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ABSTRACT Named Data Networking (NDN) is a new architecture with in-network caching ability. NDN
nodes can cache data packets in their cache store to satisfy further requests. Accurately caching popular
content across the network is essential for NDN to reduce the traffic workload and improve network
efficiency. However, traditional caching algorithms are not good at predicting future dynamic content
popularity. In our paper, we propose a Graph Neural Network-based (GNN-based) caching strategy to
optimize the caching performance in NDN. First, our paper utilizes a Convolutional Neural Network (CNN)
to extract time-series features for each NDN node. Secondly, GNN is applied to make content caching
probability predictions for each NDN node. Third, at each NDN node, a cache replacement decision is
made based on its content caching probability ranking, and content with high caching probability replaces
content with low probability. We compare our GNN-based caching strategy with three deep learning-based
caching techniques, which are 1D-Convolutional Neural Network (1D-CNN), Long Short-Term Memory
Encoder-Decoder (LSTM-ED), and Staked Auto Encoder (SAE), and three classical benchmark caching
strategies, which are Least Frequently Used (LFU), Least Recently Used (LRU) and First-in-first-out (FIFO).
All caching scenarios are simulated in the Mini-NDN platform and evaluated on the tree and arbitrary
network topologies. Empirical results suggest that the GNN-based caching approach can achieve around
a 50% higher cache hit ratio and a 30% lower latency in the best case than other deep learning-based caching
strategies.

INDEX TERMS Named data networking, deep learning, graph neural network, content caching probability,
cache replacement.

I. INTRODUCTION
The internet architecture Named Data Networking (NDN) [1]
is emerging these days. With NDN, data exchange does not
require IP addresses as it does with traditional IP-based net-
works. Rather than specifying the IP address of the potential
recipient, the consumer of NDN sends the Interest packet that
contains the name tag of the desired data. The Interest packet
can be replied with a Data packet by any NDN node holding
the required content along its forwarding path. The ability
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to cache in-network is crucial in NDN since it dramatically
reduces server load and prevents network congestion.

NDN [1] communications are not based on the content’s
locations but their names. As NDN packets and forward-
ing locations are independent, in-network caching can be
developed. With this capability, suppose a user sends an
Interest packet, then the NDN node closest to the user and
caching the corresponding content can reply to it with an
Data packet. In this case, network traffic is reduced, and the
user experience is significantly improved. However, in reality,
each NDN node has a limited cache space; simultaneously,
there are many different contents throughout the network.
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Caching popular content and placing them as close to users as
possible are ongoing research questions. This paper focuses
on improving caching performance (i.e., maximizing the
cache hit ratio) in NDN. The high cache hit ratio indicates
that NDN nodes are able to cache contents that users are
interested in. In this case, more user requests are satisfied by
NDN nodes’ cache stores rather than the content producer
(i.e., the server). It improves network performance regarding
caching space utilization and data delivery latency. There-
fore, achieving performance improvements in NDN requires
a higher cache hit ratio.

In the context of Information-Centric Networking (ICN),
which is closely related to NDN, there has been a large
amount of research on caching strategies (see [1], [2], [3],
[4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15],
[16], and [17]). One of the most promising is the work by the
authors in [17], utilizing a 1D-Convolutional Neural Network
(1D-CNN) for ICN caching and achieving a high cache hit
ratio. They applied 1D-CNN to predict the future hits of each
content chunk and used the future hits as the cache replace-
ment algorithm’s priority, meaning content chunkswith lower
future hits were replaced by content chunkswith higher future
hits.

The method we propose in this paper offers further
improvements to [17]. As part of our approach, we also
utilize a deep learning-based strategy. In particular, we predict
the cache probability of content rather than the future hits
of each content at each NDN node. Since user preferences
change over time, we first employ 1D-CNN [18] to cap-
ture the dynamics of each user preference in the temporal
dimension. It gives us an idea of how the content popularity
at each NDN node changes over time. Moreover, due to
the nature of packet forwarding, content requests between
neighbouring nodes usually affect each other. Therefore,
we apply a graph neural network (GNN) to capture the spatial
dependencies between NDN nodes. It allows us to under-
stand how each NDN node’s requests affect its neighbouring
nodes.

GNN [19] is an emerging field of deep learning. With
its powerful non-Euclidean graph representation capabilities,
GNN has demonstrated impressive results in multiple graph-
related tasks in many applications. GNN uses graph represen-
tation learning to transform graph data into a low-dimensional
dense vector representation, ensuring that specific properties
of graph data can be retained in the vector space. In recent
years, GNN-based models have been used in network prob-
lems since a network is naturally a graph with nodes and
edges. In particular, GNN has been widely used in traffic
prediction problems, such as road traffic flow and speed
prediction. Paper [20] suggests that GNN can achieve state-
of-the-art performance in traffic forecasting by modelling the
graph structures in transportation systems. As suggested in
paper [21], GNN is efficient for node level, edge level, and
graph level prediction or classification tasks. In this paper,
we apply GNN to node-level classification problems. For
node-level classification problems, GNNusually requires two

inputs, where the first is a feature matrix representing node
information, and the second is an adjacency matrix represent-
ing edge information.

This paper applies the Software Defined Networking
(SDN) concept, where an SDN controller comprehensively
views the entire network and thus, it can collect the status
of all the network nodes and make caching decisions accord-
ingly. In our implementation, an NDN controller knows the
traffic of each NDN node and controls them. Our GNN-based
model works in the controller. Periodically, the NDN con-
troller sends the collected traffic information and the network
topology to the GNN-based model, and then the GNN-based
model predicts content caching probability for each node.
After that, the NDN controller informs each NDN node
about the prediction, and each performs cache replacement
based on it.

The contributions of this paper are as follows:
• We propose a GNN-based cache replacement policy in
NDN. To the best of our knowledge, we are the first to
apply GNN to the caching problem. In particular, our
GNN-based model contains 1D-CNN layers and Graph-
SAGE layers [22], which are utilized to extract the input
features’ temporal dependence and spatial dependence,
respectively. It is worth mentioning that the GNN-based
model makes content caching probability predictions for
all NDN nodes with a single forward pass and requires
constant inference time.

• To train a GNN-based probabilistic prediction model,
we propose a heuristic search algorithm that labels the
collected traffic data with a binary ground truth, where
0 means no cache and 1 means cache.

• We deploy our GNN-based, state-of-the-art deep
learning-based strategies, including 1D-CNN [17], Long
Short-TermMemory Encoder-Decoder (LSTM-ED) [15]
and Staked Auto Encoder (SAE) [15], and classical
benchmark strategies, including LFU, LRU and FIFO on
Mini-NDN [23]. Extensive studies show that our GNN-
based caching strategy achieves a much higher cache hit
ratio and lower latency than other approaches.

The rest of this paper is organized as follows: Section II
overviews related work. Section III presents the GNN-based
caching strategy. Section IV presents the derivation of the
ground truth label. Section V shows experimental results.
Section VI concludes the paper. Preliminary results of this
paper appear in [24], and the differences between the journal
paper and the conference paper are listed below:
• Compared to the conference paper, the journal paper
demonstrates a more comprehensive introduction,
related work and methodology.

• The journal paper generalizes the GNN-based caching
approach to handle arbitrary network topologies, not just
tree networks. The conference paper only focuses on the
tree network structure.

• The journal paper compares the performance of the
GNN-based caching strategy with two more deep
learning-based caching strategies, LSTM-ED and SAE,
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and one more classical benchmark strategy, LFU, which
is unavailable in the conference paper.

• The journal paper explores the performance of GNN-
based strategy for different types of information aggre-
gators of the GraphSAGE layer; this part is not included
in the conference paper.

• The journal paper conducts extensive experiments on the
effects of network size, node’s cache size, content popu-
larity distribution, content size, GraphSAGE’s aggrega-
tion function and the number of GraphSAGE layers on
the GNN-based caching. In addition, the journal paper
considers one more evaluation metric: byte hit ratio.

II. RELATED WORK
Caching algorithms include cache placement strategies and
cache replacement strategies. The cache placement strategy is
responsible for deciding which content to cache in each net-
work node, and the cache replacement strategy is responsible
for choosing which content to evict when a network node’s
cache space is full. This section reviews both cache placement
and replacement strategies.

A. TRADITIONAL CACHE PLACEMENT STRATEGIES
Leave Copy Everywhere (LCE) [1] is NDN’s default cache
placement policy. A packet is cached on all NDN nodes
on the forwarding path between the producer and the con-
sumer, where the producer is an NDN node that publishes
the content, and the consumer is an NDN node that sends the
Interest packet. Randomly Copy One (RCO) [2] is to cache
the content randomly along the forwarding path between the
producer and the consumer. This strategy reduces the caching
redundancy compared to LCE. Another method named Prob-
abilistic Cache [3] is a more advanced strategy. It considers
the available cache capacity of each NDN node and its dis-
tance from the consumer - the closer it is to the consumer, the
content will be cached on that node with a higher probability.
In addition, nodes with sufficient caching capacity are more
likely to cache the content.

B. POPULARITY-BASED CACHE PLACEMENT STRATEGIES
Researchers [4] proposed a strategy where each network node
holds a popularity table containing information about the
content name, the popularity count, and the threshold. Each
network node caches only popular content whose popularity
exceeds the threshold. Researchers [5] integrated popularity-
based caching with RCO such that contents are cached
according to their popularity, and only one network node is
selected to cache the content along the data packet delivery
path. Paper [6] proposed an efficient hybrid content place-
ment strategy, where the most recently downloaded contents
are cached at central network nodes along the data packet
delivery path, and most minor downloaded ones are cached
at edge network nodes. The authors aimed to increase con-
tent caching diversity across the network. Paper [7] pro-
posed a compound popular content caching strategy, where
all the contents are divided into two types, Optimal Popular

Content (OPC) and Least Popular Content (LPC), according
to the total number of received Interest packets for each con-
tent. The LPC content is cached only at the mutual network
node near the requested consumers; on the other hand, the
OPC content is cached at all mutually connected network
nodes along the data packet delivery path. Authors in [8]
also proposed a compound popularity caching strategy, where
content popularity is divided into two types: global and local
popularity. The cache placement decision is made consid-
ering both content and network node popularity. Paper [9]
proposed a dynamic popularity window and distance-based
efficient caching strategy. The scheme considers a dynamic
threshold and makes caching decisions based on two aspects:
a novel dynamic size popularity window to determine con-
tent popularity and the distance from the preceding on-path
network node cached the content copy.

C. TRADITIONAL CACHE REPLACEMENT STRATEGIES
Traditional cache replacement strategies are First-in-first-out
(FIFO) [11], Least Recently Used (LRU) [10] and Least
Frequently Used (LFU) [10], and we compare our GNN-
based cache replacement strategy with them in this paper.
FIFO is a less effective caching replacement policy in many
applications because it does not consider content popularity
or other features. It replaces content according to the arriving
order, where the newly arriving content replaces the oldest
content in the cache. LRU usually performs better than FIFO
because LRU caches the most recently requested content by
assuming that the content will highly be requested again in
the future. The least recently accessed content is discarded
when the cache space is full. LFU usually performs much
better than LRU and FIFO. This scheme assumes that the fre-
quently requested content in the past will highly be requested
in the future, so the least frequently requested contents are
discarded first when there is no available cache space.

D. POPULARITY-BASED CACHE
REPLACEMENT STRATEGIES
Paper [12] proposed a universal caching strategy, where it
makes caching replacement decisions based on the frequency
of fetching the content, distance from the content publisher,
and the number of outgoing links at the intermediate network
node. Researchers in [13] proposed a dynamic fine-grained
popularity-based cache replacement strategy. The scheme
always caches incoming content when there is available cache
storage; otherwise, it keeps only the most popular content.
In order to measure the popularity of each content, each
network node maintains a popularity table containing the
content name, content counter, and timestamp.

E. DEEP LEARNING-BASED CACHE
REPLACEMENT STRATEGIES
With the development of deep learning, many deep learning-
based cache replacement strategies are emerging. Recently,
researchers have proposed many deep learning-based
cache schemes to optimize caching performance in ICN.
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The authors in [14] made use of a deep learning-based content
popularity prediction (DLCPP) to perform cache decisions
in the SDN-based ICN. They utilized SAE to extract net-
work node features and predict the content’s popularity. The
authors in [15] proposed DeepCache, utilizing an LSTM-ED
model to predict content popularity and make caching deci-
sions accordingly. The authors also combined the predicted
content popularity with a traditional cache replacement strat-
egy (e.g., LRU) to prefetch the content to maximize the cache
hit ratio. The researchers [16] proposed a Stimulable Neural
Network (SNN) model to analyze the inter-relationships
among sequenced requests and utilized previously unknown
information and other factors, such as content size and data
retrieval costs, to make caching decisions. The authors in [17]
utilized 1D-CNN to capture the seasonal patterns in the user
requests stream and predict each content’s future hits. When
the cache space is limited, only contents with high future hits
are cached in the cache store.

F. GNN
Unlike the deep learning-based cache replacement strategy
mentioned in Section II-E, our paper applies 1D-CNN and
GNN to predict the probability of content caching. The papers
in Section II-E only treat the caching problem as a time-
series problem, i.e., the content popularity is highly corre-
lated over time. However, caching can also be considered a
spatial problem, and network nodes can cooperate to cache
the most popular content as close to users as possible and
increase the diversity of cached content across the network.
Therefore, we utilize GNN to learn the spatial dependency of
collected traffic data. Recently, GNN has played an impor-
tant role in representing graph structure data. Like the 2D-
Convolutional Neural Network (2D-CNN), GNN also uti-
lizes neighbourhood information to learn spatial features.
However, unlike 2D-CNN, GNN can capture data patterns
on non-Euclidean structures rather than only 2D images or
grids. Previous work [25] introduced Graph Convolutional
Network (GCN) for semi-supervised learning. The GCN
model directly operates on graph data and predicts labels for
unlabeled nodes. The article [26] proposed Spatio-Temporal
Graph Convolutional Networks (STGCN) framework, which
contains 1D-CNN and GCN layers to make node-level traf-
fic flow predictions. The 1D-CNN layer captures tempo-
ral dependency, and GCN captures spatial dependency. The
authors in [27] provided a novel GNN-based link prediction
framework, SEAL, to predict whether a link exists or not
between two subgraphs. Paper [28] proposed a Deep Graph
Convolutional Neural Network (DGCNN) architecture to pre-
dict labels on the graph level.

III. GNN-BASED CACHE REPLACEMENT METHOD
In GNN, a graph is represented as G = (V ,E) where V is
the set of nodes and E is the set of edges. In our paper, each
NDN node is denoted as vi ∈ V . An edge ei,j ∈ E denotes
a directed connection from node vi to node vj. Assume
there are K distinct contents across the network, denoted by

C = {c1, c2, . . . , cK }. For each content ck , there is a graph,
and each node vi has an n-dimensional feature vector xi,k and
a ground truth label yi,k , where yi,k = 1 indicates that the
node vi should cache the content ck and yi,k = 0 means the
node should not cache the content.

As suggested in paper [17], we collect the number of
content requests in the previous n timesteps as node features,
where n = 8, and the time interval between two adjacent
timesteps is ten minutes. For each content ck , we feed the
node feature matrix and the network adjacency matrix to
GNN to predict the caching probability of that content for
each node at the next time slot.

In this paper, we focus on two types of network topologies.
The first type is a tree network topology, and the second is an
arbitrary network topology.

A. TREE NETWORK
In a tree network, each node has a parent node except the
root node. We assume the root node is the producer and
is responsible for publishing the content. All other nodes
are consumers and generate Interest packets tagged with
the desired content name. Each consumer has a cache store
which can cache contents to fulfill future Interest packets.
If the requested content is not cached at a node, then the
node needs to forward the Interest packet to other nodes
until the packet can be satisfied. In a tree structure, the child
node always forwards an Interest packet to its parent node.
Therefore, we consider that the content requests of the child
nodes affect the parent nodes, but the content requests of
the parent nodes do not impact the child nodes. For this
case, we convert the tree network structure into a directed
graph, where ei,j ∈ E if and only if vj is the parent of vi
and ej,i 6∈ E .

B. ARBITRARY NETWORK
In arbitrary network topology, one node is randomly selected
as the producer according to a uniform distribution, and all
other nodes are consumers. Unlike the tree structure, there
are multiple packet forwarding paths from the consumer to
the producer. The content requests from each node may affect
some or all of its neighbouring nodes. Therefore, we con-
vert the arbitrary network topology into an undirected graph
(i.e., ei,j ∈ E and ej,i ∈ E if there is an connection between
vi and vj).

C. GNN-BASED CONTENT CACHING
PROBABILITY PREDICTION
The proposed GNN-based model contains 1D-CNN layers
and GraphSAGE [22] layers. 1D-CNN captures the temporal
dependence of the content prevalence dynamics at each node.
For each content, the input to the 1D-CNN is a feature vector
of each node. The feature vector contains the number of
requests for that content from that node in the previous eight
time intervals. 1D-CNN’s output is the number of requests
for that content from that node in the next time interval. The
1D-CNN architecture consists of two convolutional layers
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FIGURE 1. GNN Input graph and message passing in a tree network topology [24].

with kernel sizes 2 and 6, respectively. A rectified linear
unit (ReLU) layer is applied after each convolutional layer.
Following the second convolutional layer is a fully connected
layer with the activation function ReLU. The goal of 1D-CNN
is to predict the number of requests per node for each content
in the next time slot.

After the 1D-CNN architecture, we use GNN to capture
the node features’ spatial dependence to predict each node’s
caching probability for each content. A GNN captures spatial
dependence by passing messages between nodes [29]. In a
tree network topology, the parent node gathers node features
from its children since we consider the tree network as a
directed graph with the children pointing to the parent node.
Figure 1 shows the input graph to our GNN model and the
message passing process in a tree network. The figure shows
that the input graph is directed, and the red node is the target
node. It also shows two message passing layers, meaning
the target node can aggregate information from 2-hop child
nodes. The blue arrows indicate that the target node aggre-
gates the features of its 1-hop child nodes in the first mes-
sage passing layer. Message passing denoted as green arrows
happen simultaneously at the target node’s child nodes. Once
the aggregation is done, each node’s feature vector will be
updated. In the second message passing layer, the target node
can aggregate its 2-hop child nodes’ information because
its 1-hop children have already aggregated its child nodes’
features in the first message passing layer. After the final
message passing layer, node features are updated and are used
to predict the nodes’ labels.

Unlike the tree structure, each pair of 1-hop neighbour-
ing nodes carries out bidirectional message passing in the
random graph because we consider the random graph as an
undirected graph. Besides the message passing directions,
the random graph’s neighbouring information aggregation
process is the same as the tree structure. Regardless of the
network topology, the purpose of GNN is to capture the
network topology and aggregate the features of neighbouring
nodes to each central node to achieve cooperative caching.

The GraphSAGE framework [22] generates node embed-
dings of previously unknown graphs using inductive meth-
ods. Our study separates training and testing graphs, and
testing graphs are unseen during training. As a result, our
GNN architecture is developed using GraphSAGE layers.
GraphSAGE generates node embeddings by sampling and

aggregating neighbourhood node representations:

hkN (v) = AGGk ({hk−1u ,∀u ∈ N (v)}) (1)

where N (v) represents node v’s neighbours and hk−1u denotes
node u’s representation at the (k − 1)th step. AGGk is an
aggregation function at the current k th step. The aggregator
aggregates node v’s 1-hop neighbouring nodes’ represen-
tations and generates a hidden vector hkN (v). According to
the GraphSAGE paper, there are three types of aggregators:
mean aggregator, pooling aggregator, and LSTM aggregator.
A pooling aggregator has been shown to be more efficient
than an LSTM aggregator in that paper. In addition, the
pooling aggregator generally performs better than the mean
aggregator. For both performance and efficiency reasons,
we aggregate the features of neighbouring nodes via the
pooling aggregator:

AGGpoolk = max({σ (Wpoolhkui + b),∀ui ∈ N (v)}) (2)

where σ (Wpoolhkui + b) performs a nonlinear transformation
on the neighbourhood representation hkui of the central node
v, and then a max pooling operator is performed on the
transformed neighbourhood representation vector.

After aggregating neighbour nodes’ representations, the
central node representation and neighbour node representa-
tions are concatenated, and then fed into a fully connected
layer with a nonlinear activation function, as shown below:

hkv = σ
[
W k
· CONCAT

(
hk−1v , hkN (v)

)]
(3)

where hk−1v is the node v’s representation vector at the
(k − 1)th step and hkN (v) is node v’s neighbourhood representa-
tion vector at k th step. The two vectors are concatenated and
fed into a fully connected layer with a nonlinear activation
function σ . In our paper, we perform a ReLU activation
function, and hkv is the updated representation of node v at
k th step.

D. CACHE REPLACEMENT DECISION
The GNN-based model works in the network controller, and
after the model predicts the probability of caching each con-
tent at each NDN node, the prediction is sent to each node.
In NDN, each node caches data packets in its cache store,
and we name the cached data packets in the cache store as
cache store entries. In the implementation, we extend a cache
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probability field for each cache store entry, and each NDN
node maintains a local hash map with the content name as the
key and the content’s cache probability as the value. When
an NDN node receives a data packet, it will insert the data
packet into its cache store when there is available cache space.
Otherwise, the data packet will only be inserted if its caching
probability is higher than the lowest caching probability of
the cache store entries, evicting the cache store entry with the
least caching probability. In addition, the cache probability of
each cache store entry is updated periodically to avoid content
with a high predicted cache probability in the past remaining
in the cache store forever.

IV. THE DERIVATION OF GROUND TRUTH
An iterative algorithm is applied to approximate the ground
truth of content caching. Assume we have a graph G =
(V ,E), a set of contents C , and a set of requests R. There is a
tuple for each request rz ∈ R: rz = (ck , vi, ph), with ck being
the requested content, vi being the node receiving the request,
and ph being the popularity of the request. If a node fails to
cache the content requested, we call that a request missed.
A node vi that misses a request r1 = (ck , vi, ph) will pass on
a new request r2 = (ck , vj, ph) to its parent vj. A node that
receives two requests for the same content considers them
one request combined with their popularity. The goal of the
algorithm is to minimize the accumulated popularity of all
missing requests (i.e. if both the child and the parent fail
to cache the content ck with popularity ph, the accumulated
popularity will be 2ph).
It is worth mentioning that we consider the producer as

the root node in the random network and apply the Djikstra
algorithm to find the shortest path tree from all other nodes to
the producer node. In this case, both tree and random network
structures have a root node (i.e., the producer node) and child-
parent node relationships.

In general, the graph G can be arbitrarily large, making it
difficult for local nodes to know requests that are far away.
Choosing cached content that is beneficial for reducing global
accumulated popularity is thus a difficult decision for local
nodes. As a result, the algorithm seeks a locally optimal
solution.

Our algorithm is a greedy algorithm, and its visualization
is shown in Figure 2. At the beginning of each iteration,
our algorithm checks whether the current_node is a leaf.
1) If this is the case, the current_nodewill attempt to cache all
of the requested contents received from R. The node prefers
to cache more popular content. If the number of requests for
a particular piece of content exceeds the popularity of that
node’s cached content, the node will choose to skip caching
the less popular content. The missed requests will then be
forwarded to the parent, and the program will terminate.
2) If the current_node is not a leaf, the program will itera-
tively call itself on all children of the current_node. Follow-
ing the completion of those iterative calls, the current_node
will merge all requests received from R with all requests
passed by its direct children. Afterwards, it will try to cache

FIGURE 2. The visualization of the algorithm [24].

all requested contents, prioritizing popular contents. Finally,
it will forward any missed requests to its parent, after which
the program will terminate.

The same content might be requested on different nodes
by two requests r1, r2 ∈ R (i.e. r1 = (ck , v1, p1), r2 =
(ck , v2, p2)). As soon as r2 meets r1, the node v1 will consider
both to be the same request: r3 = (ck , v1, p1 + p2). It will
result in higher popularity of ck and an increased likelihood
of it being cached. As a result, our greedy algorithm may
not provide the best solution. However, when each rz ∈ R
requests different pieces of content, our algorithm success-
fully minimizes the total popularity of all missing requests.
The strong induction can demonstrate this. In the future,
we can improve our algorithm by integrating some heuristic
search strategies.

V. EXPERIMENTAL RESULTS
In this section, we use Mini-NDN [23] to perform all experi-
ments.Mini-NDN is an emulation tool that runs real instances
of NDN packages. We deploy our proposed GNN-based
model, 1D-CNN model mentioned in paper [17], LSTM-ED
model mentioned in paper [15], and SAEmodel mentioned in
paper [14] on Mini-NDN. We compare the performances of
our GNN-based caching strategy with other deep learning-
based caching strategies, 1D-CNN, LSTM-ED, SAE, and
three classical caching strategies, LFU, LRU and FIFO.

A. NETWORK TOPOLOGY
We use tree and arbitrary network topologies for evaluations.
In both topologies, there is a producer, and all other nodes
are consumers. We put the producer at the root node in the
tree network topology. In arbitrary network topology, the pro-
ducer is chosen randomly by following a uniform distribution.
All nodes in the network, except the producer, have uniform
caching capability with a cache size of 1 to 6 content chunks.

B. TRAFFIC GENERATION
We employ NDN Traffic Generator [30] to generate Inter-
est and Data packets. By default, each consumer requests
2 unique contents with the content popularity follows a Zipf-
like distribution [31] with parameter α = 0.8. We also
evaluate other experimentation parameters where each con-
sumer requests the number of unique contents from the set
{2, 3, 4, 5, 6} and the α value from the set {0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. By default, all contents are
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2049 bytes each.We also conduct experiments with randomly
uniform content sizes ranging from 1049 to 8049 bytes.
We assume consumers have different request rates, with six
per minute or sixty requests per minute, respectively. Table 1
shows key parameters used in our paper to generate traffic.

TABLE 1. Key experimentation parameters.

C. DATASET COLLECTION
We run each experiment for 100 minutes without applying
any caching algorithm and collect the number of content
requests of each node. Since the number of requested contents
per node varies greatly, we transform the dataset to have a
mean of 0 and a standard deviation of 1. We used 80% of the
dataset as the training dataset and 20% as the testing dataset.
All the deep learning-based models are trained and tested
using the same dataset.

D. EVALUATION METRICS
The following three metrics are adopted to evaluate various
caching strategies’ performances:
• CHR (Cache hit ratio): It defines the percentage of
requests that can be satisfied by the cached data packets.
The CHR is calculated as follows:

CHR =
cache_hits_num

cache_hits_num+ cache_misses_num
(4)

where cache_hits_num is the number of cache hits and
cache_misses_num is the number of cache misses.

• BHR (Byte hit ratio): It defines the number of bytes
satisfied by the cached data packets divided by the total
number of bytes that consumers requested.

BHR =
cache_hits_bytes

cache_hits_bytes+ cache_misses_bytes
(5)

where cache_hits_bytes is the total object sizes for cache
hits and cache_misses_bytes is the total object sizes for
cache misses.

• ALT (Average Latency Time): It defines the average
delay between the time the consumer sends an Interest
packet and the time it receives a Data packet.

E. RESULTS
This section shows the experimental results of our GNN-
based caching algorithm, 1D-CNN caching algorithm,
LSTM-ED caching algorithm, SAE caching algorithm, LFU,
LRU and FIFO. By default, the cache placement strategy is
LCE. For deep learning-based cache replacement strategies,
the models are trained and tested using the same dataset,
and the best model is selected with early stopping on the
testing dataset. We minimize the binary cross entropy [32]
for the GNN model and the mean square error [33] for the
other models. All models are optimized using the Adam
optimizer [32]. After training and testing, we deploy each
selected best model to the Mini-NDN to make real-time
content caching decisions. All deep learning models use the
node features of the previous eight time slots to predict the
content caching probability for the next time slot. By default,
a time slot is 10 minutes. Therefore, CHR, BHR, and ALT
are computed 80 minutes after the start of the experiment.
In order to control variables, the performances of classical
caching algorithms, LFU, LRU and FIFO, are also measured
in the same way. Each network scenario is performed ten
times, and the results are averaged.

1) EFFECT OF NETWORK SIZE
In this section, we explore the effect of network size on
different caching algorithms, GNN-based, 1D-CNN, LSTM-
ED, SAE, LFU, LRU and FIFO. Each network scenario
contains 200 distinct contents, and each consumer requests
2 different contents and has a cache size of 1 content chunk.
Each consumer sends requests following a Zipf distribution
with an α of 0.8. All the networks are tree topologies, and
the number of network nodes is from the set {3, 15, 25,
35, 45, 55, 65, 75, 85, 95}. The depth of all topologies
is 4, except for the topologies with 3 and 15 nodes, which
have depths of 2 and 3, respectively. Regarding the GNN-
based caching strategy, we utilize 2 GraphSAGE layers for all
topologies except for the topology with 3 nodes that applies 1
GraphSAGE layer. The number of the node’s representation
dimension is {128}, {128, 64}, corresponding with the num-
ber of GraphSAGE layers 1 and 2, respectively.

Figure 3 shows the caching performance of all strategies.
We can observe that no matter the number of nodes, the
GNN-based caching strategy performs the best with a rather
narrow Confidence Interval (CI). Moreover, the performance
of 1D-CNN, LSTM-ED and SAE is pretty similar because
each node can only cache the most popular content requested
by itself. Unlike them, the GNN-based caching strategy uses
aggregated neighbourhood information to obtain neighbour-
ing nodes’ status and thus helps achieve cooperative caching.
In addition, the classical strategy LFU performs a little bit
better than the deep learning-based caching strategies but
with a rather wide CI. The other two classical strategies, LRU
and FIFO, perform the worst compared with others.

Figure 3a shows the 95% CI for the CHR of all strategies.
In the best case, our GNN-based caching strategy performs
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FIGURE 3. Performance of GNN-based, 1D-CNN, LSTM-ED, SAE, LFU LRU and FIFO caching strategies in tree network topologies with
different numbers of nodes. Note that each network scenario contains 200 different contents, and each consumer requests 2 different
contents and has a cache size of 1 content chunk.

a 44%, 45%, 50%, 95%, 102%, 104% higher CHR than
1D-CNN, LSTM-ED, SAE, LFU, LRU and FIFO, respec-
tively. Furthermore, regardless of the number of nodes, the
CHR of the GNN-based caching strategy performs at least
27% better than the 1D-CNN, LSTM-ED and SAE, 6%
better than LFU and 60% better than the LRU and FIFO.
It demonstrates that our GNN-based caching algorithm can
accurately predict content popularity and increase caching
diversity across the network.

Figure 3b shows the 95% CI for the ALT of all strate-
gies. In the best case, our GNN-based caching algorithm
achieves 36%, 37%, 39%, 51%, 49% and 51% lower ALT
than 1D-CNN, LSTM-ED, SAE, LFU, LRU and FIFO,
respectively. On average, our GNN-based caching strategy
can achieve around 22% lower ALT than 1D-CNN, LSTM,
and SAE. In addition, LRU and FIFO have the highest ALT
among all the caching strategies. It shows that the GNN-
based caching strategy can decrease consumer access latency
by a large margin by caching more popular content near the
consumer.

2) EFFECT OF CACHE SIZE
This section explores the impact of node’s cache sizes on
various caching strategies. Cache size is defined as the num-
ber of content chunks each node can cache. By default, each
NDN node except the content producer has the caching capa-
bility with uniform cache size. In this section, the producer
advertises 600 different contents, and each consumer requests
10 distinct contents with a cache size ranging from 1 content
chunk to 6 content chunks. Figure 4 plots the 95% CI for the
CHR and ALT of GNN-based, 1D-CNN, LSTM-ED, SAE,
LFU, LRU and FIFO under different network scenarios in a
55-node tree network topology.

Figure 4a shows that the CHR increases with increasing
cache sizes for all strategies. In particular, the GNN-based
caching strategy outperforms 1D-CNN, LSTM and SAE by
around 17% on average. The GNN-based caching strategy

generally outperforms LFU with a more significant margin.
Besides, GNN-based has an average advantage of more than
89% and 102% over LRU and FIFO, respectively.

Figure 4b shows that the ALT decreases with increasing
cache sizes for all strategies. Overall, GNN has about 7%
lower ALT than 1D-CNN. LSTM and SAE have almost
the same performance as 1D-CNN, and both can achieve
lower ALT than LFU, LRU and FIFO. On average, GNN can
achieve a latency that is 14%, 18%, and 22% lower than LFU,
LRU and FIFO, respectively.

3) EFFECT OF ZIPF PARAMETER α VALUES
This section explores the CHR and ALT varies with the Zipf
parameter α with various values. Zipf parameter α defines
the content popularity distribution each consumer requested.
Figure 5 shows the caching performance with different α
values ranging from 0.1 to 1.0 for GNN-based, 1D-CNN,
LSTM-ED, SAE, LFU, LRU and FIFO in a 55 nodes tree
network topology.

As shown in Figure 5a, for all deep learning-based caching
algorithms, CHR increases as the α value increases due to
a more noticeable difference in content popularity. When
α = 0.1, 1D-CNN, LSTM-ED, SAE, LFU, LRU, and FIFO
perform similarly, but the GNN-based caching strategy can
achieve much better performance. The GNN-based caching
algorithm has an averagely of around 40% higher CHR than
1D-CNN, LSTM-ED and SAE, 17% higher CHR than LFU
and 75% higher CHR than LRU and FIFO.

Figure 5b shows that our GNN-based caching algo-
rithm achieves the lowest ALT among all caching schemes.
On average, the GNN-based caching algorithm has around
20% lower ALT than 1D-CNN, LSTM-ED and SAE, 12%
lower ALT than LFU, and 27% lower ALT than LRU and
FIFO.

In summary, the performance of 1D-CNN, LSTM-ED and
SAE are almost the same regardless of the Zipf parameters
because they can only predict the content popularity of each
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FIGURE 4. Performance of GNN-based, 1D-CNN, LSTM-ED, SAE, LFU LRU and FIFO caching strategies varies with node cache sizes in a
55-node tree network topology. Note that each network scenario contains 600 different contents, and each consumer requests
10 different contents.

FIGURE 5. Performance of GNN-based, 1D-CNN, LSTM-ED, SAE, LFU LRU and FIFO caching strategies varies with Zipf alpha values in a
55-node tree network topology. Note that each network scenario contains 200 different contents, and each consumer requests
2 different contents and has a cache size of 1 content chunk.

node based on its requests. GNN, on the other hand, can
capture the content popularity based on each node and its
neighbouring nodes’ requests.

4) EFFECT OF NETWORK TOPOLOGY
We also compare the caching performance of all strategies in
arbitrary network topologies. Except for the network topol-
ogy, the key network parameters in this section follow the
default values provided in Table 1. Table 2 shows the perfor-
mance of the GNN-based, 1D-CNN, LSTM-ED, SAE, LFU,
LRU and FIFO in a 55-node arbitrary network topology and
a 55-node tree network topology. Regarding the GNN-based
model, we utilize 7 and 2 message passing layers for the
arbitrary and tree networks, respectively. The hidden node
representation dimension is {128, 64, 64, 64, 64, 64, 32} and
{128, 64}, respectively.

Regardless of the network topology, our GNN-based
caching strategy performs the best among all strategies.

The GNN-based caching algorithm outperforms 1D-CNN
by about 20% in CHR and 15% in terms of ALT in the
arbitrary network topology. The GNN-based strategy can also
achieve around 28% higher CHR and 24% lower ALT than
the LSTM-ED and SAE. In addition, the GNN-based caching
algorithm has a more remarkable improvement in CHR and
ALT than classical caching algorithms, LFU, LRU and FIFO.

The results also show that all caching strategies’ perfor-
mances decrease in the arbitrary network compared with the
tree network. The reason is that the tree network topology
has a depth of 4. It means that if an Interest packet cannot
be satisfied by any node’s cache store along the forwarding
path, it will be forwarded at most 4 hops before it reaches
the producer, which results in up to 4 cache misses. However,
in the arbitrary network topology, the node farthest from the
producer has a distance of 9 hops. If network nodes’ cache
store cannot satisfy an Interest packet, there will be more
cache misses.
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TABLE 2. 95% CI for the CHR and ALT of the GNN-based, 1D-CNN, LSTM-ED, LFU, LRU and FIFO caching strategies in a 55-node arbitrary network topology
and a 55-node tree network topology.

TABLE 3. 95% CI for the CHR, BHR and ALT of the GNN-based, 1D-CNN, LSTM-ED, LFU, LRU and FIFO caching strategies in a 55-node tree network
topology.

In summary, benefiting from aggregating neighbour nodes’
information, the GNN-based caching algorithm can realize
cooperative caching and thus achieve a higher CHR and
lower ALT than 1D-CNN, LSTM-ED, SAE, LFU, LRU and
FIFO caching algorithms in both arbitrary and tree network
topologies.

5) EFFECT OF CONTENT SIZE
Instead of using a uniform content size, we also evaluate dif-
ferent caching policies on various content sizes. The content
sizes are randomly sampled using a uniform distribution of
1049 to 8049 bytes. Other network simulation parameters are
also from default values of Table 1. This section introduces
one more metric, BHR, to show how much bandwidth the
cache has saved. Table 3 shows the 95%CI for the CHR, BHR
and ALT of the GNN-based, 1D-CNN, LSTM-ED, SAE,
LFU, LRU and FIFO caching strategies in a 55 nodes tree
network topology. We can observe that the GNN-based strat-
egy can save much more bandwidth than the other caching
algorithms. Compared to 1D-CNN, LSTM-ED and SAE, the
GNN-based strategy obtains about 35% higher BHR. The
GNN-based strategy can also achieve 18% higher BHR than
the LFU. In addition, the GNN-based strategy provides a
more significant gain in BHR than LRU and FIFO. Benefiting
from the higher BRH, the CHR improvement and ALT reduc-
tion of the GNN-based caching algorithm are significant.

6) EFFECT OF INFORMATION AGGREGATOR TYPES
As mentioned, we utilize GraphSAGE [22] layers to real-
ize message passing in the proposed GNN-based caching
strategy. GraphSAGE introduces three aggregation functions,
which are pooling, mean and lstm. The aggregation function
updates the representation of each central node with the
representation of itself and its neighbouring nodes. It is the
key to realizing information passing between nodes to realize

cooperative caching. This section explores the performance
of the proposed GNN-based caching strategy with different
aggregators. Table 4 shows the 95% CI for the CHR and
ALT of GraphSAGE’s three aggregators in a tree network
topology with 55 nodes. The tree topology has a depth of 4,
and we utilize 2 GraphSAGE layers. Key network simulation
parameters are the default values from Table 1.

The results show that the pooling and mean aggregation
functions perform better than the lstm aggregators in general.
In addition, all aggregators have relatively steady perfor-
mance. This paper uses the pooling aggregator as the default
aggregation function.

7) EFFECT OF THE NUMBER OF MESSAGE PASSING LAYERS
The number of message passing layers is essential in the
GNN-based model because it affects how much information
each node knows about its neighbouring nodes. If n message
passing layers are adopted, each node knows its distance
n neighbours. In this section, we explore the performance
of the GNN-based caching policy in two different network
topologies with different network sizes regarding the different
number of message passing layers, where the hidden node
dimension of each message passing layer is chosen from
{128, 64, 32}.

Table 5 shows the 95% CI for the CHR and ALT of the
GNN-based caching policy with the different number of mes-
sage passing layers in a 15-node arbitrary network topology.
In this topology, the node farthest from the producer has
4 hops, and we explore GNN’s performance with 2 to 5 mes-
sage passing layers. We can see that the GNN model with
2 or 3 message passing layers performs worse than the model
with 4 or 5 message passing layers. The difference is that
in the case of 2 or 3 message passing layers, each node can
only aggregate the information of its 2-hop or 3-hop neigh-
bouring nodes, but more neighbouring nodes’ information
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TABLE 4. 95% CI for the CHR and ALT of the GNN-based caching strategy
with different information aggregator types in a 55-node tree network
topology.

TABLE 5. 95% CI for the CHR and ALT of the GNN-based caching strategy
with different numbers of message passing layers in a 15-node arbitrary
network topology.

TABLE 6. 95% CI for the CHR and ALT of the GNN-based caching
algorithm with different numbers of message passing layers in a 55-node
arbitrary network topology.

can be aggregated with 4 or 5 message passing layers.
It shows that the GNN-based caching strategy has difficulty
capturing the content popularity across the network with
an insufficient number of message passing layers. However,
the GNN-based model can realize cooperative caching and
achieve outstanding performance with a sufficient number of
message passing layers.

To more thoroughly demonstrate the impact of the number
of message passing layers on GNN’s performance, we also

demonstrate the performance of GNN-based policy with dif-
ferent numbers of message passing layers in a larger network
topology. Table 6 shows the caching performance of the
GNN-based strategy with different message passing layers in
an arbitrary network topology with 55 nodes. We can observe
that, in general, more message passing layers contribute to
a higher CHR and a lower ALT. In the 55-node arbitrary
network topology, each consumer traverse at most 9 hops to
arrive at the producer. Therefore, with 6 to 9 message passing
layers, the GNNmodel can capture the network topology and
traffic information more accurately, which helps to achieve
excellent performance.

We can conclude that the number ofmessage passing layers
is critical for the GNN-based caching strategy. In larger net-
work topology, each node needs to aggregate more neighbour
information to learn the network structure and traffic status so
that GNN can accurately predict the content caching proba-
bility. Therefore, more message passing layers are required in
a complex network topology compared with a small network
topology.

VI. CONCLUSION
In this paper, we proposed a GNN-based caching algo-
rithm and deployed it on Mini-NDN. We compared our
caching algorithm with three other popular deep learning-
based caching algorithms, 1D-CNN, LSTM-ED, and SAE,
and three traditional caching algorithms, LFU, LRU and
FIFO.We evaluated the performance of all caching strategies
regarding various network parameters, including network
topologies, network sizes, content popularity distributions,
node cache sizes, and content sizes. Regardless of network
parameters, our GNN-based caching algorithm substantially
improves the CHR, BHR and ALT compared to all the other
caching strategies. In the best case, our GNN-based caching
algorithm outperforms the 1D-CNN, LSTM-ED, and SAE
caching algorithms by about 50% in terms of the CHR.
In addition, at best, the ALT of our GNN-based strategy is
around 30% lower than the other three deep learning caching
algorithms. The outstanding performance of the GNN-based
caching strategy is that GNN can represent the network
topology, and each node can aggregate information from its
neighbouring nodes; thus, it helps to capture the structure and
traffic information of the whole network and makes coopera-
tive caching decisions. In future work, we plan to combine our
GNN-based caching algorithm with reinforcement learning
to solve the data drift problem caused by caching.
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