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ABSTRACT The motion of many robotics systems, such as the rotation of unmanned aerial vehicles, can be
modeled by SO(3). However, the difficulties in the parameterization of the SO(3) makes it hard to implement
the state-of-the-art collision avoidance algorithm. In this paper, we present a newmethod for control on SO(3)
via the combination of the nonlinear state constraints and geometric control technique. We first define the
nonlinear constraints for trajectory optimization on SO(3). Thenwe solve the trajectory optimization problem
by constrained Differential Dynamic Programming (DDP) in a Riemannian geometry framework. The first
and second-order expansion of the cost function and dynamics are derived in a coordinate-free manner.
The safety condition represented by nonlinear constraints is incorporated into the DDP via an active set
method, where we find the active set in the backward path to obtain the optimal control policy. We validated
our methods on motion planning of rigid model on SO(3) manifold where pose constraints are imposed.
Our methods outperform the baseline methods in terms of convergence speed and numerical robustness to
disturbance. The numerical robustness is essential when the system is initialized far from the local optimum.

INDEX TERMS Geometric control, motion planning, differential dynamic programming, nonlinear
programming.

I. INTRODUCTION
The motions of many robotics systems are evolving on
Lie groups [1], [2]. For example, the rotational motion
of unmanned aerial vehicle [3], [4], [5], [6] and torso of
humanoid robot [7], [8] are evolving on the special orthogonal
group SO(3) [2]. Each element of the SO(3) is the three
dimensional rotational matrix that can satisfy the following
condition {R|RTR = I ,R ∈ R3, detR = 1}. Unlike Rn

Euclidean space where most numerical optimization [9], [10]
is applied, the systems on SO(3) are evolving on manifolds
that are hard to parameterize. Therefore, designing the con-
troller on these systems is not trivial. Thus it poses a question
to us how we can design the collision avoidance algorithm on
such manifolds as SO(3).

Conventional methods for systems on SO(3) need to use
local coordinates like Euler angles, which, however, is known
for singularity or the gimbal lock [3], [11]. Though the
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quaternion is a global representation, the ambiguity issue
also restricts its applications, such that one configuration may
have multiple different representations [3], [11]. To tackle
these problems, the development of geometric control has
introduced the Riemannian geometry to the control prob-
lems that solve the control on manifolds in a coordinate-free
manner [12], [13], [14]. Reference [12] models the mechan-
ical system on a general Riemannian manifold and applies
the PD control with proof of convergence property. The
Riemmanian geometry also enables the expression of the
coordinate-dependent control theory in a coordinate-free
manner. For example, the contraction theory [15] can be
expressed in a Riemmanian geometry language using the
internal quantity without specifying the coordinates [14]. The
recent development of geometric control on the Lie group has
applied the variational-based linearization [16] techniques
that approximate the error dynamics around the reference tra-
jectory. Compared to conventional linearization in Euclidean
space, the variational-based linearization will result in state
independent matrix that has superior numerical properties
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in optimization. The variational-based linearization has been
applied to robotics systems such as unmanned aerial vehi-
cles [17], and legged robots [18].

In recent years, the optimization-based collision avoidance
algorithm has been proposed and applied to robotics systems,
such as mobile manipulators [19], unmanned aerial vehicles
(UAV) [20], [21] and autonomous driving [22], [23]. These
methods treat the safety condition via nonlinear constraints
that restrict the robots’ motion in the safe regions. Due
to the non-convexity of the general nonlinear safe region,
the convex decomposition methods have been proposed and
applied to decompose the original optimization problem to a
sequence of convex optimizations [24]. Given some assump-
tions on the convexity of the objective function, convergence
and optimality could be guaranteed. However, these methods
are mainly direct methods that do not assume optimality con-
ditions; therefore, theymay result in low accuracy in real-time
application. Among the application, the control of the rota-
tional motion of UAV is on SO(3) that is not properly solved
using conventional parameterization method. The existing
methods widely utilize the Euler angles to parameterize the
trajectories [3], [25], [26], [27], thus may face issues in the
singularities [11]. In order to solve the singularities problem,
the existingmethods need to manually adjust the yaw angle to
the range [−π, π] and avoid the possible discontinuity in this
range adjustment. If the continuity is not dealt with correctly,
the motion would be corrupted with more snap that is not
desired [5], [28].

Other than the direct method, the indirect method that
imposes optimality first condition and then executes the
optimization has been widely applied. One of the indirect
methods is the Differential Dynamic Programming (DDP)
algorithm [29]. The DDP is composed of the forward pass
for trajectory integral and the backward pass that compute the
optimal control input. By imposing the optimality condition
in the backward recursion, the optimal feedback gain could
be obtained and applied in the forward path to integrate the
system trajectory. Through DDP, the feedback controller and
optimal trajectory can be obtained simultaneously. The recent
application has also considered the input saturation [30],
general nonlinear constraints [31], and global solution search
by random search [32]. In the work of [30], the box bounds
induced from input limits are considered. In the backward
pass, this work does not directly apply the search direction
from DDP but projects it to the feasible direction consid-
ering the box constraints. Compared to simply truncating
the input in the forward pass, the proposed method has a
faster convergence rate. To solve the more general nonlin-
ear constraints, the work of [31] incorporates the barrier
function [33] to the cost function to ensure the system is
within the safe set. However, the barrier function methods
may have a slow convergence rate due to the choice of barrier
function shape and parameters [9]. Other than using barrier
function, the active set methods in optimization theory have
also been very successful in recent years [34], [35], [36],
[37]. Though the worst-case performance of the active set

method is not good due to the combinatorial nature of active
set selection [9], however, in control design and trajectory
optimization, a rough estimation of active set is accessible,
and a warm start is possible to ensure the feasibility and fast
convergence. More recent work on Model Predictive Control
(MPC) has demonstrated the performance of the active set
method [38], [39], [40]. The MPC executes the trajectory
optimization at every time step and the state at consecutive
time steps is quite close to the former one, which makes the
warm start reliable.

Though optimization-based trajectory optimization and
geometric-based control methods are widely applied, there
is no unification method that can handle collision avoidance
and on-manifold system dynamics at the same time. In order
to apply the collision avoidance algorithms to the system on
the Lie group, several challenges need to be resolved:

• The parameterization of the dynamics and the construc-
tion of a safe set on SO(3) manifold that is totally
different from the Euclidean space.

• The incorporation of inequality constraints on SO(3)
manifold in the DDP settings.

• The possible infeasibility issues in the DDPmethodwith
inequality constraints.

In order to solve the aforementioned issues, this paper
incorporates the state-of-the-art geometric DDP algo-
rithm [41] with safety encoded as general nonlinear con-
straints in a coordinate-free manner and applies it to safe
trajectory generation on SO(3). The key point of this work
is that we incorporate the active set method [9] and slack
variable into the DDP to tackle the inequality constraints
in trajectory optimization in the geometric control settings.
The incorporation of active set update would enable us to
solve constrained trajectory optimization using DDP that
is designed for unconstrained problem. The utilization of
geometric control formulation enables us to use the expo-
nential coordinates that do not suffer from singularities in
conventional methods. The main contribution of this paper
could be summarized as follows:

• We proposed the DDP algorithm on SO(3) under the
Riemmanian geometry settings with nonlinear con-
straints. The active set method is incorporated in the
DDP backward path to handle the nonlinear constraints
iteratively. A slack variable method is incorporated into
the forward path to integrate the dynamics while avoid-
ing infeasibility.

• We construct the unsafe pose avoidance condition as
a nonlinear constraint and incorporate it into the pro-
posed constrained DDP. The first-order expansion of the
pose constraints is derived. The proposed construction
is parameterized by the exponential coordinate that is
global and do not suffer from the singularities in con-
ventional methods.

• Numerical analysis has shown that the proposed algo-
rithm could successfully plan a trajectory on SO(3)
that avoid the unsafe pose and outperform the baseline
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methods. Our method has a faster convergence rate and
higher robustness to numerical disturbances than the
state-of-the-art methods.

The remainder of this paper is organized as follows. Section II
provides the math preliminaries. Section III introduces the
unconstrained DDP algorithm on Lie groups. The DDP
with nonlinear constraints is discussed in Section IV. Exper-
iments of trajectory optimization on SO(3) are presented
in Section V. Discussion and conclusion are presented in
section VI and VII, respectively.

II. PRELIMINARY
In this section, we introduce the preliminary knowledge of the
proposed algorithm. We first discuss the notation in differen-
tial geometry. The main math notations are referred to [41]
for consistency.

A. DIFFERENTIAL GEOMETRY AND LIE GROUP
1) LIE GROUPS
We denote the n dimensional Lie group as G. The identity
element of the G is defined as e. The left translation map Lh :
G→ G is defined as:

Lhg = hg, ∀h, g ∈ G. (1)

Equivalently, the right translationmapRh : G→ G is defined
as

Rhg = gh, ∀h, g ∈ G. (2)

The tangent and cotangent bundles of theG are denoted by
TG and TG∗, respectively. We define the Lie algebra as g :=
TeG and g∗ := T ∗e G is its dual. The left tangent map of Lh at
g denoted by TgLh = TG→ TG. Equivalently, we denote the
right tangent map of Rh at g as TgRh = TG → TG. As the
group action can be denoted by the left or right multiplication,
for simplification, we have:

TeLg = gξ, ∀ξ ∈ g, g ∈ G. (3)

TeRg = ξg, ∀ξ ∈ g, g ∈ G. (4)

Let X denote the set of smooth vector fields on G. For any
smooth function f : G→ G, we could define the Lie bracket
[·, ·] : X × X → X , such that

[X ,Y ](f ) := X (Y (f ))− Y (X (f )).

We define the adjoint representation of G Adg : g ∈ g as

Adg(φ)η = gηg−1.

The adjoint representation could be considered as a change of
basis transformation. Furthermore, the adjoint representation
of g is denoted as adηζ := [η, ζ ].

2) NATURAL PAIRING AND DUAL MAPS
For a vector space V and its dual V ∗, we define the bilinear
map 〈·, ·〉 : V ∗ × V → R as their natural pairing, such that

〈φ, x〉 := φ(x), ∀x ∈ V , ∀φ ∈ V ∗.

For any linear map h : V → W between vector spaces, its
dual map h : W ∗ → V ∗ is restricted to have the following
property 〈φ, h(x)〉 = 〈h∗ ◦ φ, x〉,∀φ ∈ W ∗.
The natural pairing enables us to define the inner product

that is essential to compute the distance in the Riemannian
manifold settings.

3) DERIVATIVES
Let X ,Y ∈ X be two vector fields on G. Given an affine
connection ∇ : X × X → X , the covariant derivative of Y
with respect to X is denoted by∇XY . The covariant derivative
could be considered as a generalized directional derivative for
vector fields.
Consider scalar value function f : G → R that is twice

differentiable. Let ξ ∈ TgG, Y ∈ X and Y : G → TG. The
differential of f at g ∈ G is denoted by Df (g) : TgG→ R and
satisfy ξ (f (g)) = Df (g)(ξ ). For simplification, we use Dhf to
denote the differential of f with respect to h.
The Hessian operator is denoted as Hessf (g) :

TgG → T ∗gG and satisfy the identity: D(Df (Y ))(g)(ξ ) =
Df (g)(ξ )(Y (g)) + Df (g)(∇ξY ). The Hessian can also be
considered as the second-order covariant derivative.
Finally, given any two vector spaces K and V , let L(K ,V )

denote the set of linear maps from K to V . We define the
exponential functor, (·)W , acting on a linear map g : K → V ,
such that gW : L(W ,K ) → L(W ,V ), with gW (θ ) := g ◦ θ ,
for any vector spaceW and linear map θ ∈ L(W ,K ).

III. DDP ON LIE GROUPS
In this section, we introduce the unconstrained DDP. The
DDP with nonlinear constraints also requires the same pro-
cedure to expand the cost function and system dynamics
and update the value function. The main theory is based
on [41]. The idea of DDP is to decrease the cost function by
iteratively solving local optimal control problems and update
the trajectories. The DDP consists of two parts, namely, the
backward pass and the forward pass. In the backward pass,
the DDP computes a locally optimal policy around the current
trajectory that can decrease the cost function. As this policy
is induced from dynamic programming that starts the recur-
sion from the terminal states thus, we call it backward pass.
In the forward pass, the system executes the optimal policy
to integrate a new trajectory from the initial states. The main
process of DDP is illustrated in Fig. 1.
The main structure of this section is as follows. III-A

presents the formulation of the optimal control problem.
III-B to III-E introduced the main procedures in the backward
pass. III-B and III-C introduced the expansion of the state
trajectory and value function. III-D and III-E introduced how
to obtain the local linear optimal policy and the update of
the value function by the dynamic programming from the
backward. III-F introduces the procedures in the forward
pass for trajectory integration. Here, we review the expan-
sion in a coordinate-free manner, and the specific form of
the expansion will be determined when a certain basis is
chosen.
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FIGURE 1. Unconstrained Differential Dynamic Programming on Lie
group. The DDP starts from an initialized nominal trajectory and repeats
the backward pass and forward pass until convergence. In the backward
pass, the DDP computes the expansion of the value function and derives
the optimal control law. In the forward pass, the DDP integrates the
system trajectory based on the optimal control law. The trajectory is
supposed to converge iteratively to the optimal local trajectory.

A. PROBLEM FORMULATION
Consider the system dynamics on Lie group G as

gk+1 = f (gk , uk ), (5)

where gk ∈ G is the state on the Lie group, uk ∈ Rm denotes
the input. Thus, we have the discrete-time constrained opti-
mal control problem of the following form:

min
{uk }N−10

F(gN )+
N−1∑
k=0

3(gk , uk )

s.t. gk+1 = f (gk , uk )

g0 = g(0)

k = 0, 1, . . . ,N − 1, (6)

where 3 is the running cost and F is the terminal cost.
We consider the boundary condition as the initial state g0 =
g(0) and the planning horizon being N > 0.
This optimization problem is generally hard to optimize

due to its nonlinearity. However, we can use the DDP algo-
rithm to obtain a local minimum. The basic philosophy is that
if the nominal trajectory is not optimal, we could find a per-
turbation around the trajectory that decrease the cost function.
Then, the main procedure of the DDP is to expand the cost
function and the dynamics around a local nominal trajectory,
apply the dynamic programming to decrease the cost function
locally, and repeat the procedure until convergence.

B. PERTURBED STATE TRAJECTORY
We consider the nominal system trajectory {ūk}N−10 and
{ḡk}N0 . We also consider the perturbation of the trajectory
given by the perturbed input {ūkε }

N−1
0 := {ūk + δuk}N−10 .

Note that we assume the deviation {δuk}N−10 is small enough
to make the perturbed state trajectory {ḡkε }

N
0 remain in the

neighborhood of the nominal one. Therefore, we could utilize
the local coordinates of the exponential map to denote the
perturbed states:

{ḡkε }
N
0 := {ḡ

k exp (ζ k )}N0 , ζ k ∈ g. (7)

The linearized perturbation ζ k ∈ g of the current trajectory is
incremental in the tangent space at the current configuration.
To indicate the perturbations on the group G, we mapped
it to the G by the exponential map and multiplied it at the
right-hand side of the current configuration gk [2]. As we
consider the initial value is fixed, such that g0 = g(0), we set
ζ0 = ζ (0) to impose this constraints. For simplification,
we denote the nominal trajectory by the concatenation of
nominal inputs and system trajectory:

τN0 := {{ū
k
}
N−1
0 , {ḡk}N0 } (8)

The DDP requires second-order expansion of the dynamics
of the perturbed state {ζ k} to compute the dynamic program-
ming solution. As is introduced in [41], such a linearization
scheme exists, and now we give its form as follows:

ζ k+1 ≈ 8k
(
τ̄N0

) (
ζ k
)
+ Bk

(
τ̄N0

) (
δuk

)
+

1
2

(
2k

(
τ̄N0

) (
ζ k
) (
ζ k
)

+0k
(
τ̄N0

) (
ζ k
) (
δuk

)
+1k

(
τ̄N0

) (
δuk

) (
ζ k
)

+4k
(
τ̄N0

) (
δuk

) (
δuk

))
(9)

where 8k
(
τ̄N0

)
: g → g,Bk

(
τ̄N0

)
: Rm

→ g,2k
(
τ̄N0

)
:

g× g → g, 0k
(
τ̄N0

)
: g × Rm

→ g,1k
(
τ̄N0

)
: Rm

×

g → g, and 4k
(
τ̄N0

)
: Rm

× Rm
→ g are all lin-

ear in their arguments. We also require that 2k
(i)

(
τ̄N0

)
=(

2k
(i)

(
τ̄N0

))∗
, 4k

(i)

(
τ̄N0

)
=

(
4k

(i)

(
τ̄N0

))∗
and 1k

(i)

(
τ̄N0

)
=(

0k(i)

(
τ̄N0

))∗
, for all k, i. The subscript here corresponds to

a particular component of an operator (i.e., given a basis {Ei}
in g, we take2k

(
τ̄N0

) (
ζ k
) (
ζ k
)
=
∑

i2
k
(i)

(
τ̄N0

) (
ζ k
) (
ζ k
)
Ei,

etc.).
The dynamics (9) is an approximation of the perturbed

state trajectory in the Lie algebra of the group.

C. VALUE FUNCTION EXPANSION
We define the value function V k

: G→ R at time step k as:

V k (gk ) := min
{uj}N−1k

F(gN )+
N−1∑
j=k

3(gj, uj) (10)

The above value function indicates the optimal cost at times-
tamp k and state gk . The value function, in general, can
be highly nonlinear that is intractable. To handle this issue,
we expand the value function to second-order so we could
apply the dynamic programming algorithm with the lin-
earized perturbed state dynamics.

Bellman’s principle indicates the following recursion:

V k (gk ) = min
{uk }

[
L(gk , uk )+ V k+1(gk+1)

]
, (11)

such that the tail of the optimal trajectory is optimal. Thus the
optimal cost to go could be computed backward by the above
recursion. The key idea of DDP is that if the nominal trajec-
tory is not optimal, the value function could be decreased by
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applying a small perturbation around the nominal trajectory.
As linear quadratic optimal control is well studied and a
second-order approximation of the value function is acces-
sible via Taylor expansion, we expand the value function to
its second order around the optimal trajectory by:

V k
(
gkε
)
= V k

(
ḡk
)
+ DV k

(
ḡk
) (

TeLḡk ζ
k
)

+
1
2
Hess(0)V k

(
ḡk
) (

TeLḡk ζ
k
) (

TeLḡk ζ
k
)

+O
(∥∥∥ζ k∥∥∥3) (12)

where the term with an order higher than two is discarded.
With this expansion, we could obtain a quadratic cost function
that enables us to decrease the cost function locally via linear
optimal control. For simplification, we transform the above
equation to

V k
(
gkε
)
= V k

(
ḡk
)
+ Vkg

(
ḡk
) (
ζ k
)

+
1
2
Vkgg

(
ḡk
) (
ζ k
) (
ζ k
)
+ O

(∥∥∥ζ k∥∥∥3)
(13)

with

Vkg
(
gk
)
:= TeL∗gk ◦ DV

k
(
gk
)

Vkgg
(
gk
)
:= TeL∗gk ◦ Hess

(0)V k
(
gk
)
◦ TeLgk

Similarly, the second-order expansion of the stage cost could
be expressed as:

3k
(
gkε , u

k
ε

)
≈ 3k

(
ḡk , ūk

)
+

〈
`kg

(
ḡk , ūk

)
, ζ k

〉
+

〈
`ku

(
ḡk , ūk

)
, δuk

〉
+

1
2

(〈
`kgg

(
ḡk , ūk

) (
ζ k
)
, ζ k

〉
+

〈
`kgu

(
ḡk , ūk

) (
ζ k
)
, δuk

〉
+

〈
`kug

(
ḡk , ūk

) (
δuk

)
, ζ k

〉
+

〈
`kuu

(
ḡk , ūk

) (
δuk

)
, δuk

〉)
(9) (14)

with

`kg

(
gk , uk

)
:= TeL∗gk ◦ Dg3

k
(
gk , uk

)
`ku

(
gk , uk

)
:= Du3

k
(
gk , uk

)
`kuu

(
gk , uk

)
:= D2

u3
k
(
gk , uk

)
,

`kgu

(
gk , uk

)
:= DgDu3

k
(
gk , uk

)
◦ TeLkg

`kug

(
gk , uk

)
:= TeL∗gk ◦ DuDg3

k
(
gk , uk

)
(15)

Then, we incorporate the perturbed state dynamics (9) to (13)
and we have the following form:

V k+1
(
gk+1ε

)
≈ V k+1

+

〈(
8k
)∗
◦ Vk+1g , ζ k

〉

+

〈(
Bk
)∗
◦ Vk+1g , δuk

〉
+

1
2

(〈(
8k
)∗
◦Vk+1gg ◦8

k
(
ζ k
)
+Vk+1g ◦2k

(
ζ k
)
, ζ k

〉
+

〈[(
8k
)∗
◦Vk+1gg ◦B

k
(
δuk

)
+ Vk+1g ◦1k

(
δuk

)
, ζ k

〉
+

〈[(
Bk
)∗
◦Vk+1gg ◦8

k
(
ζ k
)
+Vk+1g ◦ 0k

(
ζ k
)
, δuk

〉
+

〈[(
Bk
)∗
◦Vk+1gg ◦B

k
(
δuk

)
+Vk+1g ◦4k

(
δuk

)
, δuk

〉)
(16)

Now we define the state-action function as:

Qk
(
gk , uk

)
:= 3k

(
gk , uk

)
+ V k+1

(
gk+1

)
. (17)

Then we could use the perturbed function (14) and (16) to
approximate the Q function as a quadratic function:

Q̃k
(
gkε , u

k
ε

)
:= Qk0 +

〈
Qkg, ζ

k
〉
+

〈
Qku, δu

k
〉

+
1
2

(〈
Qkgg

(
ζ k
)
, ζ k

〉
+

〈
Qkug

(
δuk

)
, ζ k

〉
+

〈
Qkgu

(
ζ k
)
, δuk

〉
+

〈
Qkuu

(
δuk

)
, δuk

〉)
(18)

so that Q̃k
(
gkε , u

k
ε

)
≈ Qk

(
gkε , u

k
ε

)
and

Qk0 := 3
k
+ V k+1

Qkg := `
k
g +

(
8k
)∗
◦ Vk+1g , Qku := `

k
u +

(
Bk
)∗
◦ Vk+1g

Qkgg := `
k
gg +

(
8k
)∗
◦ Vk+1gg ◦8

k
+

(
Vk+1g

)g
◦2k

Qkgu := `
k
gu +

(
Bk
)∗
◦ Vk+1gg ◦8

k
+

(
Vk+1g

)m
◦ 0k

Qkug := `
k
ug +

(
8k
)∗
◦ Vk+1gg ◦ B

k
+

(
Vk+1g

)g
◦1k

Qkuu := `
k
uu +

(
Bk
)∗
◦ Vk+1gg ◦ B

k
+

(
Vk+1g

)m
◦4k (19)

Attributed to the use of the exponential functor, we can
drop all arguments from 2k , 0k ,1k , and 4k .

D. LOCAL OPTIMAL CONTROL POLICY
Based on the Q function, we can apply Bellman’s principle
to derive the optimal local policy via solving the following
quadratic programming (QP ) [9]:

V k
(
gkε
)
= min

δuk

[
Q̃k
(
gkε , u

k
ε

)]
(20)

By the quadratic expansion, we have:

δuk? = −
(
Qkuu

)−1
◦ Qku −

(
Qkuu

)−1
◦ Qkgu

(
ζ k
)

= δukf + K
k (ζ k ) (21)

and the optimal policy becomes uk = ūk + δuk .
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E. VALUE FUNCTION UPDATE
When the optimal control policy is accessible, we could
iteratively update the value function as:

V k
+

〈
Vkg , ζ k

〉
+

1
2

〈
Vkgg

(
ζ k
)
, ζ k

〉
+ O

(∥∥∥ζ k∥∥∥3)
= Qk0 +

〈
Qkg, ζ

k
〉
+

〈
Qku,−

(
Qkuu

)−1
◦ Qku

−

(
Qkuu

)−1
◦ Qkgu

(
ζ k
)〉

+

〈
Qkgu

(
ζ k
)
,−

(
Qkuu

)−1
◦Qku−

(
Qkuu

)−1
◦Qkgu

(
ζ k
)〉

+
1
2

〈
Qkgg

(
ζ k
)
, ζ k

〉
+

1
2

〈
Qkuu ◦

(
Qkuu

)−1
◦ Qku,

(
Qkuu

)−1
◦ Qku

〉
+

〈
Qkuu ◦

(
Qkuu

)−1
◦ Qku,

(
Qkuu

)−1
◦ Qkgu

(
ζ k
)〉

+
1
2

〈
Qkuu◦

(
Qkuu

)−1
◦Qkgu

(
ζ k
)
,
(
Qkuu

)−1
◦Qkgu

(
ζ k
)〉
(22)

Since the above result holds for arbitrary ζ k , we can match
the first and second-order terms. After a simple manipulation,
we obtain the following expressions:

Vkg = Qkg − Q
k
ug ◦

(
Qkuu

)−1
◦ Qku

Vkgg = Qkgg − Q
k
ug ◦

(
Qkuu

)−1
◦ Qkgu

Recall that all quantities above are evaluated at τ̄N0 , with
the right-hand sides depending on Vk+1g and Vk+1gg . The final
condition for this backpropagation scheme is given by

VNg
(
ḡN
)
= TeL∗ḡN ◦ DF

(
ḡN
)

VNgg
(
ḡN
)
= TeL∗ḡN ◦ Hess

(0) F
(
ḡN
)
◦ TeLḡN

F. FORWARD PASS
In the backward pass, we have obtained the local policy
by computing the matrix inversion induced from Bellman’s
principle and updating the value function iteratively. In the
forward pass, we apply the optimal policy and integrate a new
trajectory:

ζ k = log((gk )−1ḡk )

gk+1 = f (gk , ūk + δukf + K
k (ζ k )) (23)

with the initial condition ζ 0 = 0.
With the above analysis, the unconstrained DDP algo-

rithm could be summarized as follows: When the difference
between the consecutive trajectory or inputs is below a thresh-
old, we say that the algorithms converge.

IV. CONSTRAINED DDP ON LIE GROUP
In this section, we consider the DDP problems with general
nonlinear constraints that can handle the safety conditions.

Algorithm 1 DDP on Lie Group

1: Initialize trajectory τN0
2: while not converge do
3: Initialize the value function via (13) at time step N .
4: for k ∈ (N − 1, . . . , 0) do F Backward pass
5: Compute the Q function by (19).
6: Compute the optimal policy by (21).
7: Update the value function by (22).
8: end for
9: Store the policy as PN−1

0 .
10: for k ∈ (0, . . . ,N − 1) do F Forward pass
11: Integrate the trajectory by dynamics using policy

P .
12: end for
13: Store the trajectory as τN0 .
14: end while
15: return τN0 and PN−1

0 .

FIGURE 2. Constrained Differential Dynamic Programming on Lie group.
When the nonlinear constraint is considered, the DDP backward pass
incorporates the active set to determine the optimal control law.
By considering the active set, the control law would not violate the
inequality constraints. In the forward pass, the DDP solves a slacked QP
to integrate the trajectory that can avoid infeasibility due to constraints.

The main process of DDP with general nonlinear constraints
is illustrated in Fig. 2.

A. PROBLEM FORMULATION
Consider the system dynamics on Lie groupG in (5). We con-
sider the input saturation and define the safe set as

h(gk ) ≥ 0.

Thus, we have the discrete-time, finite-horizon constrained
optimal control problem of the following form:

min
{uk }N−10

F(gN )+
N−1∑
k=0

3(gk , uk )

s.t. gk+1 = f (gk , uk )

h(gk ) ≥ 0

uk ∈ Uk , g0 = g(0)

k = 0, 1, . . . ,N − 1. (24)
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where Uk is the input constraints at time step k . Compared to
the unconstrained case, the input saturation and the nonlinear
constraints are considered. Thus we could not directly apply
thematrix inversion to compute the optimal inputs as we do in
the unconstrained case. To be compatible with the notations
in the nonlinear optimization, we use C(·) ≤ 0 to denote any
nonlinear constraints.

The local optimal policy for unconstrained case are sim-
ilar to optimizing (20). However, additional constraints are
needed to take into account the nonlinear condition. Thus, the
value function for the constrained case can be expressed as:

min
δuk

Q̃k
(
gkε , u

k
ε

)
s.t. C(gkε , u

k
ε ) ≤ 0. (25)

As the inequality constraints are taken into account, the opti-
mal local policy can no longer be expressed by a simple
matrix inversion as we do in the unconstrained case.

To solve this problem, we apply the active set method
introduced in [42]. The idea is that we determine the active
constraints each time we compute (26) in the backward pass.
As the constraints are generally nonlinear, a linear expansion
of the active constraints is required:

min
δuk

Q̃k
(
gkε , u

k
ε

)
s.t. Dζ k = Eδuk (26)

where the D and E matrices are selected from the active
constraints, such that C(gk , uk ) ≤ −ε. We choose a small
positive constant ε to avoid the numerical issues. Note that
for the general case, the constraints are assumed to be inequal-
ity constraints:

min
δuk

Q̃k
(
gkε , u

k
ε

)
s.t. Dζ k ≤ Eδuk . (27)

However, in the active set method, we have set the linear
inequality constraints strictly satisfied as the active set is
determined. The problem (27) will assist us in determining
the active set in the following section.

B. EXPANSION OF NONLINEAR CONSTRAINTS
As the dynamics need to incorporate into the cost function,
a second-order expansion is necessary. However, only the
first-order approximation is needed in the nonlinear con-
straints expansion. Thus, we have:

h̃k
(
gkε , u

k
ε

)
:= hk0 +

〈
hkg, ζ

k
〉
+

〈
hku, δu

k
〉

(28)

where

hkg
(
gk , uk

)
:= TeL∗gk ◦ Dghk

(
gk , uk

)
hku
(
gk , uk

)
:= Duhk

(
gk , uk

)
hk0 = hk (gk , uk ). (29)

Note that it is also possible to apply a second-order approx-
imation of the nonlinear function. But there may not be a
guarantee that the Hessian matrix remains positive definite,
which will result in a nonlinear and nonconvex optimization
that is hard to solve.

C. BACKWARD PASS
In the backward pass, the optimal policy needs to take into
account the additional inequality constraints [42]. For opti-
mization problem (27) that includes additional inequality
constraints, by KKT condition [9], we could introduce addi-
tional multiplier λ and convert the (27) to its dual problem:

min
δuk

Q̃k
(
gkε , u

k
ε

)
+ λT (Dζ k − Eδuk )

s.t λ ≥ 0 (dual feasibility),

λT (Dζ k − Eδuk ) = 0 (complementary condition),

Dζ k − Eδuk ≤ 0 (primal feasibility), (30)

where we have the dual feasibility, such that the multiplier
λ is non-negative, the complementary condition, and the
primal feasibility. For the active set method, as we have
already determined the active equality constraints, we have
that Dζ k − Eδuk = 0. Thus, one straight forward approach
is to reduce the KKT condition (30) to the following form:[

Qkuu DT

D 0

] [
δuk

λ

]
= −

[
Qkug
E

]
ζk −

[
Qku
0

]
(31)

However, simply applying the (31) can not update the active
set because the solution itself assumes the satisfaction of the
predefined active set.

Therefore, we do not apply the (31) to compute the multi-
plier λ and control input δuk simultaneously, but compute the
δuk around the trajectory and examine the multiplier to check
if it satisfies the active set constraints, which will enable us
to update the active sets in the backward path. As is in the
backward path, the nominal trajectory is selected. Thus we
assume all the ζ k remain unchanged to compute the δuk . Note
that Q̃k

(
gkε , u

k
ε

)
is a quadratic function, we convert (26) to the

following form with fixed ζ k :

min
δuk

1
2
δuk,TQkuuδu

k
+ Qkuδu

k

s.t. Eδuk = 0. (32)

Remember that for the inequality constraints case, only active
constraints will lead to positive multipliers because of the
complementary condition [9]. Therefore, we solve (32) to
obtain the δuk and then compute the multipliers by sub-
stituting the solution of δuk to (30). Then we remove the
constraints with negative multipliers from the active set.
We denote the updated constraints matrix as D̂ and Ê .

Now we could obtain the optimal policy using the KKT
condition with updated constraints D̂ and Ê :

δuk = K kξ k + vk . (33)
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where

Kk = −H ◦ Qkug +W
∗
◦ D̂k ,

vk = −H ◦ Qu,k ,

W =
(
Ĉk
◦ (Qkuu)

−1
◦ (Ĉk )T

)−1
◦ Ĉk
◦ (Qkuu)

−1,

H = Q−1uu,k ◦
(
I − (Ĉk )T ◦W

)
(34)

By iteratively updating the active set, we could obtain the
optimal control policy for the constrained problem. The back-
ward path could be summarized in Algorithm 2.

Algorithm 2 Constraint DDP Backward Pass
1: for k ∈ (N − 1, . . . , 0) do
2: Compute the second-order expansion of the Q func-

tion by (19).
3: Determine the active set (D and E matrix) by check-

ing C(gk , uk ) ≥ −ε.
4: Solve the dual variables via Problem (31).
5: Update the active set (D̂ and Ê matrix).
6: Compute the optimal policy by (33).
7: Update the value function by (22).
8: end for
9: return the optimal policy.

D. FORWARD PASS
In the forward pass, we have to ensure that the updated nom-
inal trajectory remains feasible and the action is consistently
reducing the cost. As the ζ is only accessible in the forward
pass but remains unknown in the backward path, there is no
guarantee that the optimal policy obtained in the backward
path makes the forward path feasible and optimal. Therefore,
we apply a QP solver in the forward path to integrate the
solution:

min
δuk

1
2
δuk,TQkuuδu

k
+ δuTQkuxζ

k
+ Qk,Tk δuk

s.t Ck
(
gk , uk

)
+ Ck

g

(
gk , uk

)
ζ k + Ck

u

(
gk , uk

)
δuk ≤ 0

(35)

However, if it is possible that the QPmay not be feasible, thus
we introduce a slack variable η ≥ 0 and form the following
problem:

min
δuk

1
2
δuk,TQkuuδu

k
+ δuk,TQkuxζ

k
+ Qk,Tk δuk + w‖η‖2

s.t Ck
(
gk , uk

)
+ Ck

g

(
gk , uk

)
ζ k + Ck

u

(
gk , uk

)
δuk ≤ η

η ≥ 0 (36)

where w is a large number that penalizes the slack variables.
By introducing the slack variable, there is no need to itera-
tively shrink the feasible region as is introduced in [42] to
ensure feasibility in the forward pass.

Algorithm 3 Constraint DDP Forward Pass

1: Given nominal trajectory τN0
2: for k ∈ (0, . . . ,N − 1) do
3: Compute ζ k = log(g−1ḡk ).
4: Compute the optimal control problem (36) to obtain
δu.

5: Integrate the trajectory by the dynamics.
6: end for
7: return the optimal trajectory τN0

V. EXPERIMENTS
In this section, we aim to plan a trajectory on SO(3) with
pose constraints. We consider the motion on SO(3) and wish
to avoid certain configurations that are thought unsafe. one
practical usage of this task is to prevent the camera on a drone
from pointing to the sun, which might make it lose track of
landmarks.

A. DYNAMICS ON SO(3)
In this section, we introduce the dynamics on SO(3). We con-
sider the rotational motion of a rigid body. The continuous
equation of motion is given by:

Ṙ = Rω×

ω̇ = I−1 ((Iω)× ω + u) (37)

whereR ∈ SO(3) is the rotationmatrix,ω ∈ R3 is the velocity
in the body frame, and the u ∈ R3 is the input, i.e., generalized
force acted on the body frame. We use the I to represent the
inertial matrix in the body frame.

To apply the DDP algorithm in discrete time, we apply the
Euler first-order method to obtain the discrete dynamics as
follows:

Rk+1 = Rk exp (ω̂k1t)

ωk+1 = ωk +1tI−1
(
(Iωk )× ωk + uk

)
(38)

where ˆ(·) is to map the element in Rn space to the corre-
sponding Lie algebra. Tomap the element from Lie algebra to
vector space, we use the notation (·)∨. Note that the equation
of motion of the ω is described in a vector space. Thus we
could linearize the equation of motion as we do in conven-
tional DDP.

The expansion of the dynamics of the pose, which is
denoted as f , can be expressed as follows:

TeL∗Rk ◦ DR

(
f kω
)
i
= 01×3, Du

(
f kω
)
= 1tI−1

Dω
(
f kω
)
= I3 +1I−1(−ω̂I+ Îω)

DωjDωi
(
f kω
)
= 1tI−1

((
Îei
)
ej +

(
Îej
)
ei
)

2k
RR(i) = 06×6, 2k

Rω(i) = 06×6, for all i > 3

0k(i) = 06×m, 1k
(i) = 0m×6,

4k
(i) = 0m×m, for all i (39)
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TABLE 1. Simulation parameters.

where the subscripts i, k denote the components of the quan-
tities. The detailed procedure of computing these terms is
referred to [41]. The dynamics ofω are in vector space, where
we could apply the conventional Jacobian linearization as in
conventional nonlinear controller design.

To indicate the configuration difference on the manifold,
we consider the weighted Frobenius norm defined as follows:

‖A‖m,S :=
√
trace(A>SA), (40)

where S is a positive-definite matrix and S,A ∈ Rn×n The
weighted Euclidean norm is denoted as:

‖x‖v,S :=
√
x>Sx, (41)

where S is a positive-definite matrix, we use the Frobenius
norm to indicate the distance between two configurations
on SO(3).

B. TRAJECTORY OPTIMIZATION WITH
POSE CONSTRAINTS
We consider a trajectory optimization problem with pose
constraints. We show that the proposed controller could plan
a trajectory on SO(3) that can avoid certain unsafe poses. For
the problem (24), we consider the terminal cost F , stage cost
3 and safe set h of the following form:

F(RN , ωN ) :=
1
2
‖I3 − R>d R

N
‖
2
m,SR +

1
2
‖ωN‖2v,Sω ,

3(R, ω, uk ) :=
1
2
‖uk‖2v,Su ,

h(Rk ) := ‖I3 − R>s R
k
‖
2
m,Sb − b

2. (42)

We do not add a penalty for the stage cost and only con-
sider the terminal cost for configurations. The constraint is
designed to ensure that the rigid body will never approach
the neighborhood of the unsafe configuration Rs. The neigh-
borhood is defined by a constant b > 0.
As we are solving the trajectory optimization problem

on SO(3), the property of trace function and skew matri-
ces are very useful in determining the local coordinates
and the matrix expansions. We define the following nota-
tions before we give the specific form of the Jacobian
and Hessian matrix of the value functions. sym(N ) :=
1
2

(
N + N>

)
, skew(N ) := 1

2 ( N− N>
)
, ζi = (ηi, ρi) ∈

so(3) × R3, trace(sym(N ) skew(M )) = 0, trace
(
x̂>S

)
=

2x>( skew (S))∨, trace(x̂>Sŷ) = y> (trace(S)I3 − S) x, for
all N ,M ∈ Rn×n, x, y ∈ R3, S ∈ R3×3.

Thus we have the first order term of the terminal cost as:〈
DF

(
gN
)
, gN ζ

〉
=

([
2 skew

(
SRR>d R

N
)]∨)>

[η]∨

FIGURE 3. Rigid body motion with a different safe distance. When the
safe distance is set to 0, the rigid body directly rotates to the final pose
and goes across the unsafe pose. When the nonlinear constraints are
taken into consideration, the rigid body starts to move on the other axis
and avoid the unsafe pose.

+

(
S�
(
�N
−�d

))>
ρ, (43)

and the Hessian of the terminal cost can be expressed by:〈
Hess(0) F

(
gN
) (

gN ζ1
)
, gN ζ2

〉
=
(
η∨1
)> (sym (trace [SRR>d RN ] I3 − SRR>d RN)) η∨2

+ ρ>1 S�ρ2 (44)

As the nonlinear constraints also consider the pose constraints
as the terminal cost, the first-order expansion of the terminal
cost can also be applied to the expansion of the nonlinear
constraints.

C. NUMERICAL RESULT
We now implement the proposed algorithm to plan a safe path
for SO(3) rigid body. We use Rx(t),Ry(t),Rz(t) to denote the
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FIGURE 4. Trajectory represented by quaternions. When the safe distance
is set to 0, only z motion is involved. When the safe distance is set, the
motion in other axes is observed.

rotation around the x, y and z axis of body-fixed frame for t
degree.

We consider to rotate the rigid body to configuration
Rz(180) from the identity and avoid the unsafe configuration
Rs = Rz(90). We select the constant b such that the rigid body
will keep a distance with Rs for 30, 60, 80, and 85 degrees.
We also consider the case without the safe set and use it as
the initialization for the other cases. The specific parameters
are listed in Table. 1.

The planned trajectory represented by the body-fixed axes
is presented in time series as in Fig. 3. The trajectory depicted
in quaternion is presented in Fig. 4. The corresponding angu-
lar velocities are presented in Fig. 5. The case with safe

FIGURE 5. Angular velocity of the planned trajectory. When the safe
distance is set to 0, only angular velocity in z axis is observed. When the
safe distance is set, the angular velocity in the other axes gets large,
which enables the robot to avoid the unsafe pose.

distances being 30, 60, 80, and 85 degrees and without safe
sets are presented.

In Fig. 3, the rigid body configuration starts at the iden-
tity from the left-hand side and moves to the Rz(180) at
the right-hand side while trying to avoid Rs with different
buffers. Without the nonlinear safe constraints, the rigid body
only rotates about its z axis. Thus it will certainly go across
the unsafe configuration Rs. When we add safe distance
by incorporating the nonlinear constraints, we can see the
involvement of rotation in x and y axis. With the motion in
x and y axis, the robot could avoid the unsafe motions Rs.
When the safe distance becomes larger, we can see that the
magnitude of motion in x and y axes become larger in order
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FIGURE 6. Control input of planned trajectories. For the case without safe distance, the system acts like a second-order integrator as it is rotating
around a single-body principle axis. For the 85-degree safe distance case, the input saturates but does not violate the bounds.

to avoid hitting the boundary of the safe sets. The change in
the angular velocity can be seen in Fig. 5.

The inputs are presented in Fig. 6. We can see that the
planned inputs do not violate the boundary in the whole
planning horizon.With the buffer becoming 85 degrees, more
control efforts are needed to move the rigid body. How-
ever, the inputs are on the boundary but never violate the
constraints.

The value of the safe set function h is presented in Fig. 7.
It can be seen that the h > 0 for the entire trajectory. When
approaching the goal from the identity, the pose goes close to
the Rs, i.e., h approaches 0 but never hits this pose.

D. CONVERGENCE RATE AND ROBUSTNESS
We compare the proposed method with the constrained DDP
on the manifold in terms of convergence rate and robustness
to numerical disturbances.

We consider the DDP on Lie group that adopts the same
active set method as [42] as our baseline. We test the case
at a safe distance being 60 degrees. To test the robustness of
the method, we apply random noise to the feedforward force
in each iteration. We launched 200 simulations to obtain the
convergence rate, and the result is shown in Fig. 8.
Wefind that the proposedmethod has fewer non-convergent

cases and a faster convergence rate than the baseline. In the
200 randomly perturbed cases, the proposed method has
6 cases that do not converge, while the non-convergent case
of the baseline is 37. The convergence rate of the proposed
algorithm is also faster than the baseline method. All the
case converges within 20 iterations, while the baseline fails to
converge in 20 iterations. The random noise is introduced to
model the poor initialization that is widely seen in trajectory

FIGURE 7. Value of safe constraints. We can see that the safe constraints
always remain feasible. In the case that the safe distance is 30, 60, and
80 degrees, the rigid body reaches the safe distance at the middle of the
profile but still remains feasible. For the 85-degree case, there are two
configurations that reach the boundary. For the case with a 0-degree safe
distance, it certainly approaches 0 at the middle of the profile.

optimization. Our result suggests that even though the system
trajectory deviates a lot from an initial guess due to the
disturbances, the optimization still maintains a high success
rate than the baseline methods. Such robustness is essential
to trajectory optimization.

VI. DISCUSSIONS
In this paper, we have applied the DDP algorithm with non-
linear constraints that address the pose-constrained problems
on SO(3) in a coordinate-free manner. Compared to the state-
of-the-art method with the active set method, our method has
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FIGURE 8. Convergence of proposed method and the DDP method on Lie
group with active set in [42]. The solid line indicates the average
convergence rate for the converged case. The red dot indicates the
non-convergent case of the proposed method. We find that the proposed
method has a faster convergence rate and fewer non-convergent cases
than the baseline. We select the case with a safe distance being
60 degrees. In the 200 perturbed cases, only 6 cases for the proposed
methods do not converge, while the number for the baseline is 37. The
results suggest that our methods are more numerically stable and robust
than the conventional methods in the presence of perturbations, such as
poor initialization.

faster convergence and higher robustness when the system is
perturbed.

The proposed active set-based method has been success-
fully applied to a discrete-time system. One reason for its
success is that it is feasible to determine the active con-
straints at the backward pass by thresholding the nonlinear
constraints. However, the active-set-based method may be
hard to apply to continuous-time systems as determining such
an active set in the continuous-time domain is not feasible.
One possible solution to the continuous-time problem is to
apply the log barrier function that is widely adopted in the
interior-point methods.

One drawback of the proposed method is that the intro-
duction of the slack variable does not completely solve the
infeasibility problem in the forward path. Thus it may still
take a few iterations for the trajectory to converge to a feasible
solution. This problem has been an open problem for the
DDP-based method, which is an interesting direction for
future work.

VII. CONCLUSION
In this paper, we presented a discrete-time Differential
Dynamics Programming algorithm on SO(3) for trajectory
optimization with pose constraints. We apply the algorithm
with Riemannian geometry techniques to handle the param-
eterization problem on manifold and active set methods for
constraints. The distance function is imposed on the manifold
as the safety constraint. The active safe set is determined
in the backward path to deriving the optimal policy. New
slack variables are introduced in the forward pass to tackle
the infeasibility problem. Numerical simulation has been

conducted to show that the proposed algorithm could guaran-
tee a safe and dynamically feasible trajectory that could avoid
unsafe poses for systems on SO(3).

The main advantage of this proposed method is that it
solves the constrained optimization problems on the SO(3)
manifold in a coordinate-free manner using geometric control
techniques. The proposed algorithm is not only capable of
handling inequality constraints on the manifolds but also
more numerically robust to handle noise and disturbance than
the baseline methods.

Based on the aforementioned contributions, certain future
topics may need further investigation. It would be interesting
to see how to incorporate more complicated constraints, for
example, the position constraints related to the rigid body ori-
entation. Incorporating more complicated dynamics into Lie
groups, such as the special Euclidean group that also models
the translation of the rigid body, can also be considered in
future research. On the numerical side, other than a quadratic
expansion, a more general convex set expansion may further
reduce the burden of removing the active linear constraints.
For example, we could determine the convex set as a quadratic
constraint set that has more numerical advantages.
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