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ABSTRACT With the development of science and technology and the progress of the times, automation and
intelligence have been popularized in manufacturing in all walks of life. With the progress of productivity,
product defect detection has become an indispensable part. However, in practical scenarios, the application
of supervised deep learning algorithms in the field of defect detection is limited due to the difficulty
and unpredictability of obtaining defect samples. In recent years, semi-supervised and unsupervised deep
learning algorithms have attracted more and more attention in various defect detection tasks. Generative
adversarial networks (GAN), as an unsupervised learning algorithm, has been widely used in defect detection
tasks in various fields due to its powerful generation ability. In order to provide some inspiration for the
researchers who intend to use GAN for defect detection research. In this paper, the theoretical basis, technical
development and practical application of GAN based defect detection are reviewed. This paper also discusses
the current outstanding problems of GAN and GAN-based defect detection, and makes a detailed prediction
and analysis of the possible future research directions. This paper summarizes the relevant literature on the
research progress and application status of GAN based defect detection, which provides certain technical
information for researchers who are interested in researching GAN and hope to apply it to defect detection
tasks.

INDEX TERMS Deep learning, generating adversarial networks, defect detection, adversarial learning.

I. INTRODUCTION
Defect detection [1], which aims to find the appearance
defects of various industrial products, agricultural products
and construction roads, is one of the important technologies
to ensure product quality and maintain production stability.
Previous defect detection requires manual screening, which is
costly and inefficient and difficult to cover large-scale quality
inspection needs. In recent years, with the emergence of new
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technologies in industrial imaging, computer vision, deep
learning and other fields, vision-based defect detection tech-
nology hasmade great progress and become an effective solu-
tion for product appearance inspection, which has aroused
strong attention from academia and industry. Defect detection
not only can be used to detect all kinds of industrial prod-
ucts (such as metal, textile, semiconductor, etc.), agricultural
products (such as litchi, tomatoes, etc.) and building roads
(such as concrete, road pavement, etc.) if there is a defect
(various defect sample is shown in Fig. 1), and has good
precision and efficiency, and can also provide a simple and
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FIGURE 1. Examples of surface images.

safe operation environment. Therefore, defect detection has
become one of the important basic research and technologies
in the fields of intelligent manufacturing, product storage and
transportation management, and is widely used in scenarios
such as unmanned inspection, intelligent inspection, produc-
tion control and anomaly traceability. Vision-based defect
detection not only has very important research value, but also
has broad application prospects. However, compared with the
general object detection task, the defect detection task is faced
with many difficulties, such as lack of defect samples, low
visibility of defects, irregular shape, unknown type, etc. This
makes it difficult for many existing methods to meet the task
requirements of high precision and high speed at the same
time. Therefore, there are still a large number of problems to
be solved on the way to realize practical application [2].

Because the defects on the surface of the object can be
regarded as an ‘‘anomaly’’, some defect detection methods
adopt the idea of anomaly detection. However, the defini-
tion of anomaly detection is different from defect detection.
Specifically, the concept of anomaly detection is more exten-
sive and abstract. Image-based anomaly detection mainly
focuses on whether the input image is an anomaly instance,
while surface defect detection focuses more on the detection
task at pixel level. At the pixel level, anomalies differ more
subtly from normal patterns and are much more difficult to
detect. Therefore, the direct use of anomaly detection meth-
ods is difficult to meet the task requirements of surface defect
detection [2].

Since deep learning methods have been applied to com-
puter vision tasks, researchers have widely applied deep

learning methods such as convolutional neural network
(CNN) [3], Deep Belief Network (DBN) [4], Recurrent Neu-
ral Network (RNN) [5], Autoencoder (AE) [6] andGenerative
Adversarial Network (GAN) [7] to various defect detection
tasks and achieved good performance. With the advent of the
information age, data volume and complexity show an expo-
nential growth trend. More and more deep learning methods
and their variants have been proposed and applied to various
defect detection tasks. In actual scenarios, it is often unrealis-
tic to collect enough defect samples for deep defect detection.
Usually, there are only a large number of normal samples and
a small number (or even no) defect sample. In this case, the
class imbalance problem [8] will be very serious, and even
directly lead to the failure of defect detection task. Therefore,
the data imbalance problem is the biggest obstacle to the
practical application of deep defect detection method.

Due to the ability of distribution fitting, generative model
has become one of the best methods for defect detection
[9]. Among them, Variational Auto-Encoder (VAE) [10] and
GAN (including their variants) are the most representative
ones, and GAN and its variants are one of the most popular
deep learning methods in recent years. The generative ability
of GAN is excellent, and the generated image instances can
even be indistinguishable from the real images. Fig. 2 shows
the excellent defect generation capability of GAN, where the
generated image examples are from literature [11]. As shown
in Fig. 2, more realistic defect samples can be generated
by training with a dataset containing only normal samples.
The excellent generation ability of GAN alleviates the prob-
lem of insufficient defect samples to a certain extent [12].
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FIGURE 2. An example of image generation based on GAN.

FIGURE 3. Papers on GAN and its application in defect detection were published from 2014.01 to 2022.07.

In addition, GAN can also learn the feature representation of
the latent space by reconstructing (repairing) defect samples.
And by comparing with normal samples, GAN can accurately
detect whether there are defects in the graph and locate the
location of defects. At present, most of the theories and meth-
ods based on GAN are suitable for defect detection. There-
fore, GAN has become a very hot research topic in recent
years. At present, many defect detection methods based on
GAN have been widely used in production and manufac-
turing, construction, road and agricultural product quality
inspection and other fields. Fig. 3 shows the publication of
GAN-related papers and their application in defect detection
from January 2014 to July 2022, where (a) cites the statistical
data in literature [9].

Compared with many current literatures devoted to sum-
marizing defect detection technology [13], [14], [15], [16],
this paper makes the following contributions:

This paper focuses on the research progress and applica-
tion status of GAN in defect detection. At present, many
studies are devoted to summarizing the research progress
and application status of defect detection, and comprehen-
sively and profoundly summarizing the research progress and
application status of deep learning-based defect detection.
However, only a brief introduction is made to the research
progress and application status of GAN in defect detection,
without a comprehensive summary. Therefore, in this review,

we review in detail the theoretical development and evolution
of GAN, the research progress, development process and
implementation of GAN-based defect detection methods in
specific applications. In addition, this paper summarizes and
prospects the latest progress, challenges and future research
directions of GAN based defect detection, which is of great
significance.

This paper can be divided into the following parts:
Section 2 defines the defect detection problem and briefly
introduces the defect detection process. Section 3 summarizes
the defect detection algorithm based on GAN, including the
principle of GAN, various variants and their development
history in defect detection applications. Section 4 summarizes
the application of GAN-based defect detection in various
industries. Section 5 analyzes the limitations and existing
problems of current GAN and GAN-based defect detection
technology, and considers and looks forward to the next
development direction of GAN and GAN-based defect detec-
tion based on the actual situation. Section 6 summarizes the
thesis.

II. OVERVIEW OF DEFECT DETECTION
A. THE DEVELOPMENT OF DEFECT DETECTION
TECHNOLOGY
The development milestones of defect detection methods are
shown in Fig. 4, where the timeline indicates that this class
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FIGURE 4. Development milestone of defect detection technology.

TABLE 1. Comparison of defect detection between traditional methods and deep learning methods.

of methods was first applied to defect detection. In Fig. 4,
taking 2012 as the dividing line, existing defect detection
methods are divided into traditional methods and deep learn-
ing methods. The research on defect detection based on tra-
ditional methods began in the 1980s, with abundant research
results, which could be further divided into statistical method,
filtering method and model method. And since 2013, with
the successful application of deep learning technology repre-
sented by convolutional neural network in many computer-
vision tasks, people have tried to apply it to defect detection
and achieved rich results. In 2021, Su et al. [17] reviewed the
surface defect detection based on visual perception, andmade
a profound summary of the application of traditional methods
and deep learning methods in defect detection. Table 1 shows
the comparison of the advantages and disadvantages of tra-
ditional methods and deep learning methods on defect detec-
tion. At present, research on defect detection methods based
on deep learning methods is very active, and various inno-
vative methods are constantly emerging. According to the
different defect information obtained, they can be divided into
whole image classification, object detection and pixel-by-
pixel segmentation methods. And in the following sections,
these methods are elaborated. methods are very active, and
various innovative methods are constantly emerging. Accord-
ing to the different defect information obtained, they can
be divided into whole image classification, object detection
and pixel-by-pixel segmentation methods. in the following
sections, these methods are elaborated.

B. DEFINITION OF DEFECT DETECTION PROBLEM
1) DEFINITION OF DEFECT
In computer vision tasks, defects tend to be notions of human
experience rather than a purely mathematical definition. The

difference in the perception of the defect pattern leads to two
very different methods of detection. And take the insulation
board surface defect detection as an example, as shown in
Fig. 5. The first method is a defect detection method based
on supervised learning [33], which uses defect images with
labels (including categories, rectangular boxes, pixel by pixel,
etc.) to be input into the network for training. In this case,
‘‘defect’’ means a marked area or image. Therefore, this
method pays more attention to defect features, for example,
in the training phase, regions containing continuous crack
ranges or images are labeled as ‘‘scratch’’ defects for network
training. And in the test phase, a ‘‘scratch’’ defect is consid-
ered to have occurred when a characteristic continuous crack
is detected in the insulating partition image. The second is the
defect detection method based on unsupervised learning [34],
which usually only needs to input normal non-defect samples
into the network for training, also known as one-class learn-
ing. This method pays more attention to the features without
defects (i.e., normal samples). When features that have not
appeared before (defect features) are found in the process of
defect detection, defects are considered to be detected. In this
case, ‘‘defect’’ means Anomaly, so this method is also called
Anomaly detection.

2) DEFINITION OF DEFECT DETECTION
Compared with the explicit tasks of classification, detection,
and segmentation in computer vision, the requirements for
defect detection are very general. In fact, its requirements
can be divided into three different levels, namely ‘‘what is the
defect’’, ‘‘where is the defect’’, and ‘‘how big is the defect’’.

(1) Stage 1: ‘‘What is the defect’’, corresponding to
the target classification/recognition task in computer
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FIGURE 5. Example definition of a defect detection problem.

vision [35]. And as shown in Fig. 5, four defect cat-
egories are classified: scratch, pothole, ablation and
voltage breakdown. The task at this stage is called
‘‘defect classification or recognition’’. Category labels
include image labels and defect type labels, indicating
whether the current image has defects and the category
of defects respectively.

(2) Stage 2: ‘‘Where is the defect’’ corresponds to the tar-
get detection and localization task in computer vision
[36], and the defect localization in this stage is detec-
tion in a strict sense. It not only gives the types of
defects in the image, but also gives the specific loca-
tion of the defects in the original image. As shown in
Fig. 5, scratches, pits, ablation and voltage breakdown
defects are respectively marked with external rectangu-
lar boxes.

(3) Stage 3: ‘‘How big is the defect’’, corresponding to the
segmentation task in computer vision [37]. As shown
in the defect segmentation area in Fig. 5, the defect is
segmented from the background pixel by pixel, and a
series of information such as the length, width, area and
location of the defect can be further obtained, which
can assist the product to carry out a higher level of
quality assessment, such as the judgment of pros and
cons of the product.

Although the functional requirements and goals of the
three phases of defect detection are different, the three phases
actually contain each other and can be inter-transformed.
For example, the ‘‘defect location’’ in stage 2 includes the

process of ‘‘defect classification’’ in stage 1, and the ‘‘defect
segmentation’’ in stage 3 can also complete the ‘‘defect loca-
tion’’ in stage 2. And Phase 1, Defect Classification, also
achieves Phase 2 and phase 3 goals in a number of ways.
Therefore, in the following, it is still referred to as defect
detection according to the traditional industrial habits, and
it is only distinguished for different network structures and
target functions.

3) DEFECT DETECTION SYSTEM
The basic structure of the surface defect detection system
based on deep learning includes three main modules, which
successively complete the functions of image acquisition,
image processing and image feedback [17]. In the image
acquisition module, lighting and imaging system should be
constructed according to the surface properties and defect
features of the object to be detected. And through the coop-
erative configuration and operation of mechanical device,
light source and camera, the surface image of the object to
be examined with obvious defect characteristics is obtained.
In the image processing module, the image processing algo-
rithm is used to detect the defect target in the image and iden-
tify the defect type. Finally, in the image feedback module,
the current sample is judged to be qualified according to the
detection standard, and the judgment result is transmitted to
the actuator. At the same time, the defect type, location, shape
and size of the image can also be visualized and displayed,
and the image and defect information can be stored for
subsequent query and statistics. Deep learning-based defect
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FIGURE 6. Structure illustration of the Generative Adversarial Network (GAN).

FIGURE 7. Training algorithm for GAN.

detection systems have been widely used in various detection
tasks.

III. OVERVIEW OF GAN-BASED DEFECT DETECTION
A. OVERVIEW OF GAN PRINCIPLE
Goodfellow et al. [38] proposed generative adversarial net-
works in 2014, whose core idea is two-player zero-sum game
theory. The generator and the discriminator use the mutual
game strategy to continuously iterate to improve the effect.
And the final effect you want to achieve is that the discrimi-
nator can’t tell the difference between the real sample and the
generated pseudo-sample. The network structure of GAN is
shown in Fig. 6.

Generative adversarial network (GAN) consists of two
important parts, namely, generator G and discriminator D.
The generator G can generate pseudo samples whose sim-
ilarity approximates the real samples by learning the fea-
ture distribution of the real sample data and random noise
(or other data); And the discriminator D is used to distin-
guish between the real samples obtained from the data and
the pseudo-samples generated by the generator G. The two

models are iteratively optimized by continuous confrontation,
that is, the optimization problem of GAN is a binary minimax
adversarial problem, so that the data distribution of pseudo-
samples generated by generator G is as close as possible to
the data distribution of real samples. The final goal of GAN
network optimization is as follows: generator G needs to be
able to ‘‘fool’’ the discriminator, that is, generate spurious
samples that make it difficult for the discriminator to dis-
tinguish between true and false; The discriminator D needs
to distinguish real samples from generated samples as far
as possible from the input data. The discriminator outputs
‘‘1’’ and ‘‘0’’ for real and generated samples, respectively.
However, when the output probability of the discriminator is
basically ‘‘0.5’’ each time (that is, the discriminator can no
longer distinguish between true and false samples), it means
that the model has reached the Nash equilibrium, that is, the
optimal state, which is the adversarial thought of GAN. The
training process of GAN can be divided into three stages, one
is to fix the discriminator D and train the generator G, the
other is to fix the generator G and train the discriminator D,
and then cycle the first and second stages to continuously
iterate the training. Fig. 7 shows the training algorithm for
GAN.

The original objective function of the Generative adversar-
ial network (GAN), as shown in Equation (1).

min
G

max
D

V (D,G) = Ex∼pr (x)[log(D(x))]

+ Ez∼pz(z)[log(D(G(z)))] (1)

where V represents the output value of the loss function. G
and D are generators and discriminators for GAN, respec-
tively. Pr (x) is the real data distribution, Pz(z) is the distribu-
tion of generated data, and E is the average.
The training optimization loss function of the generator G

is shown in Equation (2).

min
G

V (D,G) = Ez∼pz(z)[log(1− D(G(z)))] (2)

The training optimization loss function of the discriminator
D is shown in Equation (3).

max
D

V (D,G) = Ex∼Pr (x)[log(D(x))]

+ Ez∼Pz(z)[log(1− D(G(z)))]Pz(z) (3)
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When the quality of the generated samples is the best, the
data distribution of the generated samples should be consis-
tent with that of the real samples. Therefore, theoretically
speaking, a trainedGANnetwork should be able to fit the data
distribution of any sample and determine whether a given new
sample is in the distribution [9].

B. COMMON VARIANTS
In practice, how to find theNash equilibrium ofGANnetwork
is a challenge and difficulty. Because GAN faces two major
problems. First, the model is difficult to train and unstable.
In the actual training, it is easy to have the discriminator
D converge and the generator G diverge, and it is difficult
to have good synchronization between the two networks.
Therefore, the training of D and G needs to be carefully
designed. Second, GAN has the phenomenon of mode col-
lapse in the learning process [38]. When the generator G
learns a parameter setting, it can generate samples that are
very realistic to the discriminator D, and can easily ‘‘fool’’
the discriminator D; Therefore, generator G will generate the
same pseudo-samples again and again, and eventually always
generate the same sample points, and the pattern is missing,
so it cannot continue to learn. In order tomakeGANnetworks
suitable for a wide variety of tasks and solve the problems
there faces, researchers have proposed various variants based
on GAN. Fig. 8 shows the various GAN variant networks that
have emerged in recent years. TheGANvariants that aremore
commonly used for defect detection are listed below.

CGAN [39]. Conditional Generative Adversarial Nets
(CGAN) proposed by Mirza et al. is an extension of the
original GAN. And both generator G and discriminator D
condition on additional information y, which can be any
kind of additional information, such as category information
or data from other models. Since labels, vectors and even
images can be used as conditional data, CGANcan effectively
control the sample semantics. CGAN is regarded as a two-
player minimax game with conditional probability, and the
objective function is defined as Equation (4). Literature [56],
[57], [58] has introduced CGAN to improve its own network
and method, which improves the accuracy and robustness of
defect detection.

min
G

max
D

V (D,G) = Ex∼Pr (x)
[
log (D (x|y))

]
+ Ez∼P(z)

[
log (1− D (G (z|y)))

]
(4)

DCGAN [40]. The DCGAN proposed by Radford et al.
provides a convolutional GAN architecture. By using decon-
volution to replace the pooling layer in generatorG and stride
convolutions to replace the pooling layer in discriminator
D; And the batch-norm is used in generative model and
discriminant model, which changes the activation function
and makes GAN structure more stable. DCGAN verifies that
discriminators can be used for feature extraction in super-
vised learning tasks and generators can be used for semantic
vector computation. Literature [59], [60], [61] all introduced

DCGAN to improve its own network and methods, which
improved the accuracy and robustness of defect detection.

WGAN [46]. Arjovsky et al. proposed a new algorithm
called WGAN. The original GAN performs model train-
ing by minimizing the JS divergence [62] between the real
distribution and the generated distribution, but this differ-
ence cannot reach the optimum. However, by minimizing
Wasserstein distance and satisfying Lipschitz continuity [62],
WGAN theoretically solves the training instability and mode
collapse problems of GAN and ensures the diversity of gen-
erated samples. And WGAN does not even need to elabo-
rate the network architecture, the simplest multi-layer fully
connected network can do. The loss function of WGAN
is shown in Equation (5). Literature [63], [64], [65] has
introduced WGAN to improve its own network and method,
which improves the accuracy and robustness of defect
detection.

min
G

max
D

V (D,G) = Ez∼pz(z)[log(D(G(z)))]

− Ex∼pr (x)[log(D(x))]

+ λgpEx̂∼p(x̂)
[
||∇x̂D

(
x̂
)
||2 − 1

]
(5)

where x̂ is uniformly sampled in a straight line between a
pair of real samples and generated samples, and λgp is a
hyperparameter.

Cycle-GAN [49]. Zhu et al. proposed a method to learn
to transform an image from the source domain to the target
domain Y without pairwise examples. Cycle-GANmakes the
inverse mapping from Y to X hold by introducing a cyclic
consistency loss, namely F (G (X)) = X . The loss function
change of Cycle-GAN is shown in Equation (6). This method
has excellent performance in image style transfer, object
deformation and photo enhancement. Moreover, Cycle-GAN
has excellent performance in data enhancement. And litera-
ture [66], [67], [68] all introduced Cycle-GAN to improve its
own network and methods, which improved the accuracy and
robustness of defect detection.

min
G

max
D

V (G,DY ,X ,Y ) = Ey∼pr (y)[log(DY (y))]

+ Ex∼pr (x)[log(1− DY (G(x)))] (6)

With the continuous improvement and deepening of deep
learning theory, there is still a lot of research space for GAN
variants in the future. Table 2 lists the optimization methods,
advantages and disadvantages of some GAN variants, as well
as the suitable application scenarios.

C. DEVELOPMENT OF DEFECT DETECTION BASED ON GAN
With the continuous deepening and improvement of GAN
theory research, various variant network models emerge in
endlessly. However, the defect detection based on tradi-
tional deep learning methods is limited by the difficulties
of data collection and expensive labor costs. Inspired by the
remarkable achievements of GAN-based anomaly detection,
researchers gradually apply GAN and its variants to various
defect detection tasks.
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FIGURE 8. Examples of GAN variants.

Defects detection based on GAN mainly has the following
three ideas:

(1) GAN network can learn feature distribution by repair-
ing defect images, and then determine whether the
sample has defects and locate the location of the defects
by comparing with the input samples.

(2) Due to the scarcity of defect samples, GAN is used
to generate defect samples and enhance the data set,
so that the defect detection task can continue or even
achieve better detection accuracy.

(3) Based on the network structure of GAN, by replacing
the generator and discriminator with other networks,
the generator directly detects defect samples, takes the
detection results as the output of the generator, and then
inputs the output of the generator to the discriminator,
which improves and enhances it. Finally, the detection
result of the discriminator is regarded as the result of
defect detection.

In 2018, Zhao et al. [69] first proposed to apply GAN to
defect detection. The basic detection concept is to establish a
reconstruction network. If there are defect areas in the sample,
these defect areas can be repaired, and then the input sample is
compared with the recovered sample to indicate the accurate
defect area. And based on this concept, Donahue et al. [70]
first applied AnoGAN [50] to defect detection of electronic
components in 2019. In the training, only normal samples
are used to learn the feature distribution in the latent space
unsupervised. The generator outputs the reconstructed image
through forward propagation and compares it with the orig-
inal image to detect the defect region. With the improve-
ment of theoretical work, more and more researchers have
appliedGANand its variants to various defect detection tasks.
Fig. 9 shows the development of GAN based defect detection
theory and application. For example, Liu et al. [71] designed
a GAN-based single-class classifier for steel plate surface
defect classification. Liu et al. [7] proposed a GAN-based

supervised discriminant learning for fabric defect detection.
And Cheng et al. [72] proposed a generative adversarial net-
work with multi-head fusion strategy – IRT-GAN, which was
used to automatically detect defects in composite materials
using infrared thermal imaging technology. Based on the
above content, there is still a lot of room for progress in
defect detection of GAN, both its theoretical research and its
application improvement will continue to move forward.

IV. OVERVIEW OF DEFECT DETECTION APPLICATIONS
BASED ON GAN
Defect detection is a key problem and basic requirement in
computer vision, but it is challenging to detect small and
complex defects. And the defect detection is nowwidely used
in industry, agriculture, construction and road, etc., and is
playing an increasingly important role in quality detection in
various fields. Today, GAN and their variants are trained to be
widely used to detect a wide variety of defects, and as shown
in Fig. 10, using these methods achieves better results than
previous methods. At present, there are two main ideas for
GAN based defect detection. Firstly, GAN skillfully uses the
concept of game to train the generator and discriminator to
detect the defect region successfully, and it does not need to
know the real distribution of normal data. Second, GAN is
used as a powerful means of data enhancement to expand the
defect dataset. These advantages make GAN widely used in
defect detection tasks. In the future, GAN will still be one of
the hot spots in the field of defect detection.

In this section, we review GAN implementations for vari-
ous defect detection tasks. In particular, it summarizes the key
issues solved byGAN in these fields, and expounds the poten-
tial research directions of GAN, as well as the new challenges
to be solved in the future. In recent years, deep learning tech-
nology has become the most successful application in indus-
trial defect detection. The detector is obtained by training a
large number of samples. The detector can perform automatic
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TABLE 2. List of advantages and disadvantages of some GAN variants.
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FIGURE 9. The development of GAN defect detection.

FIGURE 10. Application of defect detection based on GAN in various
industries.

detection tasks such as product defects, abnormal operation
of equipment, and fault diagnosis. At present, although deep
learning techniques have been successfully applied to many
industrial detection tasks and can achieve the most advanced
performance, the defect detection task is still challenging due
to the need for a large number of training samples and high-
quality samples. The latest review of defect detection [13],
[16], [89] points out that the three key issues of the current
deep learning defect detection task can be summarized as
follows:
(1) In the case of few or no actual defects, it is difficult

for the detection model to correctly learn the feature
representation, which is very difficult for the defect
detection task based on deep learning methods.

(2) There are many types of defects, the model can’t auto-
matically identify the types of defects, and the labeling
of new defects requires workers with expert knowledge
and a lot of time.

(3) In actual industrial production, how to realize real-
time and efficient detection is a difficult problem to be
solved urgently.

In actual scenarios, it is difficult to collect enough defect
samples, and the defect features extracted from insufficient
and unbalanced data by deep learning methods are not accu-
rate enough and even lead to the failure of the defect detection
task. And the GAN can not only effectively alleviate the
problem of lack of data by generating defective samples,
but also detect defects by comparing the differences between
input samples and reconstructed samples after learning to
characterize normal samples. Therefore, GAN is widely used
in various defect detection tasks. The following summarizes
the application of GAN in defect detection in various fields,
including quality detection of industrial products, textiles,
construction roads and agricultural products.

A. OVERVIEW OF THE APPLICATION OF GAN BASED
DEFECT DETECTION IN INDUSTRIAL PRODUCTS
In the process of industrial production, product defects are
unavoidable due to improper manual operation, production
technology problems, storage and transportation problems
and other reasons. And the defect will affect the appearance
and performance of the product and bring economic loss to
the production enterprise. Strict control of the qualified rate
of products can effectively reduce the company’s production
costs. In the visual defect detection of industrial products,
based on the assumption that the potential features of normal
samples and defect samples are different, GAN is used to
obtain the feature distribution of normal samples in the poten-
tial space, and the trained model is used to detect defects.
Generally, normal samples are only used for training GAN,
and the combination of normal samples and defective samples
is used for testing and verification.

In 2018, Zhao et al. [69] first proposed the combination
of GAN and autoencoder for defect detection of industrial
products. They proposed a defect detection framework based
only on normal sample training, reconstructed defect images
by combining GAN and AE, compared input samples with
recovered samples, and accurately detected defect areas.
In addition, this method does not require defect samples
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and manual labeling, and has high detection accuracy on
DAGM2007 dataset [90]. Wang et al. [91] used the Otsu
algorithm to determine the threshold of the residual image
to repair the defect image, and then obtained the defect area
by comparing the difference between the input image and the
repaired image. Experimental results on engine cylinder head
datasets show that the proposed method is effective in image
restoration and defect detection.

Due to the shortage of defect images and high labeling cost
in actual production lines, it is difficult to obtain sufficient
diversity and quantity of defect data sets. Niu et al. [80] pro-
posed a new generation method called Surface Defect Gen-
erative Adversarial Network (SDGAN). The defect images
generated by this method have better image quality and diver-
sity, and show excellent performance in detecting the surface
defects of the cylinder block of the commutator. Moreover,
the defect classification trained on SDGAN-enhanced images
is robust to uneven and poor lighting conditions. SDGAN
has two generators. One generator generates defective sam-
ples from normal samples, and the other generator restores
defective samples to normal samples. In addition, four dis-
criminators are used to distinguish real samples from gener-
ated samples. Lian et al. [78] combined GAN and CNN to
automatically identify small defects in images. The network
uses the changes in the image as regularization terms to gen-
erate defect-free images and corresponding enlarged defect
images. This method expands the limited data set of defect
detection training samples and achieves a defect detection
accuracy of up to 99.2%.

In addition to the defect detection examples discussed
above, Liu et al. [71] proposed a single-class classification
method for strip surface defect detection based on GAN,
and proposed a loss function to improve convergence speed
and stability. Single-class classifier (OCC) can detect defects
of different sizes, shapes and types only by training normal
samples, and the average detection accuracy of the strip
defect dataset reaches 94%. Zhang et al. [82] proposed a new
method based on the idea of GAN,which is a semi-supervised
generative adversarial network (SSGAN) composed of a dual
attention mechanism segmentation network and a full convo-
lution discriminator (FCD) network. To obtain more accurate
segmentation results at pixel level. The segmentation network
based on dual attention mechanism can segment defects from
labeled and unlabeled images, while FCD uses adversarial
and cross-entropy loss functions to generate confidence maps
of unlabeled images in a semi-supervised learning manner.
This method can achieve 81.8% defect segmentation accu-
racy on the Severstal steel plate defect dataset [92] with only
1/8 marks, and it is robust and flexible in various scenarios.
In the latest research, GAN has also achieved excellent per-
formance in glass fiber material defect detection [72], steel
plate surface defect detection [88], and PCB board defect
detection [86, 93]. Table 3 shows the research application
and performance of GAN-based defect detection in the field
of industrial production. Among all kinds of applications
based on GAN defect detection, it is the most widely used

in the industrial field and has made the most achievements.
However, both in principle and application, there is still a
large room for progress in the future.

B. OVERVIEW OF APPLICATION OF TEXTILE DEFECT
DETECTION BASED ON GAN
In the process of manufacturing, transportation, storage and
use, due to improper human operation or machine failure,
textiles are likely to produce a variety of defects (such as
scratches, pits, ablations and defects). With the continuous
development of deep learning theory and technology, more
and more researchers have applied GAN to textile defect
detection, and achieved relatively outstanding results. The
following is a review of recent studies on GAN applied to
textile defect detection.

As early as 2018, Komoto et al. [94] proposed to use GAN
for textile surface defect detection. They proposed Denoising
autoencoder Generation Adversarial Network (DAE-GAN).
By introducing adversarial learning framework into DAE,
defective images can be restored to clearer defect-free
images. However, there is no significant improvement in
the accuracy of defect detection, so there is a large space
for optimization. In order to improve the problem of low
detection accuracy and difficult generalization when fabric
texture and defects are complex, Liu et al. [7] proposed
a fabric defect detection framework based on generative
adversarial network, which can learn existing defect samples
and adapt to different fabric textures. Firstly, a conditional
GAN is trained to generate a reasonable defect patch, and
then it is fused to a specific location. The network can
update the existing fabric defect dataset and better detect the
defects under different conditions. The final average detec-
tion accuracy reached 94.8%, the recall rate reached 97.6%,
and the F-value reached 96.2%. Hu et al. [77] proposed a
novel unsupervised automatic fabric defect detection method
based on deep convolution Generative adversarial network
(DCGAN). In this method, by introducing a new encoder
component, the model will restore the defect image to a
normal image, and then highlight the potential defect area
through the residual error between the original image and
the reconstructed image. Then the defect detection accuracy
is improved by fusing the residual map with the likelihood
map of the original image. Finally, this method can achieve
93.45% defect detection accuracy. To solve the problem of
image distortion in textile defect detection, Li et al. [76]
proposed SRGAN, a super-resolution image reconstruction
technique based on generative adversarial network, which
can reconstruct the obtained low-pixel image into high-pixel
image. The generation network is responsible for generating
high-resolution images, and the discrimination network is
responsible for identifying the authenticity of images. The
network is continuously optimized through generation loss
and discrimination loss, and the generation of high-quality
images is guided. Experimental results show that SRGAN can
obtain clearer images, reconstruct richer textures, more high-
frequency details, and identify defects more easily, which
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TABLE 3. Research on defect detection application of GAN in industrial production field.

is very important in fabric defect detection. Zhang et al.
[85] proposed an improved deep convolutional generative
adversarial network, which introduced an autoencoder with
anMLP layer in the generator module. By addingMLP layers
to extract low-rank fabric image features, the model has a
stronger ability to capture fabric texture features. Through the
reconstruction of the defect image, the reconstructed image is
compared with the defect image to segment the defect area.
Compared with previous studies, this method can achieve
better defect segmentation effect.

In the latest study, Li et al. [87] proposed a lightweight seg-
mentation system for the detection of weak and small defects
in fabrics. Firstly, the image repair mechanism based on gen-
erative adversarial network model is used to repair the defec-
tive sample images. Then, the difference between the defect
sample and the fix sample is obtained. Finally, the defect
region is segmented. The experimental results show that
the joint intersection of three different datasets is 77.84%,
77.85% and 73.6%, respectively, and the proposed model is
superior to the traditional semantic segmentation model. Wen
et al. [95] proposed a new cyclic consistency Adversarial net-
work with attention mechanism (ATTECGAN). First, defect
samples were synthesized using ATTECGAN to expand the
sample size. Secondly, by discovering the discriminative part
of the samples and enlarging the differences between the
samples, the attention mechanism is used to enhance the
feature. ATTECGAN has been tested on KolektorSDD [96]
and DAGM2007[90] datasets, and its accuracy is 98.53% and

99.57%, respectively, with only a small number of samples.
The literature [97, 98, 99, 100, 101] all proposed fabric defect
detection methods based on GAN, and achieved relatively
excellent detection performance. Table 4 shows the research
application and performance of GAN based defect detection
in the field of textile quality inspection.

C. OVERVIEW OF GAN-BASED CONSTRUCTION ROAD
DEFECT DETECTION APPLICATIONS
GAN is also gradually applied to defect detection in the
construction industry, such as concrete surface, highway
pavement, bridge surface, etc. Zhang et al. [11] proposed a
Defect synthesis network Defect-GAN, which can generate
real defects in various image backgrounds with different
textures and appearance by introducing a strategy based on
layer composition. It can also simulate the random variation
of defects and flexibly control the location and category of
defects in the image background. The experimental results on
CODEBRIM dataset [102] show that defect-GAN has better
performance than previous methods in Defect generation.
The generated data sets are used in defect detection to achieve
higher accuracy. Mei et al. [81] proposed a new road crack
detection method, Conn-Crack, which combined conditional
Wasserstein to generate adversarial network and connected
graph, used 121 layers of densely connected neural network
with deconvolution layer as generator for multi-level feature
fusion, and used 5-layer fully convolutional network as dis-
criminator. The method was tested on CFD dataset [103] and
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TABLE 4. Research on the application of GAN in textile defect detection.

EdmCrack600 dataset. The results show that compared with
other existing methods, the proposed method achieves the
most advanced performance in terms of accuracy (96.79%),
recall (87.75%) and F1 score (91.96%). To address the prob-
lem of data shortage and imbalance in building structural
defects, Shin et al. [104] developed a data augmentation
method using Generative adversarial networks (GAN). In the
model experimentally applied with GAN-based data aug-
mentation, the average performance is improved by about
0.16 compared to the model trained with small datasets.
In order to solve the problem that it is difficult for CGAN
to detect the shape of objects in the detection of road sur-
face defects, Kyslytsyna et al. [105] proposed an improved
CGAN with attention gate (ICGAN) method to detect road
surface defects. ICGAN first removes any information in the
image other than the road, then identifies flaws and adds
two attention gates to the U-Net architecture to improve the
segmentation capability of the generator in Pix2Pix. Exper-
imental results on Unsupervised Llamas dataset [106] show
that the ICGAN method has better performance than other
state-of-the-art methods. In order to solve the problem of
small sample size in intelligent road detection, Pei et al.
[107] proposed a virtual image set generation method for
asphalt pavement cracks based on improved deep convolution

generative adversarial network. This method uses variational
autoencoder (VAE) to encode real crack images. The latent
variable values obtained from VAE are provided as input to
the DCGAN model generator, and the model hyperparame-
ters are optimized. Then, the Adaptive moment estimation
(Adam) optimizer is used to reconstruct the optimization
model, so as to improve the convergence speed and gener-
alization ability of the model.

In the latest study, Xu et al. [108] proposed a method
to detect pavement cracks under small samples. Firstly, the
image generated by GAN model is used to expand the origi-
nal small sample dataset, and convolutional neural network
(CNN) model is constructed at the same time. Then, the
transfer learning method is used to train and test the data
sets before and after the extension, respectively to verify the
validity of the extended data. It is proved that, compared
with the unexpanded dataset, the CNN model trained after
the expansion improves the detection accuracy of the test
set from 80.75% to 91.61%. Ali et al. [109] proposed a
new sensor technology that can detect road damage using a
deep learning-based image processing algorithm. This tech-
nique includes a super-resolution semi-supervised learning
method based on generative adversarial networks. The for-
mer improves the quality of the road image and makes
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the damaged area clearly visible. The latter uses 5327 road
images and 1327 tag images to enhance the detection perfor-
mance. The two methods are applied to four lightweight seg-
mentation neural networks. For 400 road images, the average
recognition rate reached 81.540% and 79.228%, respectively.
Literature [110], [111], [112], [113], [114] has also made
improvements and upgrades for GAN used in construction
defect detection. Table 5 shows the research application and
performance of GAN-based defect detection in the field of
construction road quality inspection.

D. OVERVIEW OF GAN-BASED APPLICATION IN DEFECT
DETECTION OF AGRICULTURAL PRODUCTS
In recent years, researchers have also used GAN for surface
defect detection of agricultural products, so as to control
the quality of agricultural products and improve economic
benefits. In 2019, Tian et al. [117] used the Cyclic Con-
sistency Adversarial Network (Cycle-GAN) deep learning
model to achieve data enhancement in the detection of Apple
anthracnose lesions, and achieved higher detection accu-
racy compared with the dataset without data enhancement.
Abbas et al. [118] proposed a deep learning-based method for
tomato disease detection, which uses conditional generation
adversarial network (CGAN) to generate synthetic images
of tomato plant leaves. Then, transfer learning was used
to train the DenseNet121 model on both synthetic and real
images to classify tomato leaf images into ten categories of
diseases. The proposed model has been extensively trained
and tested on the publicly available Plant Village dataset
[119]. The method divided tomato leaf images into 5 cat-
egories, 7 categories and 10 categories, with the accuracy
of 99.51%, 98.65% and 97.11%, respectively. The proposed
method is shown to be superior to the existing methods.
Wang et al. [120] adopted a transformer-based generative
adversarial network (GAN) as a data enhancement means,
which can effectively enhance the original training set with
more diverse samples to rebalance the three categories.
Experimental results show that the enhanced data sets get
higher detection accuracy. In order to alleviate the problem
of data scarcity, Brid et al. [121] adopted conditional GAN
to synthesize images to enhance the dataset (Lemons Quality
Control Dataset [122]), and finally achieved 88.75% defect
classification accuracy. Even if the model is compressed to
half the original size, the conditional GAN enhanced classi-
fication network can maintain the classification accuracy of
81.16%. Guo et al. [123] adopted a data expansion method
combining deep convolution generative adversarial network
and rigid transformation (RT) to improve the data richness of
defective dates and effectively solve the imbalance problem
among different types of date data. The defect detection accu-
racy after data enhancement is up to 99.2%. Chen et al. [124]
proposed an automatic defect detection method based on
YOLOv4. Cycle-GAN in this method contributes the most to
the model training strategy. The pseudo-defects generated by
Cycle-GAN enrich the types of defects, and the patches can
conform to the texture after pasting to the original position,

and the patches can be automatically labeled, which greatly
improves the performance of YOLOv4 defect detection.

Table 6 shows the research application and performance of
GAN in fruit crop defect detection.

V. ISSUE DISCUSSION AND FUTURE OUTLOOK
GAN network has made remarkable achievements in the field
of computer vision due to its powerful generating ability and
‘‘coincidence’’ with the era of big data. Although GAN has
been widely used in defect detection, there are still many
challenges, and it still has broad application prospects in the
future. This section summarizes the challenges and possible
future directions of GAN-based defect detection.

The old problems [125] in the application of GANnetwork,
such as mode collapse, gradient disappearance and training
instability, have not all been solved. Although various vari-
ants have emerged, each of these networks basically focuses
on improving only one or two problems, leaving the remain-
ing problems unimproved and possibly even more serious.
For example, CGAN [39] added constraints to the original
GAN model, making GAN generation direction controllable,
but the training of the model was still unstable. WGAN [46]
used Wasserstein distance to break through the traditional
defects of GAN and make the model training more stable, but
also prone to the phenomenon of gradient dispersion. LSGAN
[55] improved the loss function to the least square loss, which
improved the quality of the generated samples, but the model
was still prone to the problems of gradient disappearance and
gradient explosion. By sorting out various problems existing
in GAN itself and summarizing the defect detection methods
based on GAN, future research on generative adversarial
network and its potential breakthrough in the field of defect
detection should mainly focus on the following aspects.

A. GAN ITSELF
1) THEORETICAL EXPLORATION
The main purpose of theoretical research is to solve the
defects of GAN model, but the existing methods are mainly
to adjust the training parameters and modify the training
process, and the theoretical exploration of the defects of
GAN is not deep enough. Therefore, researchers should pay
attention to the structural design of the basic algorithm and
the design of application-oriented loss function to make the-
oretical breakthroughs. For example, we can pay attention to
the variation of traditional structure, such as CGAN network,
and combine the advantages of existing algorithms to improve
the model architecture, and design general and reasonable
constraints, so as to ensure that under the condition of model
stability, we can pay attention to the loss function design with
good quality and diversity of image generation. The theo-
retical exploration of GAN is one of the main development
directions in the future.

2) INTERNAL MECHANISM TRANSPARENCY
Compared with machine learning, the model complexity of
deep learning increases by orders of magnitude, and the
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TABLE 5. Research on defect detection application of GAN in construction road industry.

training and computation process is ‘‘hidden’’ and untrace-
able, making it particularly important to study the inner
working mechanism of models. Using appropriate tools to
realize the transparent research of the working mechanism
of the information flow inside the model, we can find the
problems affecting the stability and training process of the
model from the root, and then analyze and solve them to break
through the performance bottleneck of the model. Using
appropriate tools to realize the transparent research of the
workingmechanism of the information flow inside themodel,
we can find the problems affecting the stability and training
process of the model from the root, and then analyze and
solve the problems, so as to break through the performance
bottleneck of the model. In particular, it is urgent to solve
the representation problem of how GAN model generates
images and the visualization problem of global convergence
of generator and discriminator. In addition, the controllability
problem of the generated network has not been completely
solved, and only the experimental effect of specific scenes has
been achieved, but the universality of different scenes of the
control effect has not been achieved. Transparency research
on the internal mechanism of GAN is also an important
development direction.

B. DEFECT DETECTION DIRECTION
1) NETWORK MODEL REPLACEMENT
In the improvement of GAN model, the use of other network
replacement generators and discriminators should be consid-
ered in the future. In other words, based on the structure of
GAN network, the idea of GAN network is still followed, and
various networks are used as generators and discriminators.
For example, SSGAN [82] replaced the generator of tradi-
tional GAN with Semantic Segmentation Network (SegNet)
and discriminator with full convolution discriminant network
(FCD), which directly avoided the problems existing in GAN
model and achieved good performance in strip defect detec-
tion. This is also a method that can directly avoid the prob-
lems of pattern collapse, gradient disappearance and training
instability in GAN, which is worth further study in the future.

2) INTRODUCING ATTENTION MECHANISM
Attention mechanisms [126] are derived from the study
of human vision. In cognitive science, due to information
processing bottlenecks, humans selectively focus on a por-
tion of all information while ignoring other visible informa-
tion. Attention mechanism in neural networks is a resource
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TABLE 6. Application of GAN in defect detection of agricultural products.

allocation scheme to allocate computing resources to more
important tasks and solve the problem of information over-
load when computing capacity is limited. In neural network
learning, generally speaking, the more parameters of the
model, the stronger the expression ability of the model, and
the more information stored in the model, but this will lead to
the problem of information overload. By introducing atten-
tion mechanism, the problem of information overload can
be solved and the efficiency and accuracy of task processing
can be improved by focusing on the information that is more
critical to the current task, reducing the attention paid to
other information, and even filtering out irrelevant informa-
tion. By introducing attention mechanism into GAN network,
especially in the generator part, themodel paysmore attention
to the defect feature part, which may improve the feature
learning and generation ability of generator. Therefore, the
introduction of attention mechanism in GAN is one of the
directions that can be further studied in the future.

VI. CONCLUSION
This paper reviews the research progress, development his-
tory and application status of GAN based defect detection.
Through the thinking and definition of defect and defect
detection, this paper discusses the implementation scheme
of current defect detection system, summarizes the princi-
ple of GAN, and briefly introduces and compares various
variants of GAN, and expounds the theoretical development
and application status of defect detection based on GAN.

This paper also introduces the research progress and appli-
cation status of GAN defect detection methods in various
fields in detail. In view of the outstanding problems in the
development and application of GAN and GAN-based defect
detection technology, the possible research directions and
improvement ideas in the future are put forward. We hope
that this review will be helpful to researchers working on
GAN, especially those who are interested in using GAN for
defect detection tasks. We believe that with the innovation of
various theories and the iterative development of technology,
the defect detection technology based on GAN will enter a
new era of development.
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