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ABSTRACT Image pattern classification is considered a significant step for image and video processing.
Although various image pattern algorithms have been proposed so far that achieved adequate classification,
achieving higher accuracy while reducing the computation time remains challenging to date. A robust image
pattern classification method is essential to obtain the desired accuracy. This method can be accurately
classify image blocks into plain, edge, and texture (PET) using an efficient feature extraction mechanism.
Moreover, to date, most of the existing studies are focused on evaluating their methods based on specific
orthogonal moments, which limits the understanding of their potential application to various Discrete
Orthogonal Moments (DOMs). Therefore, finding a fast PET classification method that accurately clas-
sify image pattern is crucial. To this end, this paper proposes a new scheme for accurate and fast image
pattern classification using an efficient DOM. To reduce the computational complexity of feature extraction,
an election mechanism is proposed to reduce the number of processed block patterns. In addition, support
vector machine is used to classify the extracted features for different block patterns. The proposed scheme is
evaluated by comparing the accuracy of the proposed method with the accuracy achieved by state-of-the-art
methods. In addition, we compare the performance of the proposed method based on different DOMs to
get the robust one. The results show that the proposed method achieves the highest classification accuracy
compared with the existing methods in all the scenarios considered.

INDEX TERMS Image patterns, image properties, orthogonal polynomials, orthogonal moments, support
vector machine.

I. INTRODUCTION
Nowadays, images are captured and distributed easily
because of network access availability which are used
extensively for business and modern communications [1].
Different image processing methods, like image acquisition,
transmission, and compression, introduce various distortions
to the captured image [2]. These processes affect the proper-
ties of the image (image patterns). Such properties are Plain,
Texture, and Edge that are referred to as (PET). The anal-
ysis of these properties is very important since they can be
used to divide the image into regions of interest, provide
information about the spatial arrangement of the image, and
determine the spatial distribution of intensity levels. There-
fore, image patterns (PET) need to be classified accurately
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based on the types of image content. Mainly, the image is
partitioned into blocks and then these blocks are classified
into ‘‘plain’’, ‘‘edge’’ and ‘‘texture’’ to be used in the desired
process. For example, an image region’s local quality index
performance is examined for various types of distortion based
on PET [2]. PET can be used to extract the discriminative
features of images according to the application, where the
features provide significant information about the content
of an image. Such applications are perceptual visual secu-
rity index [1], Content-based image quality metric [2], vis-
ible watermarking [3], quality assessment of 3D synthesized
images [4], a perceptual model for jpeg applications [5], and
Just Noticeable Difference Model [6], [7].

In recent years, many studies have used Discrete orthog-
onal moments (DOM) for digital signal processing [8].
DOM is an efficient tool that can extract significant
features of the images. Different discrete transform-based
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PET classification methods are performed to partition the
critical areas of the image into edge block, texture block, and
plain block [4]. From a mathematical point of view, DOMs
are quantities that represent important features of an image,
and they provide image coordinates in the orthogonal poly-
nomial basis function [9]. In other words, the discrete trans-
form allows the image to be viewed in the transform domain
and analyzes the components of it [10]. The discrete trans-
forms are used as feature extraction tools. Such transforms are
discrete Fourier transform, discrete Wavelet transform, and
discrete Walsh-Hadamard transform [11]. Transform-based
techniques are used in various types of algorithms because
of their powerful properties. Such algorithms are: speech
enhancement [12], [13], video content analysis [14], face
recognition [15], [16], and information hiding [17]. Primar-
ily, DOMs are characterized by their energy compaction and
localization properties [11]. Moments are directly defined
in image coordinate space and preserve the property of
moment set orthogonality. There are various types of orthog-
onal moments, such as Hahn moments [18], Tchebichef
moments [19], [20], and Krawtchouk moments [21].
Moreover, new hybrid polynomials have been proposed
recently such as: Tchebichef–Krawtchouk polynomial [9]
and Krawtchouk–Tchebichef polynomial [10]. The perfor-
mance of these sets exhibited noticeable merits in terms of
energy compaction and localization properties [22]. These
sets represent the first and second levels of the transform com-
bination derived from discrete Tchebichef and Krawtchouk
polynomials. New separable polynomials and their moments,
termed as squared Tchebichef–Krawtchouk polynomials, are
also proposed based on the second level of combination that
achieve optimal image representation and reconstruction fea-
tures [23]. These moments are based on their polynomials
and extract the local features from the region of interest
of an image that has unique contents (such as edges and
texture). Different feature extraction classifiers have been
developed using machine learning such as Support Vector
Machine (SVM) which produces an accurate PET classifi-
cation [24]. Typically, in image processing applications, the
image’s frame is partitioned into blocks to be processed sep-
arately. The robustness of feature extraction for these blocks
are mainly depend on the transform properties. Where, fea-
tures are stored in a memory location that corresponds to the
image block to be utilized as local image descriptors [25],
[26], [27], [28].

The Discrete Tchebichef Transform-based PET block clas-
sifier with an image quality metric has been proposed because
different types of distortion influence various regions in
the image [2]. PET classification provides good results even
though the threshold values for the classification process are
determined from empirical results. To overcome this issue,
Tchebichef moment has been used in the image block clas-
sification based on SVM by dividing the image into non-
overlapping blocks, then transforming these blocks into the
moment domain to extract features that are used in the image
content classification [24]. The classification has been carried
out using SVM to classify the image blocks into PET blocks

(plain, edge, and texture) based on the level ofmoment energy
with an accuracy equal to 98.7%. Although the work in this
area has been presented in previous studies, different existing
applications demand for accurate and fast classification of
image patterns. Motivated by these issues, this work presents
an accurate and fast image patterns classification method
based on efficient discrete orthogonal moments.

A. CONTRIBUTIONS
The main contributions of this paper can be summarized as
follows:

1) This paper considers a new mechanism for electing
the blocks of plain pattern that can suppress the plain
pattern blocks from further processing. The remaining
blocks are passed to the next stage for more processing.
This mechanism will reduce the computational time in
comparison to the conventional precoding scheme.

2) Unlike previous works that have investigated the clas-
sification of image blocks using specific type of OPs,
this paper investigates the use of different types of
OPs through considering their powerful properties,
which are essential metrics for the extracting the feature
vector.

3) This paper constructs a pattern image dataset to address
the task of the image patterns recognition. This dataset
helps to specify the patterns of the images into plain,
edge, and texture. This dataset is critically beneficial to
make the classification process in different conditions.

4) Comparisons between the proposed method and the
existing related works are carried our based on com-
putational time and classification accuracy.

The rest of the paper is organized as follows. The prelim-
inaries of the orthogonal polynomials as well as the compu-
tation of moments are introduced in Section 2. In Section 3,
the methodology is presented. The experimental analysis is
presented in Section 4. Finally, the conclusion is drawn in
Section 5.

II. PRELIMINARIES OF THE ORTHOGONAL
POLYNOMIALS
In this section, the preliminaries of the orthogonal polyno-
mials used in this manuscript are presented. In addition, the
moments computation are given.

A. DISCRETE TCHEBICHEF POLYNOMIALS (DTchPs)
The n-th order of the weighted and normalized DTchPs,
which is represented by RTn (x), is given by [29]:

RTn (x) =
(1− N )n√(N+n
2n+1

)
(2n)!

3F2

[
−x, − n, 1+ n

1− N , 1
; 1
]

(1)

with

n = 0, 1, 2, . . . ,N − 1, and

x = 0, 1, 2, . . . ,N − 1,
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where pFq(.) represents the generalized hypergeometric func-
tions [30],

(a
b

)
represents the binomial coefficients, and

(·)k represents the Pochhammer symbol [31].
The computation of the DTchPs coefficients using hyper-

geometric function (1) is numerically unstable and compu-
tationally expensive [32]. Thus, to obtain stable coefficients
values with low computational complexity, the recurrence
algorithms are utilized [33]. Several studies have been pre-
sented and developed recurrence algorithm for DTchPs [19],
[20], [29], [32]. In this paper, we have employed the recur-
rence algorithm in the x-direction [29]. The recurrence algo-
rithm in the x-direction is given by:

RTn (x) = α1 R
T
n (x − 1)+ α2 RTn (x − 2) (2)

with

n = 0, 1, . . . ,N − 1,

x = 2, 3, . . . ,
N
2
− 1

where

α1 = −
n(n+ 1)− (1− 2x)(x − N − 1)− x

x(N − x)
(3)

α2 =
(x − 1)(x − N − 1)

x(N − x)
(4)

with initial values:

RT0 (0) =
1
√
N

(5)

RTn (0) = −

√
(2n+ 1)(N − n)
(2n− 1)(N + n)

RTn−1(0),

n = 1, 2, . . . ,N − 1 (6)

RTn (1) =
(
1+

n(1+ n)
1− N

)
RTn (0)

n = 0, 1, . . . ,N − 1 (7)

Additionally, to compute the rest of DTchPs coefficients,
the following symmetry relation is used:

RTn (N − 1− x) = (−1)n RTn (x) (8)

with

n = 0, 1, . . . ,N − 1

x =
N
2
,
N
2
+ 1, . . . ,N − 1

B. DISCRETE KRAWTCHOUK POLYNOMIALS (DKraPs)
The n-th order of the weighted and normalized DKraPs,
which is denoted by RKn (x; p), based on the hypergeometric
function is given by [21]:

RKn (x; p) =

√(
N − 1
x

)(
N − 1
n

)(
p

1− p

)n+x
×2F1

[
−x, − n
1− N

;
1
p

]
(9)

with

n = 0, 1, . . . ,N − 1,

x = 0, 1, . . . ,N − 1, and

p ∈ (0, 1)

Similar to DTchPs, to compute the DKraPs coefficient
with low computation cost and without numerical error, the
recurrence algorithms are utilized [8], [9], [21], [34], [35].
In this paper, we utilized the recurrence algorithm in the
x-direction [9], which is given by:

RKn (x + 1; p) =
B
A
RKn (x; p)−

C
A
RKn (x − 1; p) (10)

with

n = 0, 1, . . . ,N − 1,

x = 1, 2, . . . ,
N
2
− 2

with initial values:

RK0 (0; p) =
√
(1− p)N−1 (11)

RKn (0; p) =

√
p(N − n)
(1− p)n

RKn−1(0; p)

n = 1, 2, . . . ,N − 1 (12)

RKn (1; p) =
p(N − 1)− n
(N − 1)p

√
p(N − 1)
(1− p)

RKn (0; p)

n = 0, 1, . . . ,N − 1 (13)

where

A =
√
(x + 1)(1− p)p(N − 1− x) (14)

B = x(1− p)+ p(N − 1− x)− n (15)

C =
√
p(N − x)(1− p)x (16)

To compute the other coefficient values of the DKraPs, the
following symmetry relation is used:

RKn (x; p) = (−1)x+n−1 RKN−1−n(N − 1− x; p) (17)

with

n = 0, 1, . . . ,N − 1

x =
N
2
,
N
2
+ 1, . . . ,N − 1

C. DISCRETE HYBRID POLYNOMIALS
Different types of combination between DTchPs and
DKraPs are presented in this section, which are Discrete
Krawtchouk-Tchebichef Polynomials (DKTP) [10], Dis-
crete Tchebichef-Krawtchouk Polynomials (DKTP) [9],
Discrete Squared Krawtchouk-Tchebichef Polynomials
(DSKTP) [22], andDiscrete Squared Tchebichef-Krawtchouk
Polynomials (DSTKP) [23].

The n-th order of the hybrid forms (RHybridn (x; p)) are given
in Table 1.

In addition, the hybrid polynomial forms can be computed
using matrix forms as listed in TABLE 2.
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FIGURE 1. Order selection for different types of orthogonal polynomials.

TABLE 1. Mathematical representation of the discrete hybrid polynomials.

TABLE 2. Representation of the discrete hybrid polynomials. Note: tr(·)
represents matrix transpose operation.

It is noteworthy that the set of orthogonal functions satisfy
the orthogonality condition are as follows [20]:

N−1∑
n=0

Rn(x)Rm(x) = δmn =
{
1, n = m
0, n 6= m (18)

where δnm represents the Kronecher delta [36].

D. COMPUTATION OF MOMENTS
Discrete orthogonal moments (DOMs) are efficient tools for
pattern recognition as they can extract significant features
without redundancy [9], [37]. To compute the DOMs of the
(n+m)th order for a 2D signal (image),I (x, y), with Ny rows
and Nx columns, the following formula is applied:

Mnm =

Nx−1∑
x=0

Ny−1∑
y=0

I (x, y)Rn(x)Rm(y) (19)

with

n = 0, 1, . . . ,Ordx

m = 0, 1, . . . ,Ordy

Practically, matrix multiplication is used for fast computa-
tion in different programming environments because the Intel
Math Kernel Library (MKL) is utilized [38]. In this regards,
moments can be computed using matrix multiplication as
follows:

M = RyIR′x (20)

where (·)′ represents the matrix transpose operation.
It is noteworthy that the moments need to be computed

according to the order specified; this is related to themoments
order (n) of the generated orthogonal polynomial. To this end,
FIGURE 1 shows the order selection (Ord) for the polynomi-
als used in this paper. More details about order selection can
be found in [9], [10], [19], [22], and [23].

III. METHODOLOGY
In this section, the methodology of the image patterns (plain,
edge, and texture) classification using different types of
orthogonal polynomials is described.

The content of an image has various types of patterns such
as plain, edge, and texture. These patterns show different
moment energies in the moment domain. In addition, the
moment distribution varies based on the orthogonal polyno-
mial used. Thus, the features need to be selected carefully to
obtain a high recognition rate.

In the following sections, the feature extraction is presented
for each type of orthogonal polynomial, and the flow process
for feature extraction and recognition is given.
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FIGURE 2. Moment energy (ME =M2) distribution for different types of
patterns using DTchP.

A. FEATURE EXTRACTION
1) FEATURE EXTRACTION FOR DTchP
FIGURE 2 shows the moment energy (M2) distribution for an
8×8 block images of different types of patterns. The samples
show edges with different angles, plains, and textures.

From FIGURE 2, it can be observed that, the plain affects
the moments energy in the first row (m = 0 and n = 1, 2) and
the first column (m = 1, 2 and n = 0) of the moments (ME);
While the textural information affects the entiremoments. For
edge information, the effect appear on the horizontal (m =
0 and n = 1, 2, 3), vertical (m = 1, 2, 3 and n = 0), and
diagonal (m = 1, 2, 3 and n = 1, 2, 2) moments. Thus, the
extraction of feature vector (FVDTchP) can be performed as
follows:

SSM1DTchP =
HB−∑
n=0

HB−∑
m=0

M2
nm,

SSM2DTchP =
HB−∑
n=0

BS−1∑
m=HB+

M2
nm

SSM3DTchP
BS−1∑
n=HB+

HB−∑
m=0

M2
nm,

SSM4DTchP =

BS−1∑
n=HB+

BS−1∑
m=HB+

M2
nm

SSM =

(
BS−1∑
n=0

BS−1∑
m=0

M2
nm

)
−M2

00

FSSM = [SSM1DTchP, SSM2DTchP, SSM3DTchP,

×SSM4DTchP, SSMDTchP]

F1DTchP =

(
3∑

m=1

M2
0m

)
/SSM1DTchP,

F2DTchP =

(
3∑

n=1

M2
n0

)
/SSM1DTchP

F3DTchP =
(
M2

11 +M
2
22 +M

2
33

)
/SSM1DTchP

F4DTchP =
(
M2

12 +M
2
13 +M

2
23

)
/SSM1DTchP

FIGURE 3. Moment energy (ME =M2) distribution for different types of
patterns using DKraP.

F5DTchP =
(
M2

21 +M
2
31 +M

2
32

)
/SSM1DTchP

FVDTchP = [F1DTchP, F2DTchP, F3DTchP, F4DTchP,

×F5DTchP, FSSM ] (21)

where BS represents the block size, HB− = N
2 − 1 and

HB+ = N
2 .

2) FEATURE EXTRACTION FOR DKraP
The moment energy distribution for an 8 × 8 block images
using DKraP is shown in FIGURE 3, where plain, edge, and
texture patterns are shown.

From FIGURE 3, it can be observed that, the plain affects
the moments energy at the indices (m = 0 and n = 2, 4),
(m = 2, 4 and n = 0), and (m = 2 and n = 2); While the
texture influences the entire moments. On the other hand, the
edge impacts the moments at the indices (m = 0 and n =
1, 2, 4), (m = 1, 2, 4 and n = 0), (m = 1 and n = 1), (m =
2 and n = 2), and (m = 4 and n = 4). Thus, the feature
vector (FVDKraP) can be constructed based on the distribution
of moments energy as follows:

SSM1DKraP =

HB−∑
n=0

HB−∑
m=0

M2
nm

−M2
00

SSM2DKraP =
HB−∑
n=0

BS−1∑
m=HB+

M2
nm

SSM3DKraP =
BS−1∑
n=HB+

HB−∑
m=0

M2
nm

SSM4DKraP =
BS−1∑
n=HB+

BS−1∑
m=HB+

M2
nm

FSSMK = [SSM1DKraP, SSM2DKraP,

×SSM3DKraP, SSM4DKraP]

F1DKraP =

(
4∑

m=1

M2
0m

)
/SSM1DKraP

F2DKraP =

(
4∑

n=1

M2
n0

)
/SSM1DKraP
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FIGURE 4. Moment energy (ME =M2) distribution for different types of
patterns using DKTP.

F3DKraP =
(
M2

11 +M
2
22 +M

2
33 +M

2
44

)
/SSM1DKraP

F4DKraP =
(
M2

12 +M
2
13 +M

2
23

)
/SSM1DKraP

F5DKraP =
(
M2

21 +M
2
31 +M

2
32

)
/SSM1DKraP

F6DKraP = M2
05/SSM1DKraP

F7DKraP = M2
50/SSM1DKraP,

F8DKraP = M2
22/SSM1DKraP

FVDKraP = [F1DKraP, F2DKraP, F3DKraP,

×F4DKraP, F5DKraP, F6DKraP,

×F7DKraP, F8DKraP, FSSMK ] (22)

3) FEATURE EXTRACTION FOR DKTP
For DKTP, the DC components are located at the center
because the orders that reflect the low frequency are located
at the center of the DKTP (please see FIGURE 1). Therefore,
the DC components are set to zero (n = 3, 4 and m = 3, 4)
and the distribution of moments for different types of image
patterns with their corresponding moments energy are shown
in FIGURE 4.

It can be observed that the plain impacts the moments at the
center in the range (m = 2, 5 and n = 2, 3, 4, 5) and (m =
4, 5 and n = 2, 5). The texture impacts the moments outside
the range (m = 3, 4 and n = 3, 4). For edge pattern, the
moments influenced are in the range (m = 1, 2, 5, 6 and n =
1, 2, 3, 4, 5, 6) and (m = 1, 2, 5, 6 and n = 1, 2, 3, 4, 5, 6).
Accordingly, the feature vector using DKTP (FVDKTP) is
derived as follows:

SSM1DKTP =
5∑

m=2

M2
1m,

SSM2DKTP =
5∑

n=2

M2
n1

SSM3DKTP =
5∑

m=2

M2
6m,

SSM4DKTP =
5∑

n=2

M2
n6

FIGURE 5. Moment energy (ME =M2) distribution for different types of
patterns using SKTP.

SSMDKTP =

6∑
n=1

6∑
m=1

M2
nm −

4∑
n=3

4∑
m=3

M2
nm

FSSMDKT = [SSM1DKTP, SSM2DKTP, SSM3DKTP,

×SSM4DKTP, SSMDKTP]

F1DKTP = [M22, M23, M24, M25]

F2DKTP = [M25, M35, M45, M55]

F3DKTP = [M32, M42]

F4DKTP = [M35, M45]

FVDKTP = [F1DKTP, F2DKTP, F3DKTP,

×F4DKTP, FSSMDKT ] (23)

4) FEATURE EXTRACTION FOR SKTP
Themoments distribution of the STKP aremore compact than
that of the DKTP as shown in FIGURE 5. Note that the DC
components located at (m = 3, 4 and n = 3, 4) are set to
zero so that the effective moments can be identified easily [2].
It can be noticed that the moments energy for all patterns are
located at the center of the moments domain. However, for
texture pattern, the moments are distributed in the moment
domain. As a result, the features for STKP can be represented
as follows:

SSM1SKTP =
HB−∑
n=0

HB−∑
m=0

M2
nm

SSM2SKTP =
HB−∑
n=0

BS−1∑
m=HB+

M2
nm

SSM3SKTP =
BS−1∑
n=HB+

HB−∑
m=0

M2
nm

SSM4SKTP =
BS−1∑
n=HB+

BS−1∑
m=HB+

M2
nm

FSSMSKT = [SSM1SKTP, SSM2SKTP,

×SSM3SKTP, SSM4SKTP]

F1SKTP = [M23, M24]

F2SKTP = [M53, M54]
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FIGURE 6. Moment energy (ME =M2) distribution for different types of
patterns using DTKP.

F3SKTP = [M32, M42]

F4SKTP = [M35, M45]

FVSKTP = [F1SKTP, F2SKTP, F3SKTP,

×F4SKTP, FSSMSKT ] (24)

5) FEATURE EXTRACTION FOR DTKP
For DTKP, the DC components are located at the cor-
ners because the orders that reflect the low frequency is
located at the top and bottom of the DTKP plane (please
see FIGURE 1). Therefore, the DC components are set to zero
(m = 0 and n = 0), (m = 0 and n = 7), (m = 7 and n = 0),
and (m = 7 and n = 7). The distribution of moments for
different types of image patterns with their corresponding
moments energy are shown in FIGURE 6.

It can be noticed that the moments energy for edge and
plain patterns are located at top and bottom rows, and left and
rights columns. However, for texture pattern, themoments are
spread at various locations of the moment domain. Therefore,
the features for DTKP can be derived as follows:

SSM1DTKP =

HB−∑
n=0

HB−∑
m=0

M2
nm

−M2
00,

SSM2DTKP =

HB−∑
n=0

BS−1∑
m=HB+

M2
nm

−M2
07

SSM3DTKP =

 BS−1∑
n=HB+

HB−∑
m=0

M2
nm

−−M2
70,

SSM4DTKP =

 BS−1∑
n=HB+

BS−1∑
m=HB+

M2
nm

−M2
77

FSSMTK = [SSM1DTKP, SSM2DTKP,

×SSM3DTKP, SSM4DTKP]

F1DTKP = [M01, M02, M03, M04, M05, M06]

F2DTKP = [M10, M20, M30, M40, M50, M60]

F3DTKP = [M71, M72, M73, M74, M75, M76]

F4DTKP = [M17, M27, M37, M47, M57, M67]

FIGURE 7. Moment energy (ME =M2) distribution for different types of
patterns using STKP.

FVDTKP = [F1DTKP, F2DTKP, F3DTKP,

×F4DTKP, FSSMTK ] (25)

6) FEATURE EXTRACTION FOR STKP
FIGURE 7 shows the moment distribution of the STKP. It is
easily observed that the moments that are influenced by the
plain, edge, and texture patterns are similar to those of the
DTKP.However, themoments energies are different from that
of the DTKP. Therefore, the features that need to be extracted
for the STKP are similar to those of the DTKP.

The scaling of features is considered an important step
to obtain a similar range of independent variables which is
strongly influences the recognition rate [39]. In this work,
feature scaling used in this work is by mapping the mean
(mean(FV )) and standard deviation (std(FV )) of the feature
vector into meant and stdt , respectively, as follows:

FVs = (FV − mean(FV )) ·
stdt

std(FV )
+ meant (26)

where FVs denotes the scaled feature vector, FV represents
one of the feature vectors extracted previously based on the
polynomial used. The values of meant and stdt are set to
0 and 1, respectively.

B. THE ELECTED PLAIN PATTERNS
Generally, an image contains the three image patterns (plain,
edge, and texture). Each image has multiple plain patterns
where their total number is non-zero. In addition, the pixel
intensities of plain patterns show high similarity, i.e., very
small changes in the pixel intensities. On the other hand, the
values of the pixel intensities for edge and texture patterns
show noticeable changes. In this work, we have presented a
method for electing the blocks of plain patterns and the rest
of the blocks are passed to the next stage, i.e., classification
stage. The aim of this stage is to eliminate the plain patterns
which will minimize the computation time. Thus, a block
with a high similarity between pixels intensities is considered
as a plain pattern. While, the rest of the blocks are passed to
the next stage for further processing. In the next stage, the
image blocks that are judged as non-plain patterns will be
processed. The processing will involve computing moments,
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FIGURE 8. A diagram for the procedure of the presented algorithm to predict the image patterns.

constructing the feature vector, and predicting the pattern
of the image block (plain, edge, or texture). This is applied
when the difference between the maximum and minimum
pixel intensities is greater than IEP (please see FIGURE 8)
as follows:

EP =

{
1; (max(I )−min(I )) > IEP
0; otherwise

(27)

where EP represents the elected pattern, IEP is the inten-
sity threshold for elected patterns, min(I ) and max(I ) return
the minimum and maximum intensity values from the
image block. For more elucidation, the pseudo code for
elected pattern mechanism is presented in Algorithm 1.
Note that the best value of IEP is experimentally found
to be 0.1 in double precision format or 25 in unsigned
integer.

C. THE IMAGE PATTERN CLASSIFICATION
Now, the type of image patterns need to be predicted after
the feature vector has been extracted and normalized. In this
paper, support vector machine (SVM) is used for clas-
sification. The LIB-SVM is employed in this paper with
radial basis function (RBF) as a kernel function [39], [40].
The RBF kernel is selected because of the effective clas-
sification mechanism since the RBF kernel shows nonlin-
ear separation between classes [39]. FIGURE 8 depicts the
diagram of the procedure used to predict the pattern of
images.

IV. EXPERIMENTAL RESULTS
In this section, the generated dataset and its procedure are
presented. In addition, the training and testing procedures are
presented. Finally, the experimental analysis of the presented
work is given.
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Algorithm 1 The Proposed Mechanism for Electing Plain
Patterns
Input: I=image block, IEP=Intensity for electing pattern.
Output: EP = Elected pattern.
1: a = max(I ) {Return the maximum intensity value in the

image block I .}
2: b = min(I ) {Return the minimum intensity value in the

image block I .}
3: I1 = b − a {Find the difference between the maximum

and minimum intensities.}
4: if I1 > IEP then
5: EP = 1 {Non Plain pattern. This image block is passed

to the next stage.}
6: else
7: EP = 0 {Elected as Plain pattern.}
8: end if
9:

10: return EP

A. DETAILS OF THE DATASET
The dataset of the existing works is very small. For exam-
ple, [24] has selected manually 150 images for each pattern.
However, the dataset is considered small to predict the various
angles and cases for edge pattern. In this paper, we have
generated 1080, 1800, 3600 for edge, plain, and texture pat-
terns respectively. In addition, the generated edge patterns are
degraded by Gaussian noise to discover the effect of illumi-
nation change. Thus, the total generated patterns are 7560.

Algorithm 2 The Generation of Plain Pattern Images of the
Dataset
Input: BS=Block size, minI=minimum intensity,
maxI=maximum intensity.
Output: Plain patterns.
1: Pind=0 {F Pind represents the index used for storing

the Plain images in a cell array
}

2: for i← 1 to Tplain do
{FTplain denotes the required number of plain
images and it is set to 1800.

}

3: Pind ← Pind + 1
4: Plain(Pind )← [JBS ] · (i/intcontrol) {F intcontrol is used

to control the intensity values.}
5: end for
6: return Plain pattern images

For the testing dataset, different values of intcontrol (in
Algorithm 2 and Algorithm 3) have been used such that the
intensity of plain and texture values are distinct from the
training set. For edge patterns, the image patterns are gen-
erated with a size of 16 × 16 and with 6 shifts. Then, the
images of the edge patterns are resized into 8 × 8 images,
which will produce images with a blurry edge pattern. More-
over, the generated edge patterns are degraded by a Gaus-
sian noise which will produce ((angles = 360) × (shifts =
6)×(clean and noisy = 2) = 4320). For texture patterns, the

Algorithm 3 TheGeneration of Texture Pattern Images of the
Dataset
Input: BS=Block size, minI=minimum intensity,
maxI=maximum intensity.
Output: Texture patterns.
1: Tind ← 0 {FTind represents the index used for storing the

Texture images in a cell array
}

2: for i← 1 to TTex do
{F TTex represents the total number of texture
images and it is set to 3600.

}

3: Tind ← Tind + 1
4: Texture(Tind ) ← [U (BS)] · (i/intcontrol)

{Fgenerate a matrix of size BS × BS with
uniformly distributed random numbers.

}

5: end for
6: return Texture pattern images

TABLE 3. The details of the train and test datasets.

number of generated images is 3600; while for plain patterns,
the number of generated clean images is 1800 and for noisy
plain patterns degraded by Gaussian noise is 1800. Thus, the
total number of images in the test dataset is 11520. A sum-
mary of the train and test dataset are given in TABLE 3.

B. PERFORMANCE EVALUATION OF SVM KERNELS
The aim of the presented work is to predict the image pat-
terns correctly and achieve a high recognition rate. In this
study, the MATLAB code of LIBSVM [40] toolbox was
used for classification. The classification process using the
SVM includes training and testing process. The C-type of
the SVM technique with radial basis function was used
for training. These choices are considered as an effective
classification mechanism. This kernel shows nonlinear sep-
aration between classes. To ensure high prediction accu-
racy, the cross-validation process is carried out to obtain
the best kernel parameters. Note that the cost and gamma
are essential parameters that need to be tuned with applying
five-fold cross-validation. The ranges of the parameters for
cost and gamma are considered to be (20, 21, . . . , 25) and
(2−10, 2−9, . . . , 20). The cost and gamma parameters show
high accuracy on the testing set. To justify the selection of
the RBF kernel, we have tested the presented algorithm using
three kernels: 1) linear, 2) polynomial, and 3) RBF. The
results of this test phase are shown in TABLE 4. It should be
noted that the dataset presented in this work (Section IV-A)is
used to obtain the results in TABLE 4.
The results in TABLE 4 show that the average recognition

rate of RBF kernel is 11.2%more than the linear kernel; while
it is greater than polynomial kernel by 0.75%. Consequently,
RBF is utilized as a kernel for the SVM because the recogni-
tion rate for the RBF kernel is higher than other SVM kernels
(linear and polynomial).
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FIGURE 9. Test images of size 480× 704 and their corresponding elected patterns. Image from top left to bottom right: ‘‘sailing2’’,
‘‘womanhat’’, ‘‘statue’’, and ‘‘sailing3’’.

FIGURE 10. Test images of size 768× 512 and their corresponding elected patterns. Image from top left to bottom right: ‘‘caps’’,
‘‘lighthouse2’’, ‘‘monarch’’, ‘‘ocean’’, ‘‘parrots’’, and ‘‘plane’’.

C. COMPARISON WITH EXISTING WORKS
In this section, the performance of the presented algorithm is
evaluated. The evaluation is carried out in terms of recogni-
tion rate (accuracy), and computation cost. In addition, visual
inspection has been presented.

In the presented algorithm, we utilize SVM as a classifier
with the RBF as a kernel. The comparison is performed with
two previous studies: image pattern classification based on
threshold rules (PCTR) [2] and image pattern classification
based on SVM (PCSV) [24]. The proposed work is compared
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FIGURE 11. Results of the test image ‘‘sailing2’’ carried out using the proposed and existing algorithms.

FIGURE 12. Results of the test image ‘‘womanhat’’ carried out using the proposed and existing algorithms.

with PCTR and PCSV because these works are considered
the most related existing works that need more insight to be
more accurate and faster in the image pattern classification.
It is noteworthy that the PCTR and PCSV perform the pat-
tern classification using DTchP only. TABLE 5 shows the

recognition rate of the presented algorithm and the existing
methods (PCTR and PCSV).

The reported results reveal that the PCTR [2] attains the
recognition rate of 88.32%which is the minimum recognition
level. While the PCSV [24] shows better recognition rate than
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Algorithm 4 The Generation of the Edge Pattern Images of
the Dataset
Input: BS=Block size, minI=minimum intensity,
maxI=maximum intensity.
Output: Edge patterns.
1: Eind ← 0 {F Eind represents the index used for storing

the Edge images in a cell array
}

2: for i← 1 to Angles do
{F Angles represents the angles to be gener-
ated. Since we will reverse (in step 19) the
generated Edge image, the values of Angles
is set to 180.

}

3: Eind ← Eind + 1
4: Temp=[JBS/2,BS · minI ; JBS/2,BS · maxI ]
5: Temp←rotate(Temp, i) {FThe rotated image are

cropped.}
6: Edge(Eind )←Temp
7: Eind ← Eind + 1
8: Edge(Eind ) ← RE(Edge(Eind − 1)) {FRE represents

reversing the elements in each row.}
9: for j← 1 to 2 do

{Fj represents shift in angle}
10: if i <45 then
11: Edge(Eind + j)← SU(Edge(Eind )) {FSU denotes

shift the edge up.}
12: else if i ≥45 and i <136 then
13: Edge(Eind + j) ← SL(Edge(Eind )) {SL denotes

shift the edge left.}
14: else
15: Edge(Eind + j)← SR(Edge(Eind )) {FSR denotes

shift the edge right.}
16: end if
17: Eind = Eind + 1
18: Edge(Eind + 1)← RE(Edge(Eind ))
19: Eind = Eind + 1
20: end for
21: end for
22: return Edge image patterns

TABLE 4. Recognition rates (%) of patterns for different types of SVM
kernels.

PCTR with an improvement of 2.54%. On the other hand, the
results of the presented algorithm outperforms the existing
algorithms with improvement ranging 8.62% to 9.3%. The
DKTP has achieved the best recognition rate among other
types of orthogonal polynomials.

TABLE 5. Recognition rate of the presented algorithm and existing
algorithms using the test dataset.

TABLE 6. Computation time of the presented and existing algorithm
using the image ‘‘womanhat’’ from Live dataset [41].

The performance of the presented algorithm and exist-
ing works was determined in terms of computational time.
Moreover, to show the effect of the elected plain on the com-
putation time, we have carried out the experiment for the pre-
sented algorithm without and with the elected patterns tech-
nique. TABLE 6 summarizes the obtained results. The results
of the computation time reveal that the computation time
increases as the number of extracted features increases. Also,
it is clear that the proposed algorithm with the elected pattern
technique has an average improvement of 2.39 1 over the pre-
sented algorithm without the elected pattern technique. Com-
pared with the existing algorithm, the presented algorithms
using DTchP, DKraP, and SKTP is faster than PCTR [2] and
PCSV [24]. However, the presented algorithm using DKTP
is also faster than PCSV [24].

To show the impact of the elected pattern technique,
an experiment is performed using the Live dataset [41] on two
groups of images. The first test is performed on images with
a size of 480×704 and the results are depicted in FIGURE 9.
The results show that the black pixels are the blockswith plain
pixel; while the white pixels represent the blocks of the pixels
that will be passed to the next stage to be recognized as one
of the image patterns (plain, edge, and texture).

In addition, the experiment is performed for a group of
images with a size of 768 × 572 and the results are shown
in FIGURE 10. The percentage of the elected image blocks
(PEIB), white pixels in Figures 9 and 10, is computed and
placed under the images. The PEIB is computed as follows:

PEIB =
Number of elected pixels
Total number of pixels

× 100% (28)

1This value represents the average of the elected pattern improvement
extracted from TABLE 6.
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It can be noticed from the values of PEIB is that the per-
centage of the pixels to be processed to the total number of
pixel is ∼ 48% 2

For visual inspection, we have carried out an experiment
using the proposed and existing algorithm on two images
from the Live dataset. The results of the experiment on the
‘‘sailing’’ image are shown in FIGURE 11 and the results of
the ‘‘womanhat’’ are shown in FIGURE 12.

V. CONCLUSION
This paper proposed a new method for finding a fast and
accurate image pattern classification method. A robust image
pattern recognition method is designed to meet the desired
recognition accuracy by extracting the features efficiently
and classifying the image blocks into plain, edge, and tex-
ture (PET) based on the codesign of different types of dis-
crete orthogonal polynomials with their associated moments.
An election mechanism was proposed to reduce the com-
putational complexity of the feature extraction by reducing
the number of processed block patterns. In addition, SVM
is used to classify the extracted features for the different
patterns accurately. The proposed method was evaluated by
comparing the accuracy of the proposed method with the
accuracy achieved using the existing methods and comparing
the performance of the proposed method for different types
of DOM to get the most robust one. The results demonstrated
that the proposed approach achieved the highest recognition
accuracy with low computational complexity when compared
with the state-of-the-art methods. Although this work out-
performs existing algorithms, it is only applied to Grayscale
images. Thus, future work may consider the investigation of
performing image pattern classification for color images.
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