the archive to 224 x 224 without
losing any feature. The pseudo-code for this process is as
follows:

1) Identify which side of the image is short.

2) Find the difference between two sides.

3) Take half of the difference.

4) Do padding by putting number of zeros to short sides
by adding half of the difference.

5) Resize the image to 224 x 224.
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B. DATA AUGMENTATION

In this step, the data augmentation technique is employed.
In image classification, this equates to rotating, flipping, and
cropping the picture. The ISIC dataset was supplemented
with several random modifications to make the most of our
limited training samples and improve the model’s accuracy.
Furthermore, data augmentation is intended to aid in pre-
venting overfitting (a typical problem in ML with limited
datasets in which the model learn patterns that do not apply
to new data) and, as a result, improve the model’s capacity
to generalise. Model overfitting can also be avoided by using
an early stopping criterion [48]. The Fig. 4 shows the data
augmentation of few dataset instances.

C. FEATURES EXTRACTION USING RESNET-18

Existing algorithms require manual feature extraction, pre-
processing and calculate only numeric values. To pass these
cumbersome steps and make the algorithm to do the feature
extraction itself, we use transfer learning algorithm ResNet-
18 [19] which is a specialized version of CNN. The general
architecture of the algorithm is shown in Fig. 5.

D. PREDICTION EXPLAINABILITY

In this step, the LIME framework is applied which is an
approach for explaining individual predictions that uses a
local, interpretable model to approximate any black box ML
model. We perturbed the original data points, fed them into
a black box model, and then observed the outcomes. The
technique then weights the additional data points based on
their distance from the original location. Finally, it uses those
sample weights to train a surrogate model on the dataset, such
as linear regression. The newly trained explanation model
may then be used to explain each of the original data points.

IV. EXPERIMENTAL ANALYSIS

A. EXPERIMENTAL SETUP

1) DATASET

The developed model is evaluated on the skin lesion clas-
sification using ISIC 2019 dataset. This dataset is publicly
available and comprises of 25,331 RGB images. It is divided
into 8 classes namely: melanocytic nevus (NV), melanoma
(MEL), benign keratosis (BKL), basal cell carcinoma (BCC),
squamous cell carcinoma (SCC), vascular lesion (VASC),
dermatofibroma (DF), and actinic keratosis (AKIEC). The
images are distributed as NV : 12,875, MEL : 4,522, BKL
12,624, BCC : 3,323, SCC : 628, VASC : 253, DF : 239 and
AKIEC : 867. All dataset images are labelled with one type of
skin lesion (Table 3). In Fig. 6, we depict several forms of skin
cancer. This dataset is one of the most difficult to categorise
into eight classes with an uneven number of images in each
class.

2) PARAMETERS
Table 3 shows the hyperparameters of the Resnet-18 classifier
used in the experiments.
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TABLE 2. ISIC dataset 2019 [9] distribution.

Type  Subset Type Subset
NV 12,857 SCC 628

MEL 4,522 VASC 253
BKL 2,624 DF 239
BCC 3,323 AKIEC 867
Total 25,331

TABLE 3. Hyperparameters of the Resnet-18 classifier.

Parameters Values
Input Size 224%*224%*3
Batch Size 32
Loss Function Categorical Cross Entropy
Activation ReLU
Optimizer SGDM
Learning Rate 0.001
Momentum 0.9
Dropout 0.5
Train/Validation/Test Split 70% /20% / 10%

3) PERFORMANCE MEASURES
To evaluate the performance of classifiers, common quantita-
tive metrics are presented in this section. For classification
problems, results are categorized as either normal case or
abnormal, named as positive class or negative class, respec-
tively. The prediction results can also be either true or false,
implying correct prediction or incorrect prediction, respec-
tively. Thus, we can categorize classification into below
four possible states which is commonly known as confusion
matrix [49].
i) True positive (TP) : Correct prediction of positive class
ii) True negative (TN) : Correct prediction of negative

class

iii) False positive (FP) : Incorrect prediction of positive
class

iv) False negative (FN) : Incorrect prediction of negative
class

Based on the confusion matrix, the Accuracy, Precision,
Recall and F1 score are calculated as below:

TP + TN
Accuracy = 3)
FP+ TN +TP + FN
. TP
Precision = —— “4)
TP 4 FP
TP
Recall = ——— S
TP + FN

The F1 score is the harmonic mean of precision and recall:

Fl— (recall_1 + precision™! 1=, i
2 precision + recall

(6)

precision.recall

4) EXPERIMENTAL ENVIRONMENT

In our experiments, it took about 24 hours to train the ResNet-
18 model with NVIDIA GeForce GTX 1650 GPUs. All the
experiments are implemented in Python, running on a per-
sonal computer with Intel core i5, 3.2 GHz CPU and 16 GB
RAM.
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N. Nigar et al.: Deep Learning Approach Based on Explainable Artificial Intelligence for Skin Lesion Classification

IEEE Access

Input
3x3 conv, 64
3x3 conv, 64
3x3 conv, 64
3x3 conv, 64
3x3 conv, 64
3x3 conv, 128

3x3 conv, 128

[ 3x3 conv, 128, 22

FIGURE 5. Resnet-18 transfer learning algorithm layers.

| 3x3w11v,25'6,f2’;

3x3 conv, 256

3x3 conv, 256

FIGURE 6. An illustration of ISIC 2019 skin lesions instances.

Models Comparison for Skin Lesion Classification

ResNet-18 Inception V3
® Accuracy W Precision ®Recall = F1-Score

100

80
70
60
50
40
30
20

0

FIGURE 7. Models comparison using ISIC 2019 dataset.

B. RESULTS AND DISCUSSION

The skin cancer detection is complicated by irregular forms
of skin lesions, various types of colours on each skin, and
defining the ROI on each dermoscopic picture. The detec-
tion of minute changes on the skin requires expertise in this
field. However, the human eye may not always catch these
tiny changes. Many lives can be saved by assisting doctors
with computer vision and deep learning techniques. With
this motivation, we studied skin cancer malignancy detec-
tion to classify skin lesions and identify malignant cases.
The pre-training settings and post-training measurements
of all experiments showed that the skin cancer malignancy
detection is a difficult task and generalizing a model for
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all cases requires some image pre-processing techniques to
apply before feeding into any deep learning algorithm. We did
many experiments and tried various techniques to solve the
complexity of skin lesions classes.

Regarding model selection, we compare ResNet-18 with
Inception v3 using ISIC 2019 dataset. ResNet is one
of the most powerful deep neural networks which has
achieved fantabulous performance for classifications prob-
lems [19]. The Inception v3 [50] is a pre-trained model
on the ImageNet datasets. It has also shown better per-
formance for images classification tasks as compared to
other deep learning algorithms [50]. The results indicate that
ResNet-18 outperforms Inception v3 in terms of accuracy,
precision, recall and F1 score as shown in Fig. 7. There-
fore, we select ResNet-18 as our final model for training
purposes.

In first part of the experiments, 8000 images are used that
were not pre-processed before feeding the algorithm. The
purpose is to examine the performance of Resnet-18 algo-
rithm based on the existence of the noise and other artifacts
to see how much it tolerates the noise. Images were randomly
split into training and testing subsets. We obtained 0.75 F1
score (75%) for classification accuracy.
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In the second part of experiments, 1600 pre-processed
and augmented images are used for training, and 240 pre-
processed and augmented images for testing. After this, the
classification algorithm is trained. The performance measures
were accuracy, precision, recall and F1 score, while the val-
ues of these measures were 94.47%, 93.57%, 94.01%, and
94.45% respectively. As compared to the first part of experi-
ment, it shows higher recall and F1 score average values. This
indicates that the image pre-processing has a profound impact
on the classification algorithm by making the ROI more clean,
distinguishable, obvious, and easy to capture so that the algo-
rithm could extract better features about the image and learn
better.

The developed model working example is shown in Fig. 8.
The visual representation of results (Fig. 11) show that our
developed model detected each infected image correctly with
100% confidence. This result is a good indicator for the
potential of such a technology to classify predictions accu-
rately and eventually help physicians increase their diagnos-
tic prediction power. We also present the learning rate (log)
against loss (Fig. 9); it can be seen that as the learning rate
increase, there is a point where the loss stops decreasing
and learning rate starts to increase. The confusion matrix is
shown in Fig. 10. It can be observed that true positives for
8 classes are, AKIEC : 548, BCC : 544, BKL : 537, DF : 528,
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FIGURE 10. Confusion matrix of our developed model.

MEL : 515, NV : 559, SCC: 535, and VASC : 542. It means
that our developed model has correctly identified the respec-
tive disease with good number of percentages.

V. THREATS TO VALIDITY

This study is to help the dermatologists in the early assess-
ment of skin cancer. However, there are some limitations to
this work. First, we have not considered the large or dif-
ferent datasets. Second, we have used only one pre-trained
network in our work. The model extension to incorporate
more advanced pre-trained models could result in improved
classification performance. Third, the more training data
could lead to better results. The resizing of the images to
very small patches could affect the classifier’s performance.
It may deteriorate some useful information from the lesions
when images are downsized. To balance the dataset, the
classifier’s performance could also be affected by decreas-
ing the total number of samples available for training and
validation.
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FIGURE 11. Infected images detection by our developed model with 100% confidence.

VI. CONCLUSION AND FUTURE WORK

Skin cancer is the most common type of cancer and a major
health and economic concern. The dermatologists exam-
ines patients individually with the naked eye or a magni-
fying glass for the skin cancer diagnosis. However, with
the advancements in the field of ML, early skin cancer
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detection can be made more accurate through skin lesion
classifiers. Consequently, the ML driven solution has the
potential to save many lives by assisting in the early detection
of malignant lesions, assisting in decision-making, reducing
diagnostic costs, and reducing money spent on treatment.
This offers great help for the doctors and patients and can
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be offered through smartphone apps, websites, or hospital
stations.

In this paper, transfer learning and the pre-trained deep
neural network Resnet-18 is used to develop the ML model
using ISIC 2019 dataset. This model is capable of accurately
classifying eight different types of lesions with accuracy, pre-
cision, recall, and F1 score as 94.47%, 93.57%, 94.01%, and
94.45%, respectively. Moreover, LIME framework is used to
present the useful explanations to support rational decisions.
The visual explanations are capable of demonstrating model’s
good generalisation as well as biases learned from the outlier
images. Moreover, these insights enable researchers and field
experts to better understand the rational associated with skin
lesion classification resulting from the black-box model’s
inner working.

It’s worth mentioning that the availability and quality of
dataset is critical for training more accurate ML models. The
ISIC 2019 dataset, used in this paper, comprise of 25,331
images with 8 skins lesions classes. Due to privacy, these
datasets require continuous enrichment with patients consent
which is not obvious. The proposed approach where ML
model is complemented with XAI helps the dermatologist
with a visual rational to identify new classes and enrich the
existing datasets with good examples for improved perfor-
mance in earliest skin lesions detection. This is a signifi-
cant contribution in not only improving skin cancer detection
accuracy but also in identifying the new classes.

As a future work, a more robust model can be developed
that considers other diseases, as well as opposing examples
such as healthy skin, fingers, hair, nose, eyes, and background
objects. This addition will help the model in better gener-
alising features association with a given lesion while ignor-
ing adjacent features. Moreover, gathering written reports of
lesion observations, both in technical and non-technical lan-
guages, is another task that would lead to the adoption of this
model. This may also help to create a model to generate image
captions to serve as an image explanation which is important
for the decision being made.
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